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Executive Summary:

The aim of this report is:

● to give the reader a model of time and space overheads implied by use of 
various C++ language and library features,

● to debunk widespread myths about performance problems,

● to present techniques for use of C++ in applications where performance 
matters, and

● to present techniques for implementing C++ language and standard library 
facilities to yield efficient code.

As far as run-time and space performance is concerned, if you can afford to use C for 
an application, you can afford to use C++ in a style that uses C++’s facilities 
appropriately for that application.

This report first discusses areas where performance issues matter, such as various 
forms of embedded systems programming and high-performance numerical 
computation.  After that, the main body of the report considers the basic cost of using 
language and library facilities, techniques for writing efficient code, and the special 
needs of embedded systems programming.

Performance implications of object-oriented programming are presented.  This 
discussion rests on measurements of key language facilities supporting OOP, such as 
classes, class member functions, class hierarchies, virtual functions, multiple 



inheritance, and run-time type identification (RTTI).  It is demonstrated that, with the 
exception of RTTI, current C++ implementations can match hand-written low-level 
code for equivalent tasks.  Similarly, the performance implications of generic 
programming using templates are discussed.  Here, however, the emphasis is on 
techniques for effective use.  Error handling using exceptions is discussed based on 
another set of measurements.  Both time and space overheads are discussed.  In 
addition, the predictability of performance of a given operation is considered.

The performance implications of IOStreams and locales are examined in some detail 
and many generally useful techniques for time and space optimizations are discussed 
here.

Finally, the special needs of embedded systems programming are presented, including 
ROMability and predictability.  And appendices present general C and C++ interfaces 
to the basic hardware facilities of embedded systems.
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1 Introduction
“Performance” has many aspects – execution speed, code size, data size, and memory 
footprint at run-time, or time and space consumed by the edit/compile/link process.  It 
could even refer to the time necessary to find and fix code defects.  Most people are 
primarily concerned with execution speed, although program footprint and memory 
usage can be critical for small embedded systems where the program is stored in 
ROM, or where ROM and RAM are combined on a single chip.

Efficiency has been a major design goal for C++ from the beginning, also, the 
principle of "zero overhead" for any feature that is not used in a program.  It has been 
a guiding principle from the earliest days of C++ that "you don't pay for what you 
don't use".

Language features that are never used in a program should not have a cost in extra 
code size, memory size, or run-time.  If there are places where C++ cannot guarantee 
zero overheads for unused features, this paper will attempt to document them.  It will 
also discuss ways in which compiler writers, library vendors, and programmers can 
minimize or eliminate performance penalties, and will discuss the trade-offs among 
different methods of implementation.

Programming for resource-constrained environments is another focus of this paper.  
Typically, it is very small or very large programs that run into resource limits of some 
kind.  Very large programs, such as database servers, may run into limits of disk space 
or virtual memory.  At the other extreme, an embedded application may be 
constrained to run in the ROM and RAM space provided by a single chip, perhaps a 
total of 64K of memory, or even smaller.

Apart from the issues of resource limits, some programs must interface with system 
hardware on a very low level.  Historically the interfaces to hardware have been 
implemented as proprietary extensions to the compiler (often as macros).  This led to 
the situation that code has not been portable, even for programs written for a given 
environment, because each compiler for that environment has implemented different 
sets of extensions.



Technical Report on C++ Performance (DRAFT) 02-0017/N1359

Page 8 of 142

1.1 Glossary
ABC – commonly used shorthand for an Abstract Base Class – a base class (often a 

virtual base class) which consists only of pure virtual member functions.

Access Method – refers to the way a memory cell or an I/O device is connected to the 
processor system and the way it is addressed.

Addressing Range – a processor has one or more addressing ranges.  Program 
memory data memory and I/O devices are all connected to a processor 
addressing range.  A processor may have special ranges which can only be 
addressed with special processor instructions.

A processors physical address and data bus may be shared among multiple 
addressing ranges.

Address Interleave – the gaps in the addressing range which may occur when a 
device is connected to a processor data bus having a width larger than the device 
data bus.

Cache – a buffer of high-speed memory used to improve access times to medium-
speed main memory or to low-speed storage devices.  If an item is found in 
cache memory (a "cache hit"), access is faster than going to the underlying 
device.  If an item is not found (a "cache miss"), then it must be fetched from the 
lower-speed device.

Code Bloat – the generation of excessive amounts of code instructions, as from 
unnecessary template instantiations.

Code Size – the portion of a program's memory image devoted to instructions.  
Sometimes immutable data is placed with the code.

Cross-Cast – a cast of an object from one base class sub-object to another.  This 
requires RTTI and the use of the dynamic_cast<...> operator.

Data Size – the portion of a program's memory image devoted to static data.
Device – this term is used to mean either a discrete I/O chip or an I/O function block 

in a single chip processor system.  The data bus width has significance to the 
access method used for the I/O device.

Device Bus – the data bus of a device.  The width of the device bus may be less than 
the width of the processor data bus, in which case it may influence the way the 
device is addressed.

Device Change – the data bus width → The device data bus width
Device Register – a single logical register in a device.  A device may contain multiple 

registers located on different addresses. 

Device Register Buffer – multiple contiguous registers in a device.
Device Register Endian – the endian for a logical register in a device.  The device 

register endian may be different from the endian used by the compiler and 
processor. 
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Down-Cast – a cast of an object from a base class sub-object to a more derived class 
sub-object.  Depending on the complexity of the objects type, this may require 
RTTI and the use of the dynamic_cast<...> operator.

Endian – if the width of a data value is larger than the width of data bus of the device 
where the value is stored the data value must be located at multiple processor 
addresses.

Big-endian and little-endian refer to whether the most significant byte or the 
least significant byte is located on the lowest (first) address.

Embedded System – a program which functions as part of a device.  Often the 
software is burned into firmware instead of loaded from a storage device.  It 
usually is a free-standing implementation rather than a hosted one with an 
operating system.

Flash Memory – a non-volatile memory device type which can be read like ROM.  
Flash memory can be updated by the processor system.  Erase and write often 
require special handling.  Flash memory is considered to be ROM in this 
document. 

Interleave – see address interleave.
I/O – Input/Output – the name used for reading and writing from device registers.
I/O Bus – special processor addressing range used for input and  output operations on 

hardware registers in a device.

I/O Device – synonym for device.
I/O Mapped Device – device connected to a special processor addressing range used 

for input and output operation on hardware registers.

Locality of Reference – the principle that most programs tend to make most accesses 
to locations near those accessed in the recent past.  Keeping items accessed 
together in locations near each other increases cache hits and decreases page 
faults.

Logical Register – refer to a device register treated as a single entity.  A logical 
register will consist of multiple physical device registers if the width of the 
device bus is less than the width of the logical register.

Memory Bus – a processor addressing range used when addressing data memory 
and/or program memory.  Some processor architectures have separate data and 
program memory busses.

Memory Device – chip or function block intended for holding program code and/or 
data.

Memory Mapped I/O – I/O devices connected to the processor addressing range 
which are also used by data memory.

Non-Volatile Memory – a memory device that retains the data it stores, even when 
power is removed.
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Overlays – another, older, technique for handling programs that are larger than 
available memory.  Different parts of the program are arranged to share the same 
memory, with each overlay loaded on demand when another part of the program 
calls into it.  The use of overlays has largely been succeeded by virtual memory 
addressing where it is available, but it may still be used in memory-limited 
embedded environments or where precise programmer or compiler control of 
memory usage improves performance.

Page – a collection of memory addresses treated as a unit, for partitioning memory 
between applications or swapping out to disk.

Page Fault – an interrupt triggered by an attempt to access a virtual memory address 
not currently in physical memory, and thus the need to swap virtual memory 
from disk to hardware.

POD – shorthand for Plain Old Data type – term used in the Standard (§IS-1.8¶5)
PROM – Programmable Read Only Memory.  Is equivalent to ROM in the context of 

this document.

RAM – Random Access Memory. Memory device type for holding data or code.  The 
RAM content can be modified by the processor.

Real-Time – refers to a system in which average performance and throughput must 
meet defined goals, but some variation in performance of individual operations 
can be tolerated (also "Soft Real-Time").  “Hard Real-Time” means that every 
operation must meet specified timing constraints.

ROM – Read OnlyMemory.  A memory device type.  Data content in ROM can not 
be modified by the processor.  Normally used for holding program code.

System-on-Chip (SoC) – a term referring to an embedded system where most of the 
functionality of the system is implemented on a single chip, including the 
processor(s), RAM and ROM.

Text Size – a common alternative name for “Code Size”.
UDC – commonly used for a User Defined Conversion, which refers to the use, 

implicit or explicit, of a class member conversion operator.

Up-Cast – a cast of an object to one of its base class sub-objects.  This does not 
require RTTI and can use the static_cast<...> operator.

VBC – commonly used shorthand for a Virtual Base Class.
Virtual Memory Addressing – a technique for enabling a program to address more 

memory space than is physically available.  Typically, portions of the memory 
space not currently being addressed by the processor can be "swapped out" to 
disk space.  A mapping function, sometimes implemented in specialized 
hardware, translates program addresses into physical hardware addresses.  When 
the processor needs to access an address not currently in physical memory, some 
of the data in physical memory is written out to disk and some of the stored 
memory read from disk into hardware memory.  Since reading and writing to 
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disk is slower than accessing memory chips, minimizing swaps leads to faster 
performance.

Working Set – the portion of a running program that is in physical memory, not 
swapped out, at any given time.

1.2 Typical Application Areas
Since no computer has infinite resources, all programs have some kind of limiting 
constraints.  However, many programs never encounter these limits in practice.  Very 
small and very large systems are those most likely to need effective management of 
limited resources.

1.2.1 Embedded Systems
Embedded systems have many restrictions on memory-size and timing requirements 
that are more significant than are typical for non-embedded systems.  Embedded 
systems are used in various application areas as follows1:

• Scale:
� Small

These systems typically use single chips containing both ROM and 
RAM.  Single-chip systems (System-on-Chip or SoC) in this category 
typically hold approximately 32KBytes for RAM and 32, 48 or 
64KBytes for ROM2.

Examples of applications in this category are:

� engine control for automobiles
� hard disk controllers
� consumer electronic appliances
� smart cards, also called Integrated Chip (IC) cards – about the 

size of a credit card, they usually contain a processor system 
with code and data embedded in a chip which is embedded (in 
the literal meaning of the word) in a plastic card.  A typical size 
is 4KBytes of RAM, 96KBytes of ROM and 32KBytes 
EEPROM.  An even more constrained smart card in use 
contains 12KBytes of ROM, 4KBytes of flash memory and 
only 600Bytes of RAM data storage.

1 Typical systems during the Year 2002
2 These numbers are derived from the popular C8051 chipset.
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� Medium
These systems typically use separate ROM and RAM chips to execute 
a fixed application, where size is limited.  There are different kinds of 
memory chip, and systems in this category are typically composed of 
several kinds to achieve different objectives for cost and speed.  
Examples of applications in this category are:

� hand-held digital VCR
� printer
� copy machine
� digital still camera – one common model uses 32MBytes of 

flash memory to hold pictures, plus faster buffer memory for 
temporary image capture, and a processor for on-the-fly image 
compression.

� Large
These systems typically use separate ROM and RAM chips, where the 
application is flexible and the size is relatively unlimited.  Examples of 
applications in this category are:

� personal digital assistant (PDA) – equivalent to a personal 
computer without a screen, keyboard, or hard disk.

� digital television
� set-top box
� car navigation system
� central controllers for large production lines of manufacturing 

machines

• Timing:
Of course, systems with soft real-time or hard real-time constraints are not 
necessarily embedded systems; they may run on hosted environments.

� Critical (soft real-time and hard real-time systems)
Examples of applications in this category are:

� motor control
� hand-held digital VCR
� mobile phone
� CD or DVD player
� electronic musical instruments
� hard disk controllers
� digital television
� digital signal processing (DSP) applications
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� Non-critical
Examples of applications in this category are:

� digital still camera
� copy machine
� printer
� car navigation system

1.2.2 Servers
For server applications, the performance-critical resources are typically speed 
(e.g. transactions per second), and working-set size (which also impacts 
throughput and speed).  In such systems, memory and data storage are 
expressed in terms of megabytes or even gigabytes.

Often there are soft real-time constraints, bounded by the need to provide 
service to many clients in a timely fashion.  Some examples of such 
applications include the central computer of a public lottery where transactions 
are heavy, or large scale high-performance numerical applications, such as 
weather forecasting, where the calculation must be completed within a certain 
time.

These systems are often described in terms of dozens or even hundreds of 
multiprocessors, and the prime limiting factor may be the Mean Time Between 
Failure (MTBF) of the hardware (increasing the amount of hardware results in 
a decrease of the MTBF – in such a case, high-efficiency code would result in 
greater robustness).
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2 Language Features – Overheads & 
Strategies

Does the C++ language have inherent complexities and overheads, which make it 
unsuitable for performance-critical applications?  For a program written in the C-
conforming subset of C++, will penalties in code size or execution speed result from 
using a C++ compiler instead of a C compiler?  Does C++ code necessarily result in 
"unexpected" functions being called at run-time, or are certain language features, like 
multiple inheritance or templates, just too expensive (in size or speed) to risk using?  
Do these features impose overheads even if they are not explicitly used?

This paper examines the major features of the C++ language that are perceived to 
have an associated cost, whether real or not:

• Namespaces
• Type Conversion Operators
• Inheritance
• Run-Time Type Information (RTTI)
• Exception handling (EH)
• Templates
• The Standard IOStreams Library

2.1 Namespaces
Namespaces do not add any space or time overheads to code.  They do, however, add 
some complexity to the rules for name lookup.  The principal advantage of 
namespaces is that they provide a mechanism for partitioning names in large projects 
in order to avoid name clashes.

Namespace qualifiers enable programmers to use shorter identifier names when 
compared with alternative mechanisms.  In the absence of namespaces, the 
programmer has to explicitly alter the names to ensure that name clashes do not occur.  
One common approach to this is to use a canonical prefix on each name:

static char* mylib_name      = "My Really Useful Library";
static char* mylib_copyright = "May 09, 2002";

Another common approach is to place the names inside a class and use them in 
qualified form:

class ThisLibInfo {
    static char*  name;
    static char*  copyright;
};

char* ThisLibInfo::name      = "Another Useful Library";
char* ThisLibInfo::copyright = "May 09, 2002";

With namespaces, the number of characters necessary is similar to the class
alternative, but unlike the class alternative, qualification can be avoided with using
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declarations, which move the unqualified names into the current scope, thus allowing 
the names to be referenced by their shorter form.  This saves the programmer from 
having to type those extra characters in the source program, for example:

namespace ThisLibInfo {
    char*  name        = "Yet Another Useful Library";
    char*  copyright   = "May 09, 2002";
};

using ThisLibInfo::name;
using ThisLibInfo::copyright;

std::cout << "Name: " << name
          << "Copyright: " << copyright << std::endl;

2.2 Type Conversion Operators
C and C++ permit explicit type conversion using cast notation (§IS-5.4), for example:

int i = (int)3.14159;

Standard C++ adds four additional type conversion operators, using syntax that looks 
like function -templates, for example:

int i = static_cast<int> ( 3.14159 );

The four syntactic forms are:
const_cast<Type>(expression)       // §IS-5.2.11
static_cast<Type>(expression)      // §IS-5.2.9
reinterpret_cast<Type>(expression) // §IS-5.2.10
dynamic_cast<Type>(expression)     // §IS-5.2.7

The semantics of cast notation (which is still recognized) are the same as the type 
conversion operators, but distinguish between the different purposes for which the 
cast is being used.  The type conversion operator syntax is easier to identify in source 
code, and thus contributes to writing programs that are more likely to be correct3.  It 
should be noted that as in C, a cast may create a temporary object of the desired type, 
so casting can have run-time implications.

The first three forms of type conversion operator have no size or speed penalty versus 
the equivalent cast notation.  Indeed, it is typical for a compiler to transform cast 
notation into one of the other type conversion operators when generating object code.  
However, dynamic_cast<T> may incur some overhead at run-time if the required 
conversion involves using RTTI mechanisms such as cross-casting (§2.3.8).

2.3 Classes and Inheritance
Programming in the object-oriented style often involves heavy use of class 
hierarchies.  This section examines the time and space overheads imposed by the 
primitive operations using classes and class hierarchies.  Often, the alternative to 
using class hierarchies is to perform similar operations using lower-level facilities.  

3  If the compiler does not provide the type conversion operators natively, it is possible to implement them using function-
templates.  Indeed, prototype implementations of the type conversion operators were often implemented this way.
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For example, the obvious alternative to a virtual function call is an indirect function 
call.  For this reason, the cost of primitive operations of classes and class hierarchies 
are compared to similar functionality implemented without classes.

Most comments about run-time costs are based on a set of simple measurements 
performed on three different machine architectures using six different compilers run 
with a variety of optimisation options.  Each test was run multiple times to ensure that 
the results were repeatable.  The code is presented in Appendix D:.  The aim of these 
measurements is neither to get a precise statement of optimal performance of C++ on 
a given machine nor to provide a comparison between compilers or machine 
architectures.  Rather, the aim is to give developers a view of relative costs on 
common language constructs using current compilers, and also to show what is 
possible (what is achieved in one compiler is in principle, possible for all).  We know 
– from specialized compilers not in this study and reports from people using 
unreleased beta versions of popular compilers – that better results are possible.

In general, the statements about implementation techniques and performance are 
believed to be true for the vast majority of current implementations, but are not meant 
to cover experimental implementation techniques, which might produce better – or 
just different – results.  See “Inside the C++ Object Model” [BIBREF - 14] for further 
information.

2.3.1 Representation Overheads
A class without a virtual function requires exactly as much space to represent as a 
struct with the same data members.  That is, no space overhead is introduced from 
using a class compared to a C struct.  A class object does not contain any data that 
the programmer does not explicitly request.  In particular, a non-virtual function does 
not take up any space in an object of its class.  Similarly, a static member takes up no 
space in an object.

A class that has one or more virtual functions incurs a space overhead of one pointer 
per object plus a “virtual function table” of one to two words per virtual function plus 
a “type information” object with a size in the order of a couple of words + a name 
string + a couple of words per base class [Editor’s Note:  Rephrase this sentence].  
This latter “type information” (also called “run-time type information” or RTTI) is 
typically about 40 bytes per class.  Whole program analysis (WPA) can be used to 
eliminate unused virtual function tables and RTTI data.  Such analysis is particularly 
suitable for relatively small programs that do not use dynamic linking, and which 
have to operate in a resource-constrained environment such as an embedded system.

Some current C++ implementations share data structures between RTTI support and 
exception handling support, thereby avoiding representation overhead specifically for 
RTTI.

Aggregating data items into a class or struct can impose a run-time overhead if the 
compiler does not effectively use registers, or in other ways fails to take advantage of 
possible optimisations when class objects are used.  The overheads incurred through 
the failure to optimise in such cases are referred to as “the abstraction penalty” and are 
usually measured by a benchmark produced by Alex Stepanov [BIBREF - 23].  For 
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example, if accessing a value through a trivial smart pointer is significantly slower 
than accessing it through an ordinary pointer, the compiler is inefficiently handling 
the abstraction.  In the past, most compilers had significant abstraction penalties and 
several current compilers still do.  However, at least two compilers4 have been 
reported to have abstraction penalties below 1% and another a penalty of 3%, so 
eliminating this kind of overhead is well within the state of the art.

2.3.2 Basic Class Operations
Calling a non-virtual, non-static, non-inline member function of a class costs as much 
as calling a freestanding function with one extra pointer argument indicating the data 
on which the function should operate.  Consider a set of simple runs of the test 
program described in Appendix D:

Table 2.3-1 #1 #2 #3 #4 #5

non-virtual:   px->f(1) 0.019 0.002 0.016 0.085 0

               g(ps,1) 0.020 0.002 0.016 0.067 0

non-virtual:   x.g(1) 0.019 0.002 0.016 0.085 0

               g(&s,1) 0.019 0 0.016 0.067 0.001

static member: X::h(1) 0.014 0 0.013 0.069 0

               h(1) 0.014 0 0.013 0.071 0.001

The compiler/machine combinations #1 and #2 match “naïve expectations” exactly, 
by having calls of a member function exactly match calls of a non-member function 
with an extra pointer argument.  As expected, the two last calls (the X::h(1) call of a 
static member function and the h(1) call of a global function) are faster because they 
don’t pass a pointer argument.  Implementations #3 and #5 demonstrate that a clever 
optimiser can take advantage of implicit inlining and (probably) caching to produce 
results for repeated calls that are 10 times (or more) faster than what is achievable if a 
function call is generated.  Implementation #4 shows a small (<15%) advantage to 
non-member function calls over member function calls, which (curiously) is reversed 
when no pointer argument is passed.  Implementations #1, #2, and #3 were run on one 
system, while #4 and #5 were run on another.

The main lesson drawn from this table is that any differences that there may be 
between non-virtual function calls and non-member functions calls are minor and far 
less important than differences between compilers/optimisers.

4 These are production compilers, not just experimental ones.
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2.3.3 Virtual Functions
Calling a virtual function is roughly equivalent to calling a function through a pointer 
stored in an array:

Table 2.3-2 #1 #2 #3 #4 #5

virtual:     px->f(1) 0.025 0.012 0.019 0.078 0.059

ptr-to-fct:  p[1](ps,1) 0.020 0.002 0.016 0.055 0.052

virtual:     x.f(1) 0.020 0.002 0.016 0.071 0

ptr-to-fct:  p[1](&s,1) 0.017 0.013 0.018 0.055 0.048

When averaged over a few runs, the minor difference seen above averages out, 
illustrating that the cost of virtual function and pointer to function calls is identical.  
Here it is the compiler/machine combination #3 that most closely matches the naïve 
model of what is going on.  For x.f(1) implementations #2 and #5 recognise that the 
virtual function table need not be used because the exact type of the object is known 
and a non-virtual call can be used.  Implementations #4 and #5 appear to have 
systematic overheads for virtual function calls (caused by treating single-inherence 
and multiple inheritance equivalently, and thus missing an optimisation).  However, 
this overhead is in the order of 20% and 12% – far less than the variability between 
compilers.

Comparing Table 2.3-1 and Table 2.3-2, we see that implementations #1, #2, #3, and 
#5 confirms the obvious assumption that virtual calls (and indirect calls) are more 
expensive than non-virtual calls (and direct calls).  Interestingly, the overhead are in 
the range 20% to 25% where one would it expect it to be, based on a simple count of 
operations performed.  However, implementations #2 and #5 demonstrate how 
(implicit) inlining can yield much larger gains for non-virtual calls.  Implementations 
#4 counter-intuitively show virtual calls to be faster than non-virtual ones.  If nothing 
else, this shows the danger of measurement artefacts.  It may also show the effect of 
additional effort in hardware and optimisers to improve the performance of indirect 
function calls.

2.3.3.1 Virtual functions of class-template s
Virtual functions of a class-template can incur overhead.  If a class- template has 
virtual member functions, then each time the class-template is specialised it will have 
to generate new specialisations of the member functions, and their associated support 
structures such as the virtual function table.

A naïve library implementation could produce hundreds of Kbytes in this case, much 
of which is pure replication at the instruction level of the program.  The problem is a 
library modularity issue.  Putting code into the template when it doesn't depend on 
template-parameters and could be separate code, may cause each instantiation to 
contain potentially large and redundant code sequences.  One optimization available 
to the programmer is to use non-template helper functions, and describe the template 
implementation in terms of these helper functions.  For example, many 
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implementations of the std::map class store data in a red-black tree structure.  
Because the red-black tree is not a class-template, its code is not duplicated with each 
instantiation of std::map.
A similar technique places non-parametric functionality that doesn’t need to be in a 
template into a non-template base class.  This technique is used in several places in 
the standard library.  For example, the std::ios_base class (§IS-27.4.2) contains 
static data members which are shared by all instantiations of input and output streams.  
Finally, it should be noted that the use of templates and the use of virtual functions are 
often complementary techniques.  A class-template with many virtual functions could 
be indicative of a design error, and should be carefully re-examined.

2.3.4 Inlining
The discussion above considers the cost of a function call to be a simple fact of life (it 
doesn’t consider it to be overhead).  However, many function calls can be eliminated 
through inlining.  C++ allows explicit inlining to be requested, and popular 
descriptions of the language seem to encourage this for small time-critical functions.  
Basically, C++’s inline is meant to be used as a replacement for C’s function-style 
macros.  To get an idea of the effectiveness of inline, compare calls of an inline 
member of a class to a non- inline member and to a macro.

Table 2.3-3 #1 #2 #3 #4 #5

non-inline:  px->g(1) 0.019 0.002 0.016 0.085 0

non-inline:  x.g(1) 0.019 0.002 0.016 0.085 0

inline:      ps->k(1) 0.007 0.002 0.006 0.005 0

macro:       K(ps,1) 0.005 0.003 0.005 0.006 0

inline:      x.k(1) 0.005 0.002 0.005 0.006 0

macro:       K(&s,1) 0.005 0 0.005 0.005 0.001

The first observation here, is that inlining provides a significant gain over a function 
call (the body of these functions is a simple expression, so this is the kind of function 
where one would expect the greatest advantage from inlining).  The exceptions are 
implementations #2 and #5, which already have achieved significant optimisations 
through implicit inlining.  However, implicit inlining cannot (yet) be relied upon for 
consistent high performance.  For other implementations, the advantage of inlining is 
significant (factors of 2.7, 2.7, and 17).
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2.3.5 Multiple Inheritance
When implementing multiple inheritance, there is a wider array of implementation 
techniques than for single inheritance.  The fundamental problem is that each call has 
to ensure that the this pointer passed to the called function points to the correct sub-
object.  This can cause time and/or space overhead.  The this pointer adjustment is 
usually done in one of two ways:

● The caller retrieves a suitable offset from the virtual function table and adds it 
to the pointer to the called object, or

● a “thunk” is used to perform this adjustment.  A thunk is a simple piece of 
code that is called instead of the actual function, and which performs a 
constant adjustment to the object pointer before transferring control to the 
intended function.

Table 2.3-4 #1 #2 #3 #4 #5

SI, non-virtual:    px->g(1) 0.019 0.002 0.016 0.085 0

Base1, non-virtual: pc->g(i) 0.007 0.003 0.016 0.007 0.004

Base2, non-virtual: pc->gg(i) 0.007 0.004 0.017 0.007 0.028

SI, virtual:        px->f(1) 0.025 0.013 0.019 0.078 0.059

Base1, virtual:     pa->f(i) 0.026 0.012 0.019 0.082 0.059

Base1, virtual:     pb->ff(i) 0.025 0.012 0.024 0.085 0.082

Here, implementations #1 and #4 managed to inline the non-virtual calls in the 
multiple inheritance case, where they had not bothered to do so in the single 
inheritance case.  This demonstrates the effectiveness of optimisation and also that we 
cannot simply assume that multiple inheritance imposes overheads.

It appears that implementations #1 and #2 don’t incur extra overheads from multiple 
inheritance compared to single inheritance.  This could be caused by imposing 
multiple inheritance overheads redundantly even in the single inheritance case.  
However, the comparison between (single inheritance) virtual function calls and 
indirect function calls in Table 2.3-2 shows this not to be the case.

Implementations #3 and #5 shows overhead when using the second branch of the 
inheritance tree, as one would expect to arise from a need to adjust a this pointer.  As 
expected, that overhead is minor (25% and 20%) except where implementation #5 
misses the opportunity to inline the call to the non-virtual function on the second 
branch.  Again, differences between optimisers dominate differences between 
different kinds of calls.

2.3.6 Virtual Base Classes
A virtual base class adds additional overhead compared to a non-virtual (ordinary) 
base class.  The adjustment for the branch in a multiply-inheriting class can be 
determined statically by the implementation, so it becomes a simple add of a constant 
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when needed.  With virtual base classes, the position of the base class sub-object with 
respect to the complete object is dynamic and requires more evaluation – typically 
with indirection through a pointer – than for the non-virtual MI adjustment.

Table 2.3-5 #1 #2 #3 #4 #5

SI, non-virtual:   px->g(1) 0.019 0.002 0.016 0.085 0

VBC, non-virtual:  pd->gg(i) 0.010 0.010 0.021 0.030 0.027

SI, virtual:       px->f(1) 0.025 0.013 0.019 0.078 0.059

VBC, virtual:      pa->f(i) 0.028 0.015 0.025 0.081 0.074

For “non-virtual function calls”, implementation #3 appears closest to the naïve 
expectation of a slight overhead.  For implementations #2 and #5 that slight overhead 
becomes significant because the indirection implied by the virtual base class causes 
them to miss an opportunity for optimisation.  There doesn’t appear to be a 
fundamental problem with inlining in this case, but it is most likely not common 
enough for the implementers to have bothered with – so far.  Implementations #1 and 
#4 again appear to be missing a significant optimisation opportunity for “ordinary” 
virtual function calls.  Counter intuitively, using a virtual base produces faster code!

The overhead implied by using a virtual base in a virtual call appears small.  
Implementations #1 and #2 keep it under 15%, implementation #4 gets that overhead 
to 3% but (from looking at implementation #5) that is done by missing optimisation 
opportunities in the “normal” single inheritance virtual function call case.

As always, simulating the effect of the language feature through other language 
features also carries a cost.  If a programmer decides not to use a virtual base class, 
yet requires a class that can be passed around as the interface to a variety of classes,
an indirection is needed in the access to that interface and some mechanism for 
finding the proper class to be invoked by a call through that interface must be 
provided [Editor’s Note: need an example here].  This mechanism would be at least 
as complex as the implementation for a virtual base class, much harder to use, and less 
likely to attract the attention of optimisers.

2.3.7 Type Information
Given an object of a polymorphic class (a class with at least one virtual function), a 
type_info object can be obtained through the use of the typeid operator.  In 
principle, this is a simple operation involving finding the virtual function table, 
through that finding the most-derived class object of which the object is part, and then 
extracting a pointer to the type_info object from that object’s virtual function table 
(or equivalent).  To provide a scale, we have added the cost of a call of a global 
function taking one argument:
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Table 2.3-6 #1 #2 #3 #4 #5

Global:          h(1) 0.014 0 0.013 0.071 0.001

On base:         typeid(pa) 0.079 0.047 0.218 0.365 0.059

On derived:      typeid(pc) 0.079 0.047 0.105 0.381 0.055

On VBC:          typeid(pa) 0.078 0.046 0.217 0.379 0.049

VBC on derived:  typeid(pd) 0.081 0.046 0.113 0.382 0.048

There is no reason for the speed of typeid to differ depending on whether a base is 
virtual or not, and the implementations reflect this.  Conversely, one could imagine a 
difference between typeid for a base class and typeid on an object of the most 
derived class.  Implementation #3 demonstrates this.  In general, typeid seems very 
slow compared to a function call and the small amount of work required.  We suspect 
this high cost is caused primarily by typeid being an infrequently used operation that 
so far hasn’t attracted the attention of optimiser writers.

2.3.8 Dynamic Cast
Given an object of a polymorphic class, we can cast to another sub-object of the same 
derived class object using a dynamic_cast.  In principle, this operation involves 
finding the virtual function table, through that finding the most-derived class object of 
which the object is part, and then using type information associated with that object to 
determine if the conversion (cast) is allowed and perform any required adjustments of 
the this pointer.  In principle, this checking involves the traversal of a data structure 
describing the base classes of the most derived class.  Thus, the run-time of a 
dynamic_cast may depend on the relative positions in the class hierarchy of the two 
classes involved.
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Table 2.3-7 #1 #2 #3 #4 #5

Virtual call:        px->f(1) 0.025 0.013 0.019 0.078 0.059

Up-cast to base1:    cast(pa,pc) 0.007 0 0.003 0.006 0

Up-cast to base2:    cast(pb,pc) 0.008 0 0.004 0.007 0.001

Down-cast from base1: cast(pc,pa) 0.116 0.148 0.066 0.640 0.063

Down-cast from base2: cast(pc,pb) 0.117 0.209 0.065 0.632 0.070

Cross-cast:          cast(pb,pa) 0.305 0.356 0.768 1.332 0.367
2-level up-cast to base1:
                     cast(pa,pcc) 0.005 0 0.005 0.006 0.001
2-level up-cast to base2:
                     cast(pb,pcc) 0.007 0 0.006 0.006 0.001
2-level down-cast from base1:
                     cast(pcc,pa) 0.116 0.148 0.066 0.641 0.063
2-level down-cast from base2:
                     cast(pcc,pb) 0.117 0.203 0.065 0.634 0.077

2-level cross-cast:  cast(pa,pb) 0.300 0.363 0.768 1.341 0.377

2-level cross-cast:  cast(pb,pa) 0.308 0.306 0.775 1.343 0.288

As with typeid, we see the immaturity of the optimiser technology.  However, 
dynamic_cast is a more promising target for effort than is typeid.  While 
dynamic_cast is not an operation likely to occur in a performance critical loop of a 
well-written program, it does have the potential to be used frequently enough to 
warrant optimization:

● An up-cast (cast from derived class to base class) can be compiled into a 
simple this pointer adjustment, as done by implementations #2 and #5.

● A down-cast (from base class to derived class) can be quite complicated (and 
therefore quite expensive in terms of run-time overhead), but many cases are 
simple.  Implementation #5 shows that a down-cast can be optimized to the 
equivalent of a virtual function call, which examines a data structure to 
determine the necessary adjustment of the this pointer (if any).  The other 
implementations use simpler strategies involving several function calls (about 
4, 10, 3,  and 10 calls, respectively).

● Cross-casts (casts from one branch of a multiple inheritance hierarchy to 
another) are inherently more complicated than down-casts.  However, a cross-
cast could in principle be implemented as a down-cast followed by an up-cast, 
so one should expect the cost of a cross-cast to converge on the cost of a 
down-cast as optimizer technology matures.  Clearly the implementations have 
a long way to go.
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2.4 Exception Handling
Exception handling provides a systematic and robust approach to handling errors that 
cannot be handled locally at the point where they are detected.

The traditional alternatives to exception handling (in C, C++, and other languages) 
include:

● Returning error codes
● Setting error state indicators (e.g. errno)
● Calling error handling functions
● Escaping from a context into error handling code using longjmp
● Passing along a pointer to a state object with each call

When considering exception handling, it must be contrasted to alternative ways of 
dealing with errors.  Plausible areas of comparison include:

● Programming style
● Robustness and completeness of error handling code 
● Run-time system (memory size) overheads
● Overheads from handling an individual error

Consider a trivial example:
double f1(int a) { return 1/a; }
double f2(int a) { return 2/a; }
double f3(int a) { return 3/a; }
double g(int x, int y, int z)
{
    return f1(x)+f2(y)+f3(z);
}

This code contains no error handling code.  There are several pre-EH error handling 
techniques to could detect and report errors:

void error(const char* e)
{
    // handle error
}

double f1(int a)
{
    if (a<=0) {
        error("bad input value for f1()");
        return 0;
    }
    else
        return 1.0/a;
}
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int error_state = 0;

double f2(int a)
{
    if (a<=0) {
        error_state = 7;
        return 0;
    }
    else
        return 2.0/a;
}

double f3(int a, int* err)
{

  if (a<=0) {
        *err = 7;
        return 0;
    }
    else
        return 3.0/a;
}

int g(int x, int y, int z)
{
    double xx = f1(x);
    double yy = f2(y);
    if (error_state) {
        // handle error
    }
    int state = 0;
    double zz = f3(z,&state);
    if (state) {
        // handle error
    }
    return xx+yy+zz;
}

Ideally a real program would use a consistent error handling style, but such 
consistency is often hard to achieve in a large program.  Note that the error_state
technique is not thread safe unless the implementation provides support for thread 
unique static data.  Note also that it is hard to use the error() function technique 
effectively in programs where error() may not terminate the program.  However, the 
key point here is that any way of dealing with errors that cannot be handled locally 
implies space and time overheads.  It also complicates the structure of the program.

Using exceptions the example could be written like this:
struct Error {
    int error_number;
    Error(int n) : error_number(n) { }
};

double f1(int a)
{
    if (a<=0)
        throw Error(1);
    return 1.0/a;
}
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double f2(int a)
{
    if (a<=0)
        throw Error(2);
    return 2.0/a;
}

double f3(int a)
{
    if (a<=0)
        throw Error(3);
    return 3.0/a;
}

int g(int x, int y, int z) {
    try
    {
        return f1(x)+f2(y)+f3(z);
    }
    catch(Error& err) {
        // handle error
    }
}

When considering the overheads of exception handling, we must remember to take 
into account the cost of alternative error handling techniques.

The use of exceptions isolates the error handling code from the normal flow of 
program execution, and unlike the error code approach, it cannot be ignored or 
forgotten.  Also, automatic destruction of stack objects when an exception is thrown 
renders a program less likely to leak memory or other resources.  With exceptions, 
once a problem is identified, it cannot be ignored – failure to catch and handle an 
exception results in program termination5.  For a discussion of techniques for using 
exceptions, see Appendix E of The C++ Programming Language [BIBREF - 24].

Early implementations of exception handling resulted in sizeable increases in code 
size and/or some run-time overhead.  This led some programmers to avoid it and 
compiler vendors to provide switches to suppress the use of exceptions.  In some 
embedded and resource-constrained environments, use of exceptions was deliberately 
excluded either because of fear of overheads or because available exception 
implementations could not meet a project’s requirements for predictability.

We can distinguish three sources of overhead:

● try-blocks Data and code associated with each try-block or catch clause.
● regular functions Data and code associated with the normal execution of 

functions that do not be needed had exceptions not existed, such as missed 
optimisation opportunities.

● throw-expressions Data and code associated with throwing an exception.

Each source of overhead has a corresponding overhead when handling an error using 
traditional error-handling techniques.

5 Many programs catch all exceptions in main() to ensure graceful exit from totally unexpected errors.  However, this does not 
catch unhandled exceptions that may occur during the construction or destruction of static objects.
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2.4.1 Exception Handling Implementation Issues and Techniques
The implementation of exception handling must address several issues:

• try-block Establishes the context for associated catch clauses

• catch clause The EH implementation must provide some run-time type-
identification mechanism for finding catch clauses when an exception is 
thrown.

There is some overlapping – but not identical – information needed by both 
RTTI and EH features.  But the EH type-information mechanism must be able 
to match derived classes to base classes even for types without virtual 
functions, and to identify built-in types such as int.  On the other hand, the 
EH type-information does not need support for down-casting or cross-casting.
Because of this overlap, some implementations require that RTTI be enabled 
when EH is enabled.

• Cleanup of handled exceptions Exceptions which are not re-thrown must 
be destroyed upon exit of the catch clause.  The memory for the exception 
object must be managed by the EH implementation.

• Automatic and temporary objects with non-trivial destructors Destructors 
must be called if an exception occurs after construction of an object and before 
its lifetime ends (§IS-3.8), even if no try/catch is present.  The EH 
implementation is required to keep track of all such objects.

• Construction of objects with non-trivial destructors If an exception 
occurs during construction, all completely constructed base classes and sub-
objects must be destroyed.  This means that the EH implementation must track 
the current state of construction of an object.

• throw-expression A copy of the exception object being thrown must be 
allocated in memory provided by the EH implementation.  The closest 
matching catch clause must then be found using the EH type-information.  
Finally, the destructors for automatic, temporary, and partially constructed 
objects must be executed before control is transferred to the catch clause.

• Enforcing exception specifications Conformance of the thrown types to the 
list of types permitted in the exception-specification must be checked.  If a 
mismatch is detected, the unexpected-handler must be called.

• operator new After calling the destructors for the partially constructed 
object, the corresponding operator delete must be called if an exception is 
thrown during construction.

Again, a similar mechanism to the one implementing try/catch can be used.
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Implementations vary in how costs are allocated across these elements.

The two main strategies are:

• The “Code” approach, where code is associated with each try-block, and
• The “Table” approach, that uses compiler-generated static tables.

There are also various hybrid approaches.  This paper discusses only the two principal 
implementation approaches.

2.4.1.1 The "Code" approach
Implementations using this approach have to dynamically maintain auxiliary data-
structures to manage the capture and transfer of the execution contexts, plus other 
dynamic data-structures involved in tracking the objects that need to be unwound in 
the event of an exception.  Early implementations of this approach used 
setjmp/longjmp to return to a previous context.  However, better performance can be 
obtained using special-purpose code.  It is also possible to implement this model 
through the systematic use of (compiler generated) return codes.  Typical ways in 
which the code approach deals with the issues identified in 2.4.1 are as follows:

• try-block Save the execution environment and reference to catch code on 
EH stack at try-block entry.

• Automatic and temporary objects with non-trivial destructors Register each 
constructed object together with its destructor in preparation for later 
destruction.  Typical implementations use a linked list structure on the stack.  
If an exception is thrown, this list is used to determine which objects need to 
be destroyed.

• Construction of objects with non-trivial destructors One well-known 
implementation increments a counter for each base class and sub-object as 
they are constructed.  If an exception is thrown during construction, the 
counter is used to determine which parts need to be destroyed.

• throw-expression After the catch clause has been found, invoke the 
destructors for all constructed objects in the region of the stack between the 
throw-expression and the associated catch clause.  Restore the execution 
environment associated with the catch clause.

2.4.1.1.1 space overhead of the “code” model
• No exception handling cost is associated with an individual object, so object 

size is unaffected
• Exception handling implies a form of RTTI, which may require some increase 

to code size, data size or both.
• Exception handling code is inserted into the object code for each try/catch
• Code registering the need for destruction is inserted into the object code for 

each stack object of a type with a non-trivial destructor
• A cost is associated with checking the throw-specifications of the functions 

that are called
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2.4.1.1.2 time overhead of the “code” model
• On entry to each try-block

� Commit changes to variables enclosing the try-block
� Stack the execution context
� Stack the associated catch clauses

• On exit from each try-block
� Remove the associated catch clauses
� Remove the stacked execution context

• When calling regular functions
� If the function has an exception-specification, register it for checking

• As each local and temporary object is created
� Register with the current exception context as they are created

• On throw or re-throw
� Locate the corresponding catch clause (if any) – this involves some 

run-time check (possibly resembling RTTI checks)
If found, then:

� destroy the registered local objects
� check the exception-specifications of the functions called in-

between
� use the associated execution context of the catch clause

Otherwise:
� call the unexpected-handler

• On entry to each catch clause
� Remove the associated catch clauses

• On exit from each catch clause
� Retire the current exception object (destroy if necessary)

The “code” model distributes the code and associated data structures throughout the 
program.  This means that no separate run-time support system is needed.  Such an 
implementation can be portable and compatible with implementations that translate 
C++ to C or another language.

The primary disadvantage of the “code” model are that the associated stack and run-
time costs can be high for try-block entry and the bookkeeping for automatic, 
temporary and partially constructed objects as the exception handling stack is 
modified, must be done even when no exceptions are thrown.  That is, code unrelated 
to error handling is slowed down by the mere possibility of exceptions being used.  
This is similar to error-handling strategies that consistently check error state or return 
values.

The cost of this (in this model, unavoidable) bookkeeping varies dramatically from 
implementation to implementation.  However, one vendor reports speed impact of 
about 6% for a C++ to ISO C translator.  This is generally considered a very good 
result.



02-0017/N1359 Technical Report on C++ Performance (DRAFT)

Page 31 of 142

2.4.1.2 The "Table" approach
Typical implementations using the static approach will generate read-only tables for 
determining the current execution context, locating catch clauses, and tracking objects 
needing destruction.  Typical ways in which the table approach deals with the issues 
identified in 2.4.1 are as follows:

• try-block This method incurs no run-time cost.  All bookkeeping is pre-
computed as a mapping between program counter and code to be executed in 
the event of an exception.  Tables increase program image size but may be 
moved away from working set to improve locality of reference.  Tables can be 
placed in ROM and on hosted systems with virtual memory, can remain 
swapped out until an exception is actually thrown.

• Automatic and temporary objects with non-trivial destructors No run-
time costs associated with normal execution.  Only in the event of an 
exception is it necessary to intrude on normal execution.

• throw-expression The statically generated tables are used to locate 
matching handlers and intervening objects needing destruction.  Again, no 
run-time costs are associated with normal execution.

2.4.1.2.1 space overhead of the “table” model
• No exception handling cost is associated with an object, so object size is 

unaffected
• Exception handling implies a form of RTTI, implying some increase in code 

and data size
• This model uses statically allocated tables and some common library run-time 

support
• A run-time cost is associated with checking the throw-specifications of the 

functions that are called

2.4.1.2.2 time overhead of the “table” model
• On entry to each try-block

� Some implementations commit changes to variables in the scopes 
enclosing the try-block – other implementations use a more 
sophisticated state table6

• On exit from each try-block
� No overhead

• On entry to each catch clause
� No overhead

• On exit from each catch clause
� No overhead

• When calling regular functions
� No overhead

6 In such implementations, this effectively makes the variables partially volatile and may prejudice other optimisations as a 
result.
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• As each local and temporary object is created
� No overhead

• On throw
� Using the tables, determine if the current frame has an appropriate 

catch clause
If it does, then:

� destroy all local, temporary and partially constructed objects 
that occur between the throw-expression and the catch clause

� transfer control to the catch clause
Otherwise:

� check that the exception honors the exception-specification of 
the current function, and call the unexpected-handler if it does 
not.

Otherwise:
� if there is a previous frame, repeat the above steps, otherwise 

call the unexpected-handler
The primary advantage of this method is that no stack or run-time costs are associated 
with managing the try/catch or object bookkeeping.  Unless an exception is thrown, 
no run-time overhead is incurred.

Disadvantages are that implementation is more complicated, and does not lend itself 
well to implementations that translate to an intermediate language.  The static tables 
can be quite large.  This may not be a burden on systems with virtual memory, but the 
cost can be significant for some embedded systems.  All run-time costs associated 
occur when an exception is thrown.  However, because of the need to examine 
potentially large and/or complex state tables, the time it takes to respond to an 
exception may be large, variable and dependent on program size and complexity.  
This needs to be factored into the probable frequency of exceptions.  The extreme 
case is a system optimised for infrequent exceptions where the first throw of an 
exception may cause disk accesses.

One vendor reported a code and data space impact of about 15% for the generated 
tables.  It is possible to do better, as this vendor had no need to optimize for space.

2.4.2 Predictability of Exception Handling Overhead

2.4.2.1 Prediction of throw/catch performance
For some programs, difficulty in predicting the time needed to pass control from a 
throw-expression to an appropriate catch clause is a problem.  This uncertainty comes 
from the need to destroy automatic objects and – in the “table” model – from the need 
to consult the table.  In some systems, especially those with real-time requirements, it 
is important to be able to predict accurately how long operations will take.

For this reason current exception handling implementations may be unsuitable for 
some applications.  However, if the call tree can be statically determined, and the 
table method of EH implementation is used, it is possible to statically analyse the 
sequence of events necessary to transfer control from a given throw-expression to the 
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corresponding catch clause.  Each of the events could then be statically analysed to 
determine their contribution to the cost, and the whole sequence of events aggregated 
into a single cost domain (worst-case & best-case, unbounded, indeterminate).  Such 
analysis does not differ in principle from current time estimating methods used for 
non-exception code.

One of the reservations expressed about EH is the unpredictable time that may elapse 
after a throw-expression and before control passes to the catch clause while automatic 
objects are being destroyed.  It should be possible to determine accurately the costs of 
the EH mechanism itself, and the cost of any destructors invoked would need to be 
determined in the same way as the cost of any other function is determined.

Given such analyses, the term “unpredictable” is inappropriate.  The cost may be quite 
predictable, with a well-determined upper and lower bound.  In some cases (recursive 
contexts, or conditional call trees), the cost may not be determined statically.  For 
real-time applications, it is generally most important to have a determinate time 
domain, with a small deviation between the upper and lower bound.  The actual speed 
of execution is often less important.

2.4.2.2 Exception specifications
In general, an exception-specification must be checked at run-time.  For example:

void f(int x) throw(A,B)
{
    // whatever
}

will in a straightforward implementation generate code roughly equivalent to:
void g(int x)
{
    try {
        // whatever
    } catch (A) {
        throw;
    } catch (B) {
        throw;
    } catch(...) {
        unexpected();
    }
}

In principle, static analysis (especially whole program analysis) can be used to 
eliminate such tests.  This may be especially relevant for applications that do not 
support dynamic linking, are not so large or complex as to defeat analysis, and do not 
change so frequently as to make analysis expensive.  Dependent on the 
implementation, empty exception-specifications can be especially helpful for 
optimisation.

The use of an empty exception-specification should reduce overheads.  The caller of a 
function with an empty exception-specification can perform optimisations based on 
the knowledge that a called function will never throw any exception.  In particular, 
objects with destructors in a block where no exception can be thrown need not be 
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protected against exceptions.  That is, in the “code” model no registration is needed, 
and in the “table” model no table entry needs to be made for that object.  For example:

Note (LG): This example needs to be fixed, as std::string::size is not 
required to throw no exceptions (§IS-21.3).

int f(int a) throw();

char g(const string& s)
{
    std::string s2 = s;
    int maximum = s.size();
    int x = f(maximum);
    if (x<0||maximum<=x)
        x = 0;
    return s2[x];
}

Here the compiler need not protect against the possibility of an exception being 
thrown after the construction of s2.
There is of course no requirement that a compiler performs this optimisation. 
However, a compiler intended for high-performance use is likely to perform it.

Note (BS): Additional text goes here, discussing how empty throw-specifications 
on the lowest level functions can be particularly helpful.

2.5 Templates

2.5.1 Template Overheads
A class- template or function-template will generate a new instantiation of code each 
time it is specialised with different template-parameters.  This can lead to an 
unexpectedly large amount of code and data7.  A typical way to illustrate this problem 
is to create a large number of Standard Library containers to hold pointers of various 
types.  Each type can result in an extra set of code and data being generated.

In one experiment, a program instantiating 100 instances of a single specialisation of 
std::list<T*> for some type T, was compared with a second program instantiating a 
single instance of std::list<T*> for 100 different types T.  These programs were 
compiled with a number of different compilers and a variety of different compiler 
options.  The results varied widely, with one compiler producing code for the second 
program that was over 19 times as large as the first program; and another compiler 
producing code for the first program that was nearly 3 times as large as the second.

The optimisation here is for the compiler to recognise that while there may be many 
specialisations with different types, at the level of machine code-generation, the 
specialisations may actually be identical (the type system is not relevant to machine 
code).

7 Virtual function tables, EH state tables, etc.
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While it is possible for the compiler or linker to perform this optimisation 
automatically, the optimisation can also be performed by the Standard Library 
implementation or by the application programmer.

If the compiler supports partial specialization and member-function-templates, the 
library implementor can provide partial specialisations of containers of pointers to a 
single underlying implementation that uses void*.  This technique is described in 
C++ PL 3rd edition.

In the absence of compiler or library support, the same optimisation technique can be 
employed by the programmer, by writing a class-template called, perhaps, plist<T>, 
that is implemented using std::list<void*> to which all operations of plist<T>
are delegated.

Source code must then refer to plist<T> rather than std::list<T*>, so the 
technique is not transparent, but it is a workable solution in the absence of tool or 
library support.  Variations of this technique can be used with other templates.

2.5.2 Templates vs. Inheritance
Any non-trivial program needs to deal with data structures and algorithms.  Because 
data structures and algorithms are so fundamental, it is important that their use be as 
simple and error-free as possible. 

The template containers in the Standard C++ Library are based on principles of 
generic programming, rather than the inheritance approach used in other languages 
such as Smalltalk.  An early set of foundation classes for C++, called the National 
Institutes of Health Class Library (NIHCL), was based on a class hierarchy after the 
Smalltalk tradition.

Of course, this was before templates had been added to the C++ language, but it is 
useful in illustrating how inheritance compares to templates in the implementation of 
programming idioms such as containers.

In the NIH Class Library, all classes in the tree inherited from a root class Object, 
which defined interfaces for identifying the real class of an object, comparing objects, 
and printing objects8.  Most of the functions were declared virtual, and had to be 
overridden by derived classes9.  The hierarchy also included a class Class that 
provided a library implementation of RTTI (which was also not yet part of the C++ 
language).  The Collection classes, themselves derived from Object, could hold 
only other objects derived from Object which implemented the necessary virtual 
functions.

8 The Object class itself inherited from class NIHCL, which encapsulated some static data members used by all classes.
9 Presumably, had the NIHCL been written today, these would have been pure virtual functions.
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But the NIHCL had several disadvantages due to its use of inheritance versus 
templates for the implementation of container classes.  The following is a portion of 
the NIHCL hierarchy (taken from the README file):

NIHCL - Library Static Member Variables and Functions
Object - Root of the NIH Class Library Inheritance Tree

Bitset - Set of Small Integers (like Pascal's type SET)
Class - Class Descriptor
Collection - Abstract Class for Collections

Arraychar - Byte Array
ArrayOb - Array of Object Pointers
Bag - Unordered Collection of Objects
SeqCltn - Abstract Class for Ordered, Indexed Collections

Heap - Min-Max Heap of Object Pointers
LinkedList - Singly-Linked List
OrderedCltn - Ordered Collection of Object Pointers

SortedCltn - Sorted Collection
KeySortCltn - Keyed Sorted Collection

Stack - Stack of Object Pointers
Set - Unordered Collection of Non-Duplicate Objects

Dictionary - Set of Associations
IdentDict - Dictionary Keyed by Object Address

IdentSet - Set Keyed by Object Address
Float - Floating Point Number
Fraction - Rational Arithmetic
Integer - Integer Number Object
Iterator - Collection Iterator
Link - Abstract Class for LinkedList Links

LinkOb - Link Containing Object Pointer
LookupKey - Abstract Class for Dictionary Associations

Assoc - Association of Object Pointers
AssocInt - Association of Object Pointer with Integer

Nil - The Nil Object
Vector - Abstract Class for Vectors

BitVec - Bit Vector
ByteVec - Byte Vector
ShortVec - Short Integer Vector
IntVec - Integer Vector
LongVec - Long Integer Vector
FloatVec - Floating Point Vector
DoubleVec - Double-Precision Floating Point Vector

Thus the class KeySortCltn (roughly equivalent to std::map), is seven layers deep 
in the hierarchy:

NIHCL
Object

Collection
SeqCltn

OrderedCltn
SortedCltn

KeySortCltn

Because a linker cannot know which virtual functions will be called at run-time, it 
typically includes the functions from all the preceding levels of the hierarchy for each 
class in the executable program.  This can lead to code bloat without templates.

There are other performance disadvantages to inheritance-based collection classes:

● Primitive types cannot be inserted into the collections.  Instead, these must be 
replaced with classes in the Object hierarchy, which are programmed to have 
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similar behaviour to primitive arithmetic types, such as Integer and Float.  
This circumvents processor optimisations for arithmetic operations on 
primitive types.  It is also difficult to duplicate the behaviour of arithmetic data 
types through class member functions and operators.

● Because C++ has compile-time type checking, providing type-safe containers 
for different contained data types requires code to be duplicated for each type.  
Type safety is the same reason that template containers are instantiated 
multiple times.  To avoid this duplication of code, the NIHCL collections hold 
pointers to a generic type – the base Object class.  However, this is not type-
safe, and requires run-time checks to ensure objects are type-compatible with 
the contents of the collections.  It also leads to many more dynamic memory 
allocations, which can hinder performance.  Furthermore, type checking is 
always dynamic, adding further cost to the program using the collections.

• Because classes used with the NIHCL must inherit from Object and are 
required to implement a number of virtual functions, this solution is intrusive 
on the design of classes from the problem domain.  The C++ Standard Library 
containers do not impose such requirements on their contents10.  For this 
reason alone, the obligation to inherit from class Object often means that 
the use of multiple inheritance also becomes necessary, since domain specific 
classes may have their own hierarchical organization.

The C++ Standard Library establishes a set of principles for combining data 
structures and algorithms from different sources.  Inheritance-based libraries 
from different vendors, where the algorithms are implemented as member 
functions of the containers, can be difficult to integrate and difficult to extend.

2.6 Programmer Directed Optimisations
There are many factors that influence the performance of a computer program.  At one 
end of the scale is the high-level design and architecture of the overall system, at the 
other is the raw speed of the hardware and operating system software on which the 
program runs.  Assuming that the applications programmer has no control over these 
factors in the system, what can be done at the level of writing code to achieve better 
performance?

Compilers typically use a heuristic process in optimising code that may be different 
for small and large programs.  Therefore, it is difficult to recommend any techniques 
that are guaranteed to improve performance in all environments.  It is vitally 
important to measure a performance-critical application in the target environment and 
concentrate on improving performance where bottlenecks are discovered.  Because so 
many factors are involved, measuring actual performance can be difficult but remains 
an essential part of the performance tuning process.

The best way to optimise a program is to use space- and time-efficient data structures 
and algorithms.  For example, changing a sequential search routine to a binary search 

10 A class used in a Standard container must be assignable and copy-constructible; often it additionally needs to have a default 
constructor and implement operator == and operator <.
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will reduce the average number of comparisons required to search a sorted N-element 
table from about N/2 to just log2N; for N=1000, this is a reduction from 500 
comparisons to 10.  For N=1,000,000, the average number of comparisons is 20.
Another example is that std::vector is a more compact data structure than 
std::list.  A typical std::vector<int> implementation will use about three words 
plus one word per element, whereas a typical std::list<int> implementation will 
use about two words plus three words per element.  That is, assuming 
sizeof(int)==4, a standard vector of 1,000 ints will occupy approximately 4,000 
bytes, whereas a list of 1,000 ints will occupy approximately 12,000 bytes.  Thanks 
to cache and pipeline effects, traversing such a vector will be much faster than 
traversing the equivalent list.  Typically, the compactness of the vector will also 
assure that moderate amounts of insertion or erasure will be faster than for the 
equivalent list.  There are good reasons for std::vector being recommended as the 
default standard library container.

The C++ Standard Library provides several different kinds of containers, and 
guarantees how they compare at performing common tasks.  For example, inserting an 
element at the end of an std::vector takes constant time (unless the insertion forces 
a memory reallocation), but inserting one at the beginning or in the middle takes 
linear time increasing with the number of elements that have to be moved to make 
space for the new element.  With an std::list on the other hand, insertion of an 
element takes constant time at any point in the collection, but that constant time is 
somewhat slower than adding one to the end of a vector.  Finding the Nth element in 
an std::vector involves a simple constant-time arithmetic operation on a random-
access iterator accessing contiguous storage, whereas an std::list would have to be 
traversed one element at a time, so access time grows linearly with the number of 
elements.  A typical implementation of std::map maintains the elements in sorted 
order in a red-black tree structure, so access to any element takes logarithmic time.  
Though not a part of the C++ Standard Library, hash_maps are capable of faster 
lookups than an std::map, but are dependent on a well-chosen hash function and 
bucket size.  Poor choices can degrade performance significantly.

Always measure before attempting to optimise – it is very common for even 
experienced programmers to guess incorrectly about performance implications of 
choosing one kind of container over another.  Often performance depends critically on 
the machine architecture and the quality of optimiser used.

The C++ Standard Library also provides a large number of algorithms with 
documented complexity guarantees.  These are functions that apply operations to a 
sequence of elements.  Achieving good performance, as well as correctness, is a major 
design factor in these algorithms.  These can be used with the standard containers, or 
with native arrays, or with newly written containers, provided they conform to the 
standard interfaces.

If profiling reveals a bottleneck, small local code optimisations may be effective.  But 
it is very important always to measure first.  Transforming code to reduce run-time or 
space consumption can often decrease program readability, maintainability, 
modularity, portability, and robustness as well.  Such optimisations often sacrifice 
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important abstractions in favour of improving performance, but while the performance 
cost may be reduced, the cost to program structure and maintainability needs to be 
factored into the decision to rewrite code to achieve other optimisation goals.

An old rule of thumb is that there is a trade-off between program size and execution 
speed – that techniques such as declaring code inline can make the program larger 
but faster.  But now that processors make extensive use of on-board cache and 
instruction pipelines, the smallest code is often the fastest as well.  Compilers are free 
to ignore inline directives and to make their own decisions about which functions to 
inline, but adding the hint is often useful as a portable performance enhancement.  
With small one- or two-line functions, where the implementation code generates 
fewer instructions than a function preamble, the resulting code may well be both 
smaller and faster.

Programmers are sometimes surprised when their programs call functions they haven't 
specified, maybe even haven't written.  Just as a single innocuous-looking line of C 
code may be a macro that expands to dozens of lines of code, possibly involving 
system calls which trap to the kernel with resulting performance implications, a single 
line of C++ code may also result in a sequence of function calls which is not obvious 
without knowledge of the full program.  Simply declaring a variable of user-defined 
type such as:

X v1;       // looks innocent
x v2 = 7;   // obviously initialised

However, the declaration of v1 implicitly invokes the class X’s default constructor 
to initialise the object v1.  Depending on the class design, proper initialisation may 
involve memory allocations or system calls to acquire resources11.  Although 
declaring a user-defined variable in C does not implicitly invoke a constriction, it is 
important to remember however, that the object must still be initialised, and that code 
would have to be explicitly called by the programmer.  Resources would also have to 
be explicitly released at the appropriate time.  The initialisation and release code is 
more visible to the C programmer, but possibly less robust because the language does 
not support it automatically.

Understanding what a C++ program is doing is important for optimisation.  If you 
know what functions C++ silently writes and calls, careful programming can keep the 
unexpected code to a minimum.  Some of the works cited in the bibliography 
(Appendix E:) provide more extensive guidance, but the following provides some 
suggestions for writing more efficient code:

Editor’s Note: Insert bibliographic reference to “Inside the C++ Object Model”

• Shift expensive computations from the most time-critical parts of a program to 
the least time-critical parts (often, but not always, program start-up).  Other 
techniques include lazy evaluation and caching of pre-computed values.  Of 
course, these strategies apply to programming in any language, not just C++.

11 This is a common idiom in C++, because the release of the resources can be triggered automatically when the object’s lifetime 
ends (§IS-3.7).
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• In constructors, prefer initialisation of data members to assignment.  If a 
member has a default constructor, that constructor will be called to initialise 
the member before any assignment takes place.  Therefore, an assignment to a 
member within the constructor body can mean that member is initialised as 
well as assigned to, effectively doubling the amount of work done.

• As a general principle, don't define a variable before you are ready to initialise 
it.  Defining it early results in a constructor call (initialisation) followed by an 
assignment of the value needed, as opposed to simply constructing it with the 
value needed.

• Understand how and when the compiler generates temporary objects.  Often 
small changes in coding style can prevent the creation of temporaries, with 
consequent benefits for run-time speed and memory footprint.  Temporary 
objects may be generated when initialising objects, passing parameters to 
functions, or returning values from functions.

• Passing arguments to a function by value [e.g. void f(T x) ] is cheap for 
built-in types, but potentially expensive for class types since they may have a 
non-trivial copy constructor.  Passing by address [e.g. void f(T const* x) ] 
is light-weight, but changes the way the function is called.  Passing by 
reference-to-const [e.g. void f(T const& x) ] combines the safety of 
passing by value with the efficiency of passing by address. 

• Calling a function with a type that differs from the function’s declared 
argument type implies a conversion.  Note that such a conversion can require 
work to be done at run-time.  For example:

void f1(double);
f1(7.0);    // no conversion (pass by value implies copy)
f1(7);      // conversion:   f1(double(7))

void f2(const double&);
f2(7.0);    // no conversion
f2(7);      // means:    const double tmp = 7;  f(tmp);

void f3(std::string);
string s = "MES";
f3(s);      // no conversion (pass by value implies copy)
f3("NES");  // conversion:   f3(string("NES"))

void f4(const std::string&);
f4(s);      // no conversion (pass by reference, no copy)
f4("AS");   // means:        const string tmp = "AS";  f4(tmp);

If a function is called several times with the same value, it can be worthwhile 
to put the value in a variable of the appropriate type (such as s in the example 
above) and pass that.  That way, the conversion will be done once only.

• Unless you need automatic type conversions, declare all one-argument 
constructors12 explicit.  This will prevent them from being called 

12 This refers to any constructor that may be called with a single argument.  Multiple parameter constructors with default 
arguments can be called as one-argument constructors.
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accidentally.  Conversions can still be done when necessary by explicitly 
stating them in the code, thus avoiding the penalty of hidden and unexpected 
conversions.

• Rewriting expressions can reduce or eliminate the need for temporary objects.  
For example, if a, b, and c are objects of class Matrix:

Matrix a;     // inefficient: don't create an object before
// it is really needed, default initialistion

                  // can be expensive
a = b + c;    // inefficient: (b + c) creates a temporary

// object and then assigns it to a
Matrix a = b; // better:      no default initialisation
a += c;       // better:      no temporary objects created

Better yet, use a library that eliminates need for the rewrite using +=. Such 
libraries, which are common in the numeric C++ community, usually use 
function objects and expression templates to yield uncompromisingly fast code 
from conventional-looking source.

• Use the return value optimisation to give the compiler a hint that temporary 
objects can be eliminated.  The trick is to return constructor arguments instead 
of objects, like this:

const Rational operator * ( Rational const & lhs,
                            Rational const & rhs )
{
    return Rational( lhs.numerator() * rhs.numerator(),
                 lhs.denominator() * rhs.denominator() );
}

Less carefully written code might create a local Rational variable to hold the 
result of the calculation, use the assignment operator to copy it to a temporary 
variable holding the return value, then copy that into a variable in the calling 
function.

// not this way ...
const Rational operator * ( Rational const & lhs,
                            Rational const & rhs )
{
    Rational tmp;   // calls the default constructor (if any)
    tmp.my_numerator   = lhs.numerator()   * rhs.numerator();
    tmp.my_denominator = lhs.denominator() * rhs.denominator();

    return tmp;     // copies tmp to the return value
}

But with the suggested hints, the compiler is able to construct the return value 
directly into the variable that is specified to receive it.
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• Prefer pre-increment and -decrement to postfix operators.

Postfix operators like i++ copy the existing value to a temporary object, 
increment the internal value, and then return the temporary.  Prefix operators 
like ++i increment the actual value first and return a reference to it.  With 
objects such as iterators, creating temporary copies may be expensive when 
compared to built-in ints.

for ( list<X>::iterator it = mylist.begin();
      it != mylist.end();
      ++it )     // NOTE: rather than   it++
{

// ...
}

• Dynamic memory allocation and de-allocation can be a bottleneck.  Consider 
writing class-specific operator new() and operator delete() functions, 
optimised for objects of a specific size or type.  It may be possible to recycle 
blocks of memory instead of releasing them back to the heap whenever an 
object is deleted.

• Sometimes it is helpful to “widen” a class' interface with functions that take 
different data types to prevent automatic conversions (such as adding an 
overload on char * to a function which takes an std::string parameter).  
The numerous overloads for operators +, ==, !=, and < in the <string> header 
are an example of such a "fat" interface13.  If the only supported parameters 
were std::strings, then characters and pointers to character arrays would 
have to be converted to full std::string objects before the operator was 
applied.

• The Standard class std::string is not a lightweight component.  Because it 
has a lot of functionality, it comes with a certain amount of overhead (and 
because Standard Library container classes throw C++ std::strings, and not 
C-style string literals, this overhead may be included in a program 
inadvertently).

In many applications, strings are created, stored, and referenced, but never 
changed.  As an extension, or as an optimisation, it might be useful to create a 
lighter-weight, unchangeable string class.

• Reference counting is a widely used optimisation technique.  In a single-
threaded application, it can prevent making unnecessary copies of objects.  
However, in multi-threaded applications, the overhead of locking the shared 
data representation may add unnecessary overheads, negating the performance 
advantage of reference counting14.

13 It is also worth noting, that even if a conversion is needed, it is sometimes better to have the conversion performed in one 
place, where an overloaded “wrapper” function calls the one that really performs the work.  This can help to reduce program size, 
where each caller would otherwise perform the conversion.
14 Of course, if optimisation for space is more important than optimisation for time, reference counting may still be the best 
choice.
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• Pre-compute values that won't change.  To avoid repeated function calls inside 
a loop, rather than writing:

while( myListIterator != myList.end() ) ...

for( size_t n = 0; n < myVector.size(), ++n ) ...

instead call myList.end() or myVector.size() exactly once before the loop, 
storing the result in a variable which can then be used in the comparison, for 
example:

std::list<myT> myEnd = myList.end();
while( myListIterator != myend ) ...

On the other hand, if a function such as myList.end() is so simple that it can 
be inlined, the rewrite may not yield any performance advantage over what a 
good compiler would produce for the original code.

• Object-oriented programming often leads to a number of small functions per 
class, often with trivial implementation.  For example:

class X
{
private:
    int     value_;
    double* array_;  // pointer to array of [size] doubles
    size_t  size_;
public:
    int value()   { return value_; }
    size_t size() { return size_;  }
    // ...
};

Small forwarding functions can usually be inlined to advantage, especially if 
they occupy less code space than preparing the stack frame for a function call.  
As a rule of thumb, functions consisting of only one or two lines are generally 
good candidates for inlining.

• When processors read ahead to maintain a pipeline of instructions, too many 
function calls can slow down performance because of branching or cache 
misses.  Optimisers work best when they have stretches of sequential code to 
analyse, because it gives them more opportunity to use register allocation, 
code-movement, and common sub-expression elimination optimisations.  This 
is why inline functions can help performance, as inlining exposes more 
sequential code to the optimiser.  Techniques, such as avoiding conditional 
code and unrolling short loops also help the optimiser do a better job.
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• The use of dynamic binding and virtual functions has some overhead in both 
memory footprint and run-time performance.  This overhead is minor, 
especially when compared with alternative ways of achieving run-time 
polymorphism (§2.3.3).  A bigger factor is that virtual functions may interfere 
with compiler optimisations and inlining.

Note that virtual functions should be used only when run-time polymorphic 
behaviour is desired.  Not every function needs to be virtual and not every 
class should be designed to be a base class.

• Many programs written in some conventional (also called “old fashioned”) 
object-oriented styles are very slow to compile, because the compiler must 
examine hundreds of header files and tens of thousands of lines of code.  
However, code can be structured to minimize re-compilation after changes.  
This typically produces better and more maintainable designs, because they 
exhibit better separation of concerns.

Consider a classical example of an object-oriented program:
class Shape {
public:      // interface to users of Shapes
    virtual void draw() const;
    virtual void rotate(int degrees);

// ...
protected:   // common data (for implementers of Shapes)
    Point center;
    Color col;

// ...
};

class Circle : public Shape {
public:
    void draw() const;
    void rotate(int) { }

// ...
protected:
    int radius;

// ...
};

class Triangle : public Shape {
public:
    void draw() const;
    void rotate(int);

// ...
protected:
    Point a, b, c;

// ...
};

The idea is that users manipulate shapes through Shape's public interface, and 
that implementers of derived classes (such as Circle and Triangle) share 
aspects of the implementation represented by the protected members.

It is not easy to define shared aspects of the implementation that are helpful to 
all derived classes.  For that reason, the set of protected members is likely to 
need changes far more often than the public interface.  For example, even 
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though a center is arguably a valid concept for all Shapes, it is a nuisance to 
have to maintain a Point for the center of a Triangle, it makes more sense to 
calculate the center if and only if someone expresses interest in it.

The protected members are likely to depend on implementation details that the 
clients of Shape would rather not have to depend on.  For example, much code 
using a Shape will be logically independent of the definition of Color, yet the 
presence of Color in the definition of Shape makes code dependent on the 
header files defining the operating system's notion of colour, often requiring 
that the client code is recompiled whenever such header files are changed.

When something in the protected part changes, client code using Shape has to 
be recompiled, even though only implementers of derived classes have access 
to the protected members.  Thus, the presence of "information helpful to 
implementers" in the base class that also acts as the interface to users is the 
source of several problems:

� Instability in the implementation,

� Spurious recompilation of client code (when implementation 
information changes), and

� Excess inclusion of header files into client code (because the 
"information helpful to implementers" needs those headers).

This is sometimes known as the "brittle base class problem".

The obvious solution is to omit the "information helpful to implementers" for 
classes that are used as interfaces to users.  In other words, interface classes 
should represent “pure” interfaces and therefore take the form of abstract 
classes, for example:

class Shape {
public:  // interface to users of Shapes
    virtual void draw() const = 0;
    virtual void rotate(int degrees) = 0;
    virtual Point center() const = 0;

// ...
// no data

};

class Circle : public Shape {
public:
    void draw() const;
    void rotate(int) { }
    Point center() const { return center; }

// ...
protected:
    Point cent;
    Color col;
    int radius;

// ...
};
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class Triangle : public Shape {
public:
    void draw() const;
    void rotate(int);
    Point center() const;

// ...
protected:
    Color col;
    Point a, b, c;

// ...
};

The users are now insulated from changes to implementations of derived 
classes.  This technique has been known to decrease build times by orders of 
magnitude.

But what if there really is some information that is common to all derived 
classes (or even to several derived classes)? Simply make that information a 
class and derive the implementation classes from that also: 

class Shape {
public:   // interface to users of Shapes
    virtual void draw() const = 0;
    virtual void rotate(int degrees) = 0;
    virtual Point center() const = 0;

// ...
// no data

};

struct Common {
    Color col;

// ...
};

class Circle : public Shape, protected Common {
public:
    void draw() const;
    void rotate(int) { }
    Point center() const { return cent; }

// ...
protected:
    Point cent;
    int radius;
};

class Triangle : public Shape, protected Common {
public:
    void draw() const;
    void rotate(int);
    Point center() const;

// ...
protected:
    Point a, b, c;
};
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• Another technique for ensuring better separation between parts of a program 
involves an interface object holding a single pointer to an implementation 
object.  This is often called “the PIMPL” (Pointer to IMPLementation15) 
idiom.  For example:

// Interface header:
class Visible {
    class Hidden;

    Hidden* pImpl;
public:
    void fcn1();
    ...
};

// Implementation source:
class Visible::Hidden {
    ...
public:
    void fcn1_impl();
    ...
};

void Visible::fcn1 () { pImpl->fcn1_impl (); }

• Use function-objects16 with the Standard Library algorithms rather than 
function pointers.  Function pointers defeat the data flow-analysers of many 
optimisers, but function-objects are passed by value and optimisers can easily 
handle the use of inline functions used on objects.

• Calling a function with a default argument requires the constructor to create a 
temporary object for the default.  If the construction of that temporary is 
expensive and if the function is called several times, it can be worth while to 
construct the default argument value somewhere and use that value in each 
call.  For example:

class C
{
public:
    C(int i) { ... }
    int mf () const;

// ...
};

int f(const C & x = C(0)) { // construct C(0) in each call f()
    return x.mf();
}

int g() {
    static const C x(0);   // construct x in the first call
    return x.mf();
}

15 Or even “The Cheshire Cat”
16 Objects of a class type that has been designed to behave like a function.  Often all the member functions of such types are 
defined inline for efficiency.
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const C c0(0);   // construct c0 for use in calls of h()
int h(const C& x = c0) {
    return x.mf();
}

• When programming "close to the metal”, such as accessing low-level 
hardware devices, some use of assembly code may be unavoidable.  The C++ 
asm declaration (§IS-7.4) enables the use of assembly code to be minimised.
The advantage of using short assembler functions can be lost if they have to be 
placed in separate source files where the efficiency gained is over-shadowed 
by the overhead of calling and returning a function, plus attendant effects on 
the instruction pipeline and register management.  The asm declaration can be 
used to insert small amounts of assembly code inline where they provide the 
most benefit.

A compiler is typically unaware of the semantics of inlined assembly 
instructions.  Thus, use of inlined assembly instructions can defeat other 
important optimisations such as common sub-expression elimination and 
register allocation.  Consequently, inline assembly code should be used only 
for operations that are not otherwise accessible using C++.

• Whenever possible, compute values and catch errors at translation time rather 
than run-time.  With sophisticated use of templates, a complicated block of 
code can be compiled to a single constant in the executable, therefore having 
zero run-time overhead.  This might be described as a code implosion (the 
opposite of a code explosion).  For example:

template <int N>
    class Factorial {
    public:
        static const int value = N * Factorial<N-1>::value;
    };

class Factorial<1> {
public:
    static const int value = 1;
};

Using this class-template17, the value N! is accessible at compile-time as 
Factorial<N>::value.
As another example, the following class- template can be used to generate a 
compile-time constant Square Root Computation ceil(sqrt(N)):

// <root.h>:
template <int Size, int Low = 1, int High = Size>
   struct Root;

template <int Size, int Mid> 
    struct Root<Size,Mid,Mid> {
        static const int root = Mid;
    };

17 Within limitations, remember that if an int is 32-bits, the maximum N can be is just 12.
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template <int Size, int Low, int High>
    struct Root {
        static const int mean  = (Low + High)/2;
        static const bool down = (mean * mean >= Size);
        static const int root  = Root<Size,
                 (down ? Low  : mean + 1),
                 (down ? mean : High)>::root;
    };

// User code:
//   compute sqrt(N), and use it for static table size
int table[Root<N>::root];

Template meta-programming and expression templates are not techniques for 
novice programmers, but an advanced practitioner can use them to good effect.

• Templates provide compile-time polymorphism, wherein type selection does 
not incur any run-time penalty.  If appropriate to the design, consider using 
templates as interfaces instead of abstract base classes18.  For some designs it 
may be appropriate to use templates which can provide compile-time 
polymorphism, while virtual functions which provide run-time polymorphism, 
may be more appropriate for others.

Templates have several useful properties: they impose no space or code 
overhead on the class used as a template argument, and they can be attached to 
the class for limited times and purposes.  If the class does not provide the 
needed functionality, it can be defined externally through template 
specialization.  If certain functions in the template interface are never used for 
a given class, they need not be defined because they will not be instantiated.

In the example below, the talk_in_German() function in the "interface" is 
only defined for class CuckooClock, because that is the only object for 
which it is needed.  Invoking talk_in_German() on an object of a different 
type results in a compiler diagnostic:

#include <iostream>
using std::cout;
using std::endl;

// some domain objects
class Dog {
public:
    void talk() { cout << "woof woof" << endl; }
};

class CuckooClock {
public:
    void talk()           { cout << "cuckoo cuckoo" << endl; }
    void talk_in_German() { cout << "wachet auf!"   << endl; }
};

18 Abstract base classes are often referred to as ABCs
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class BigBenClock {
public:
    void talk()      { cout << "take a tea-break"    << endl; }
    void playBongs() { cout << "bing bong bing bong" << endl; }
};

class SilentClock {
    // doesn't talk
};

// generic template to provide non-inheritance-based
// polymorphism
template <class T>
class Talkative {
    T& t;
public:
    Talkative( T& obj ) : t( obj ) {  }
    void talk()                    { t.talk(); }
    void talk_in_German()          { t.talk_in_German(); }
};

// specialization to adapt functionality
template <>
class Talkative<BigBenClock> {
    BigBenClock& t;
public:
    Talkative( BigBenClock& obj )
    : t( obj )  {  }
    void talk() { t.playBongs(); }
};

// specialization to add missing functionality
template <>
class Talkative<SilentClock> {
    SilentClock& t;
public:
    Talkative( SilentClock& obj )
    : t( obj )  {  }
    void talk() { cout << "tick tock" << endl; }
};

// adapter function to simplify syntax in usage
template <class T>
Talkative<T>  makeTalkative( T& obj ) {
    return Talkative<T>( obj );
}

// function to use an object which implements the
// Talkative template-interface
template <class T>
void makeItTalk( Talkative<T> t )
{
    t.talk();
}
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int main()
{
    Dog         aDog;
    CuckooClock aCuckooClock;
    BigBenClock aBigBenClock;
    SilentClock aSilentClock;

    Talkative<Dog> td( aDog );
    td.talk();                                    // woof woof

    Talkative<CuckooClock> tcc( aCuckooClock );
    tcc.talk();                               // cuckoo cuckoo

    makeTalkative( aDog ).talk();                 // woof woof
    makeTalkative( aCuckooClock ).talk_in_German();  // wachet
                                                     //   auf!

    makeItTalk( makeTalkative( aBigBenClock ) );  // bing bong
                                                  // bing bong
    makeItTalk( makeTalkative( aSilentClock ) );  // tick tock

    return 0;
}

• Controlling the instantiation of class-templates and function-templates can 
help to reduce the footprint of a program.  Some compilers instantiate a 
template only once into a separate "repository"; others instantiate every 
template into every translation unit.  In the latter case, the linker typically 
eliminate duplicates.  If it does not, the executable can suffer significant 
memory overheads.

• Explicit instantiation of a class- template specialisation causes instantiation of 
all of its members into the translation unit containing the explicit instantiation 
directive.  In addition to a whole class- template, explicit instantiation can also 
be used for a member function, member class, or static data member of a 
class-template, or a function-template or member template specialisation.
For example (from IS-14.7.2¶2):

template<class T> class Array { void mf(); };
template class Array<char>;
template void Array<int>::mf();

template<class T> void sort(Array<T>& v) { /* ... */ }
template void sort(Array<char>&);  //  argument is deduced here

namespace N {
template<class T> void f(T&) { }
}
template void N::f<int>(int&);

Explicitly instantiating template code into a library can save space in every 
translation unit which links to it.  For example, in their run-time libraries, 
some library vendors provide instantiations of std::basic_string<char>
and std::basic_string<wchar_t>.  Some compilers also have command-
line options to force complete template instantiation or to suppress it as 
needed.
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• In addition to these portable coding techniques, programming tools offer 
additional platform-specific help for optimising programs.  Some of the 
techniques available include the following:

� Compiler options are usually extra arguments or switches, which pass 
instructions to the compiler.  Some of these instructions are related to 
performance, and control how to:

� generate executable code optimised for a particular hardware 
architecture.

� optimise the translated code for size or speed. Often there are 
sub-options to exercise finer control of optimisation techniques 
and how aggressively they should be applied.

� suppress the generation of debugging information, which can 
add to code and data size.

� instrument the output code for run-time profiling, as an aid to 
measuring performance and to refine the optimisation strategies 
used in subsequent builds.

� disable exception handling overhead in code which does not 
use exceptions at all.

� control the instantiation of templates.

� #pragma directives allow compilers to add features specific to 
machines and operating systems, within the framework of Standard 
C++.  Some of the optimisation-related uses of #pragma directives are 
to:

� specify function calling conventions (a C++ linkage-
specification can also be used for this purpose).

� influence the inline expansion of code.

� specify optimisation strategies on a function-by-function basis.

� control the placement of code or data into memory areas (to 
achieve better locality of reference at run-time).

� affect the layout of class members (through alignment or 
packing constraints, or by suppressing compiler-generated data 
members).

Note that #pragmas are not standardised and are not portable.
� Linking to static libraries or shared libraries, as appropriate.  Linker 

options can also be used to control the amount of extra information 
included in a program (e.g., symbol tables, debugging formats).

� Utilities for efficiently allocating small blocks of memory.  These may 
take the form of system calls, #pragmas, compiler options, or libraries.
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� Additional programs:

� many systems have a utility program19 to remove the symbol 
table and line number information from an object file, once 
debugging is complete (This can often be done at link-time 
using a linker specific option).  The purpose is to reduce file 
storage and in some cases, memory overhead.

� some systems have utilities20 and tools to interpret profiling 
data and identify run-time bottlenecks.

• Sometimes, minimising compile-time is important.  When code is being 
created and debugged, suppressing optimisation may enable the compiler to 
run faster.

The most effective technique for reducing compile-time relies on reducing the 
amount of code to be compiled.  The key is to reduce coupling between 
different parts of a program so as to minimise the size and number of header 
files needed in most translation units.  Some techniques for accomplishing this 
include the use of abstract classes as interfaces and the PIMPL idiom.

As discussed above, suppressing automatic template instantiation in a given 
translation unit may reduce compile-time.

• Reading and parsing header code takes time.  Years ago, the common practice 
was to #include as few headers as possible, so that only necessary symbols 
were declared.  But with technology to pre-compile headers, build time may 
be reduced by using a single header in each translation unit which #includes 
everything needed for the program.  Furthermore, most compilers now 
implement the following “idem potent guard” optimisation.  Well-designed 
headers will usually protect their contents against multiple inclusion by 
following this pattern:

#if !defined THIS_HEADER_H
#define THIS_HEADER_H
  // here are the contents of the header
#endif /* THIS_HEADER_H */

If the compiler provides this “idem potent guard” optimization, it will record 
in an internal table the fact that this header has an idem potent guard.  If this 
header is subsequently #included again, and the macro THIS_HEADER_H still 
remains defined, then the compiler can avoid accessing the header contents.

For more details about the “idem potent guard” optimization, a sample test 
program, and ongoing test results, see Bob Archer’s discussion at:

http://www.hottub.demon.co.uk/software/include/index.htm

19 For instance the ‘strip’ utility which is part of the Software Development Utilities option in the IEEE Posix/Open Group Unix 
specifications.
20 For instance the ‘prof’ utility which is part of the Posix/Unix Standard, but is available on many systems.

http://www.hottub.demon.co.uk/software/include/index.htm
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If the compiler does not perform this optimization, the check can be 
implemented by the programmer:

#if !defined MY_HEADER_H
#include "my_header.h"
#endif

This has the disadvantage of coupling the header’s guard macro to the source 
files which #include that header.
As always, local measurements in specific circumstances should govern the 
decision.
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3 Creating Efficient Libraries
3.1 The Standard IOStreams Library – Overview
The Standard IOStreams library (§IS-27) has a well-earned reputation of being 
inefficient!  Most of this reputation is, however, due to misinformation and naïve 
implementation of this library component.  Rather than tackling the whole library, this 
report addresses efficiency considerations related to a particular aspect used 
throughout the IOStreams library, namely those aspects relating to the use of the 
Locales (§IS-22).  An implementation approach for removing most, if not all, 
efficiency problems related to locales is discussed in 3.2.

The efficiency problems come in several forms.

3.1.1 Executable Size
Typically, using anything from the IOStreams library drags in a huge amount of 
library code, most of which is not actually used.  The principal reason for this is the 
use of std::locale in all base classes of the IOStreams library (e.g. std::ios_base
and std::basic_streambuf).  In the worst case, the code for all required facets from 
the Locales library (§IS-22.1.1.1.1¶4) is included in the executable.  A milder form of 
this problem merely includes code of unused functions from any facet from which one 
or more functions are used.  This is discussed in 3.2.2.

3.1.2 Execution Speed
Since certain aspects of IOStreams processing are distributed over multiple facets, it 
appears that the standard mandates an inefficient implementation.  This is not the 
case, by using some form of pre-processing, much of the work can be avoided.  With 
a slightly smarter linker than is typically used, it is possible to remove some of these 
inefficiencies.  This is discussed in 3.2.3 and 3.2.5.

3.1.3 Object Size
The standard seems to mandate an std::locale object being embedded in each 
std::ios_base and std::basic_streambuf object, in addition to several options 
used for formatting and error reporting.  This makes for fairly large stream objects.  
Using a more advanced organization for stream objects can shift the costs to those 
applications actually using the corresponding features.  Depending on the exact 
approach taken, the costs are shifted to one or more of:

● Compilation time
● Higher memory usage when actually using the corresponding features
● Execution speed

This is discussed in 3.2.6.

3.1.4 Compilation Time
A widespread approach for coping with the lack of support for exported templates is 
to include the template implementations in the headers.  This can result in very long 
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compile and link times if, for example, the IOStreams headers are included, and 
especially if optimisations are enabled.  With an improved approach using pre-
instantiation and consequent decoupling techniques, the compile-time can be reduced 
significantly.  This is discussed in 3.2.4.

3.2 Optimising Libraries – Reference Example:
”An Efficient Implementation of Locales and IOStreams”

The definition of Locales in the C++ Standard (§IS-22) seems to imply a pretty 
inefficient implementation.  However, this is not true.  It is possible to create efficient 
implementations of the Locales library, both in terms of run-time efficiency and 
executable size.  This does take some thought and this report discusses some of the 
possibilities that can be used to improve the efficiency of std::locale 
implementations with a special focus on the functionality as used by the IOStreams
library.

The approaches discussed in this report are primarily applicable to statically bound 
executables as are typically found in, for example, embedded systems.  If shared or 
dynamically loaded libraries are used, different optimisation goals have precedence, 
and some of the approaches described here could be counterproductive.  Clever 
organization of the shared libraries might deal with some efficiency problems too; 
however, this is not discussed in this report.

Nothing described in this report involves magic or really new techniques.  It just 
discusses how well known techniques may be employed to the benefit of the library 
user.  It does however involve additional work compared to a trivial implementation, 
for the library implementer as well as for the library tester, and in some cases for the 
compiler implementer.  Some of the techniques focus on just one efficiency aspect 
and thus not all techniques will be applicable in all situations (e.g. certain 
performance improvements can result in additional code space).  Depending on the 
requirements, the library writer, or possibly even the library user, has to choose which 
optimisations are the most appropriate.

3.2.1 Implementation Basics for Locales
Before going into the details of the various optimisations, it is worth introducing the 
implementation of locales, describing features implicit to the Standard definition.  
Although some of the material presented in this section is not strictly required and 
there are other implementation alternatives, this section should provide the necessary 
details to understand where the optimisations should be directed.

An std::locale object is an immutable collection of immutable objects, or more 
precisely, of immutable facets.  This immutability trait is important in multi-threaded 
environments, because it removes the need to synchronize most accesses to locales 
and their facets.  The only operations needing multi-threading synchronization are 
copying, assigning, and destroying std::locale objects and the creation of modified 
locales.

Instead of modifying a locale object to augment the object with a new facet or to 
replace an existing one, std::locale constructors or member functions are used, 
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creating new locale objects with the modifications applied.  As a consequence, 
multiple locale objects can share their internal representation and multiple internal 
representations can (in fact, have to) share their facets.  When a modified locale object 
is created, the existing facets are copied from the original and then the modification is 
applied, possibly replacing some facets.  For correct maintenance of the facets, the 
Standard mandates the necessary interfaces, allowing reference counting or some 
equivalent technique for sharing facets.  The corresponding functionality is 
implemented in the class std::locale::facet, the base class for all facets.
Copying, assigning, and destroying std::locale objects reduces to simple pointer 
and reference count operations.  When copying a locale object, the reference count is 
incremented and the pointer to the internal representation is assigned.  When 
destroying a locale object, the reference count is decremented and when it drops to 0, 
the internal representation is released.  Assignment is an appropriate combination of 
these two.  What remains is the default construction of an std::locale which is just 
the same as a copy of the current global locale object.  Thus, the basic lifetime 
operations of std::locale objects are reasonably fast.
Individual facets are identified using an ID, more precisely an object of type 
std::locale::id which is available as a static data member in all base classes 
defining a facet.  A facet is a class derived from std::locale::facet which has a 
publicly accessible static member called id of type std::locale::id (§IS-
22.1.1.1.2¶1).  Although explicit use of a locale's facets seems to use a type as an 
index (referred to here as F), the Locales library internally uses F::id.  The 
std::locale::id simply stores an index into an array identifying the location of a 
pointer to the corresponding facet or 0 if a locale object does not store the 
corresponding facet.
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Taken together, a locale object is basically a reference counted pointer to an internal 
representation consisting of an array of pointers to reference counted facets.  In a 
multi threaded environment, the internal representation and the facets might store a 
mutex (or some similar synchronization facility), thus protecting the reference count.  
A corresponding excerpt of the declarations might look something like this (with 
namespace std and other qualifications or elaborations of names omitted):

class locale {
public:
    class facet {
    // ...
    private:
        size_t  refs;
        mutex   lock;    // optional
    };

    class id {
    // ...
    private:
        size_t  index;
    };

    // ...
private:
    struct internal {
    // ...
        size_t refs;
        mutex  lock;    // optional
        facet* members;
    };
    internal*  rep;
};

These declarations are not really required and there are some interesting variations:

● Rather than using a double indirection with an internal struct, a pointer to an 
array of unions can be used.  The union would contain members suitable as 
reference count and possible mutex lock, as well as pointers to facets.  The 
index 0 could, for example, be used as “reference count” and index 1 as 
“mutex”, with the remaining array members being pointers to facets.

● Instead of protecting each facet object with its own mutex lock, it possible to 
share the locks between multiple objects.  For example, there may be just one 
global mutex lock, because the need to lock facets is relatively rare (only when 
a modified locale object is necessary is there a need for the mutex) and it is 
unlikely that this global lock remains held.  If this is too coarse grained, it is 
possible to place a mutex lock into the static id object, such that an individual 
mutex lock exists for each facet type.

● If atomic increment and decrement/check are available, the reference count is 
sufficient, because the only operations needing multi-threading protection are 
incrementing and decrementing the reference count.

● The locale objects only need a representation if there are modified locale 
objects.  If such an object is never created, it is possible to use an empty 
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std::locale object.  Whether or not this is the case can be determined using 
some form of "whole program optimisation" (§3.2.5).

● Whether an array or some other data structure is used internally does not really 
matter.  What is important is that there is a data structure indexed by 
std::locale::id.

● A trivial implementation could use a null pointer to indicate that a facet is 
absent in a given locale object.  If a pointer to a dummy facet is used instead, 
std::use_facet() can simply use a dynamic_cast<>() to produce the 
corresponding std::bad_cast exception.

In any case, it is reasonable to envision a locale object as being a reference counted 
pointer to some internal representation containing an array of reference counted 
facets.  Whether this is actually implemented so as to reduce run-time by avoiding a 
double indirection and whether there are mutex locks and where these are does not 
really matter to the remainder of this discussion.  It is, however, assumed that the 
implementer chooses an efficient implementation of the std::locale.
It is worth noting that the Standard definition of std::use_facet() and 
std::has_facet() differ from earlier Committee Draft (CD) versions quite 
significantly.  If a facet is not found in a locale object, it is not available for this 
locale.  In earlier CDs, if a fact was not found in a given locale, they the global locale 
object was searched.  This definition chosen for the Standard was made so that the 
Standard could be more efficiently implemented – to determine whether a facet is 
available for a given locale object, a simple array lookup is sufficient.  So, the 
functions std::use_facet() and std::has_facet() could be implemented 
something like this:

extern std::locale::facet dummy;
template <typename F>
bool has_facet(std::locale const& loc) {
    return loc.rep->facets[F::id::index] == &dummy;
}
template <typename F>
F const& use_facet(std::locale const& loc) {
    return dynamic_cast<F const&>(*loc.rep->facets[Facet::id::index]);
}

These versions of the functions are tuned for speed.  A simple array lookup, together 
with the necessary dynamic_cast<>() is used to obtain a facet.  Since this implies 
that there is a slot in the array for each facet possibly used by the program, it may be 
somewhat wasteful with respect to memory.  Other techniques might check the size of 
the array first or store id/facet pairs.  In extreme cases, it is possible to locate the 
correct facet using dynamic_cast<>() and storing only those facets that are actually 
available in the given locale.

3.2.2 Reducing Executable Size
Linking unused code into an executable can have a significant impact on the 
executable size.  Thus, it is best to avoid having unused code in the executable 
program.  One source of unused code results from trivial implementations.  The 
default facet std::locale::classic() includes a certain set of facets as described 
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in IS-22.1.1.1.1¶2.  It is tempting to implement the creation of the corresponding 
locale with a straightforward approach, namely explicitly registering the listed facets:

std::locale const& std::locale::classic() {
    static std::locale object;
    static bool uninitialized = true;

    if (uninitialized) {
        object.intern_register(new collate<char>);
        object.intern_register(new collate<wchar_t>);
        // ...
    }
    return object;
}

This approach however can result in a very large executable, as it drags in all facets 
listed in the table.  The advantage of this approach is that a relatively simple 
implementation of the various locale operations is possible.  An alternative for 
producing smaller code, is to include only those facets that are really used.  A simple 
approach for doing this is to provide specialized versions of use_facet() and 
has_facet() which might be appropriate for has_facet(), for example:

template <typename F> struct facet_aux {
    static F const& use_facet(locale const& l) {
        return dynamic_cast<F const&>(*l.rep

->facets[Facet::id::index]);
    }
    static bool has_facet(locale const& l) {
        return l.rep->facets[F::id::index] == &dummy;
   }

};
template <> struct facet_aux<ctype<char> > {
    static ctype<char> const& use_facet(locale const& l) {
        try {
            return dynamic_cast<F const&>(*l.rep

->facets[Facet::id::index]);
        } catch (bad_cast const&) {
            locale::facet* f = l.intern_register(new ctype<char>);
            return dynamic_cast<ctype<char>&>(*f);
        }
    }
    static bool has_facet(locale const&) { return true; }
};
// similarly for the other facets

template <typename F>
F const& use_facet(locale const& l) {
    return facet_aux<F>::use_facet(l);
}
template <typename F>
bool has_facet(locale const& l) {
    return facet_aux<F>::has_facet(l);
}

Again, this is just one example of many possible implementations for what is 
basically a recurring theme.  A facet is created only if it is really referenced from the 
program.  This particular approach is suitable in implementations where exceptions 
cause a run-time overhead only if they are indeed thrown because like the normal 
execution path, if the lookup of the facet is successful, it is not burdened by the extra 
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code used to initialise the facet.  Although the above code seems to imply that 
struct facet_aux has to be specialized for all required facets individually, this need 
not be the case.  By using an additional template argument, it is possible to use partial 
specialization together with some tagging mechanism, to determine whether the facet 
should be created on the fly if it is not yet present.

Different implementations of the lazy facet initialisation include the use of static 
initializers to register used facets.  In this case, the specialised versions of the function 
use_facet() would be placed into individual object files together with an object 
whose static initialisation registers the corresponding facet.  This approach implies 
however, that the function use_facet() is implemented out-of-line, possibly causing 
unnecessary overhead both in terms of run-time and executable size.

The next source of unused code is the combination of several related aspects in just 
one facet due to the use of virtual functions.  Normally, instantiation of a class 
containing virtual functions requires that the code for all virtual functions be present, 
even if they are unused.  This can be relatively expensive as in, for example, the case 
of the facet dealing with numeric formatting.  Even if only the integer formatting 
functions are used, the typically bigger code for the floating point formatting gets 
dragged in just to resolve the symbols referenced from the “virtual function table”.

A better approach to avoid linking of unused virtual functions involves changing the 
compiler such that it generates appropriate symbols, allowing the linker to determine 
whether a virtual function is really called.  If it is, the reference from the virtual 
function table is resolved; otherwise, there is no need to resolve it because it will 
never be called anyway.

For the Standard facets however, there is a “Poor Man's” alternative that comes close 
to having the same effect.  The idea is to provide a stub implementation for the virtual 
functions, which is placed in the library such that it is searched fairly late.  The real 
implementation is placed before the stub implementation in the same object file along 
with the implementation of the forwarding function.  Since a use of the virtual 
function has to go through the forwarding function, this symbol is also un-referenced, 
and resolving it brings in the correct implementation of the virtual function.

Unfortunately, it is not totally true that the virtual function can only be called through 
the forwarding function.  A class deriving from the facet can directly call the virtual 
function because these are protected rather than private.  Thus, it is still necessary 
to drag in the whole implementation if there is a derived facet.  To avoid this, another 
implementation can be placed in the same object file as the constructors of the facet, 
which can be called using a hidden constructor for the automatic instantiation.  
Although it is possible to get these things to work with typical linkers, a modified 
compiler and linker provide a much-preferred solution, which is often outside the 
scope of library implementers.

Basically, most of the normally visible code bloat can be removed using these two 
techniques, i.e. by including only used facets and avoiding the inclusion of unused 
virtual functions.  Some of the approaches described in the other sections can also 
result in a reduction of executable size, but the focus of those optimisations is on a 
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different aspect of the problem.  Also, the reduction in code size for the other 
approaches is not as significant.

3.2.3 Pre-Processing for Facets
Once the executable size is reduced, the next observation is that the operations tend to 
be slow.  Take numeric formatting as an example: to produce the formatted output of 
a number, three different facets are involved:

● num_put which does the actual formatting, i.e. determining which digits and 
symbols are there, doing padding when necessary, etc.

● numpunct which provides details about local conventions, such as the need to 
put in thousands separators, which character to use as a decimal point, etc.

● ctype which transforms the characters produced internally by num_put, into 
the appropriate "wide" characters.

Each of the ctype or numpunct functions called is essentially a virtual function.  A 
virtual function call can be an expensive way to determine whether a certain character 
is a decimal point, or to transform a character between a narrow and wide 
representation.  Thus, it is necessary to avoid these calls wherever possible for 
maximum efficiency.

At first examination there does not appear to be much room for improvement.  
However, on closer inspection, it turns out that the Standard does not mandate calls to 
numpunct or ctype for each piece of information.  If the num_put facet has widened a 
character already, or knows which decimal point to use, it is not required to call the 
corresponding functions.  This can be taken a step further.  When creating a locale 
object, certain data can be cached using, for example, an auxiliary hidden facet.  
Rather than going through virtual functions over and over again, the required data is 
simply stored in an appropriate data structure.

For example, the cache for the numeric formatting might consist of a character 
translation table resulting from widening all digit and symbol characters during the 
initial locale set-up.  This translation table might also contain the decimal point and 
thousands separator – combining data obtained from two different facets into just one 
table.  Taking it another step further, the cache might be set up to use two different 
functions depending on whether thousands separators are used according to the 
numpunct facet or not.  Some pre-processing might also improve the performance of 
parsing strings like the Boolean values if the std::ios_base::boolalpha flag is set.
Although there are many details to be handled like for example, distinguishing 
between normal and cache facets when creating a new locale object, the effect of 
using a cache can be fairly significant.  It is important that the cache facets are not 
generally shared between locale representations.  To share the cache, it has to be 
verified that all facets contributing to the cached data are identical in each of the 
corresponding locales.  Also, certain things, like the use of two different functions for 
formatting with or without thousands separators, only work if the default facet is used.
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3.2.4 Compile-Time Decoupling
It may appear strange to talk about improving compile-times when discussing the 
efficiency of locales but there are good reasons for this.  First of all, compile-time is 
just another concern for performance efficiency, and it should be minimized where 
possible.  More important to this paper however, is that some of the techniques 
presented below rely on certain aspects that are related to the compilation process.

The first thing that improves compile-time is the liberal use of declarations, avoiding 
definitions wherever possible.  A Standard header may be required to include other 
headers that provide a needed definition (§IS-17.4.4.1¶1), however, this does not 
apply to declarations.  As a consequence, a header need not be included just because it 
defines a type which is used only as a return or argument type where a declaration is 
sufficient.  Likewise, a declaration is sufficient if only a pointer or a class is used as a 
member.

Looking at the members imbue() and getloc() of the class std::ios_base, it 
would seem that an object of this type is required to include <locale> simply for the 
definition of std::locale, because apparently, an std::ios_base object stores an 
object of this type in a member variable.  This is not required!  Instead, 
std::ios_base could store the pointer to the locale's internal representation and 
construct an std::locale object on the fly.  Thus, there is no need for the header 
<ios> to include the header <locale>.  The header <locale> will be used elsewhere 
with the implementation of the std::ios_base class but that is a completely different 
issue.

Why does it matter?  Current compilers lacking support for the export keyword 
require the implementation of the template members of the other stream classes in the 
headers anyway and the implementation of these classes will need the definitions 
from <locale> – won't they?  It is true that some definitions of the template members 
will indeed require definitions from the header <locale>.  However, this does not 
imply that the implementation of the template members is required to reside in the 
header files – a simple alternative is to explicitly instantiate the corresponding 
templates in suitable object files.

Explicit instantiation obviously works for the template arguments mentioned in the 
Standard, for example, explicit specialisation of std::basic_ios<char> and 
std::basic_ios<wchar_t> works for the class- template std::basic_ios.  But 
what happens when the user tries some other type as the character representation, or a 
different type for the character traits?  Since the implementation is not inline but 
requires explicit instantiation, it cannot always be present in the Standard library 
shipped with the compiler.  The usual approach to this problem is to use the export
keyword but in the absence of this, an entirely different approach is necessary.  One 
such approach is to instruct the user on how to instantiate the corresponding classes 
using, for example, some environment specific implementation file, and suitable 
compiler switches.  For instance, instantiating the IOStreams classes for the character 
type mychar and the traits type mytraits might look something like:

c++ -o io-inst-mychar-mytraits.o io-inst.cpp \
-DcharT=mychar -Dtraits=mytraits -Dinclude="mychar.hpp"
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Using such an approach causes some trouble to the user and more work for the 
implementor, which seems to be a fairly high price to pay for a reduction in 
dependencies and a speed up of compile-time.  But note that the improvement in 
compile-time is typically significant when compiling with optimisations enabled.  The 
reason for this is simple: with all those inline functions, the compiler causes huge 
chunks of codes to be passed on to the optimiser which then has to work extra hard to 
improve them.  Bigger chunks provide better optimisation possibilities, but they also 
cause significantly longer compile-times due to the non-linear increase in the 
complexity of the optimisation step as the size of the chunks increases.  Furthermore, 
the object files written and later processed by the linker are much bigger when all 
used instantiations are present in each object file.  This can also impact the executable 
size, because certain code may be present multiple times embedded in different inline
functions which are different but which have some code from just one other function 
in common.

Another reason for having the IOStreams and Locales functions in a separate place, is 
that it is possible to tell from the undefined symbols which features are used in a 
program and which are not.  This information can then be used by a smart linker to 
determine which particular implementation of a function is most suitable for a given 
application.

3.2.5 Smart Linking
The discussion above already addresses how to avoid unused code using a slightly 
non-trivial implementation of locales and virtual functions.  It does not address how to 
avoid unnecessary code.  The term “unnecessary code” refers to code that is actually 
executed, but which does not really have any effect.  For example, the code for 
padding formatted results does not have an effect if the width() is never set to a non-
zero value.  Similarly, there is no need to go through the virtual functions of the 
various facets, if only the default locale is ever used.  As for all other aspects of C++, 
it is reasonable to avoid the costs in code size and performance when the 
corresponding feature is not used.

The basic idea for coping with this is to provide multiple implementations of the same 
function that avoids unnecessary overheads where possible.  Since writing multiple 
implementations of the same function can easily become a maintenance nightmare, it 
makes sense to write one implementation, which is configured at compile-time to 
handle different situations.  For example, a function for numeric formatting that 
optionally avoids the code for padding might look like this:

template <typename cT, typename OutIt>
num_put<cT, OutIt>::do_put(OutIt it, ios_base& fmt,
                           cT fill, long v) const
{
    char buffer[some_suitable_size];
    char* end = get_formatted(fmt, v);
    if (need_padding && fmt.width() > 0)
        return put_padded(it, fmt, fill, buffer);
    else
        return put(it, fmt, buffer);
}
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The value need_padding is a constant Boolean which is set to false if the 
compilation is configured to avoid padding code.  With a clever compiler (normally 
requiring optimisation to be enabled) any reference to put_padded() is avoided, as is 
the check for whether the width() is greater than zero.  The library would just supply 
two versions of this function and the smart-linker would need to choose the right one.

To choose the right one, the linker has to be told under what circumstances it should 
use the one avoiding the padding, i.e. the one where need_padding is set to false.  A 
simple analysis shows that the only possibility for width() being non-zero is the use 
of the std::ios_base::width() function with a parameter.  The library does not set 
a non-zero variable, and hence the simpler version can be used if 
std::ios_base::width() is never referenced from user code.
The example of padding is pretty simple.  Other cases are more complex but still 
manageable.  Another issue worth considering is whether the Locales library has to be 
used or if it is possible to provide the functionality directly, possibly using functions 
that are shared internally between the Locales and the IOStreams library.  That is, if 
only the default locale is used, the IOStreams functions can call the formatting 
functions directly, bypassing the retrieval of the corresponding facet and associated 
virtual function call – moreover, bypassing any code related to locales – avoiding the 
need to drag in the corresponding locale maintenance code.

The analysis necessary to check if only the default locale is used is more complex 
however.  The simple test is to check for the locale's constructors.  If only the default 
and copy constructors are used, then only the default locale is used because one of the 
other constructors is required to even create a different locale object.  Even then, if 
another locale object is constructed, it is not necessarily used with the IOStreams.  
Only if the global locale is ever changed, or if std::ios_base::imbue(), 
std::basic_ios<...>::imbue(), or std::basic_streambuf<...>::imbue() are 
ever called, can the streams be affected by the non-default locale object.  Although it 
this is somewhat more complex to determine, it is still manageable.  There are other 
things which might be exploited too, for example, whether the streams have to deal 
with exceptions in the input or output functions (this depends on the stream buffer and 
locales possibly used); whether calling of callback functions is needed (only if 
callbacks are ever registered, is this necessary); etc.
The approach taken by the linker to decide which functionality is used by the 
application requires using a set of “rules” provided by the library implementor to 
exclude functions.  It is important to base these rules only on the application code to 
avoid unnecessary restrictions imposed by unused library code.  This however results 
in more rules and rules that are more complex.  To determine which functionality is 
used by the application code, the unresolved symbols referenced by the application 
code are examined.  This requires that any function used as a “rule” is indeed 
unresolved and results in the corresponding functions being non-inline.

There are basically three problems with this approach:

● The maintenance of the implementation becomes more complex because extra 
work is necessary.  This can be reduced to a more acceptable level by relying 



Technical Report on C++ Performance (DRAFT) 02-0017/N1359

Page 66 of 142

on clever compilers eliminating code for branches that the compiler can 
determine, are never used.

● The analysis of the conditions under which code can be avoided is sometimes 
non-trivial.  Also, the conditions have to be made available to the linker, 
which introduces another potential cause of error.

● Even simple functions used to exclude a simple implementation of the 
function std::ios_base::width() cannot be inline.  This might result in less 
efficient and sometimes even bigger code (for simple functions the cost of 
calling the function can be bigger than the actual function).  See 3.2.7 for an 
approach for avoiding this problem.

The same approach can be beneficial to other libraries, and to other areas of the 
Standard C++ library than just the IOStreams and Locales library.  In general, it can 
simplify the library interface by removing similar functions applicable in different 
situations, while still retaining the same efficiency.  It is however, not always 
applicable in such situations and should be used carefully where appropriate.

3.2.6 Object Organization
A typical approach to organise a class is to have member variables for all attributes to 
be maintained.  This may seem to be a natural approach, but it can result in a bigger 
footprint than necessary.  For example, in an application where the width() is never 
changed, there is no need to actually store the width().  When looking at the 
IOStreams library, it turns out that each std::basic_ios object might store a 
relatively large amount of data to provide functionality that many C++ programmers 
using IOStreams are not even aware of, for example:

● A set of formatting flags is stored in an std::ios_base::fmtflags object.
● Formatting parameters like the width() and the precision() are stored in 

std::streamsize objects.
● An std::locale object (or some suitable reference to its internal 

representation) is stored.

● The pword() and iword() lists are stored.
● A list of callbacks is stored.
● The error flags and exception flags are stored in objects of type 

std::ios_base::iostate.  Since these basically consist of just three bits, 
they may be folded into just one word.

● The fill character used for padding is stored.

● A pointer to the used stream buffer is stored.

● A pointer to the tie()ed std::basic_ostream is stored.
This results in at least eight extra 32-bit words, even when folding multiple data into 
just one 32-bit word where possible (the formatting flags, the state and exception 
flags, and the fill character can fit into 32-bits for the character type char).  These are 
32 bytes for every stream object even if there is just one stream, for example, 
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std::cout which never uses a different precision, width (and thus no fill character), 
or locale; probably does not set up special formatting flags using the pword() or 
iword() facilities; almost certainly does not use callbacks, and is not tie()ed to 
anything.  It might get away with being an object needing no members at all, and in 
such a case – which is not very unlikely in an embedded application – by just sending 
string literals somewhere!

A different organization could be the use of an array of unions and using the 
pword()/iword() mechanism to store the data.  Each of the pieces of data listed 
above is given an index of its position in an array of unions (possibly, several pieces 
can share just one union like they shared just one word in the conventional setting).  
Only the pword()/iword() pieces would not be stored in this array because they are 
required to access the array.  A feature never accessed does not get an index and thus 
does not require any space in the array.  The only complication is how to deal with the 
std::locale, because it is the only non-POD data.  This can be handled using for 
example, a pointer to the locale's internal representation.

Depending on the exact organization, the approach will show different run-time 
characteristics.  For example, the easiest approach for assigning indices is to do it on 
the fly when the corresponding data is initialised or first accessed.  This may however, 
result in arrays which are smaller than the maximum index and thus the access to the 
array has to be bounds-checked (in case of an out-of-bound access, the array might 
have to be increased; it is only an error to access the corresponding element if the 
index is bigger than the biggest index provided so far by 
std::ios_base::xalloc()).
An alternative is to determine the maximum number of slots used by the Standard 
library at link-time or at start-up time before the first stream object is initialised.  In 
this case, there would be no need to check for out-of-bound access to the IOStreams
features.  However, this initialisation is more complex.

A similar approach can be applied to the std::locale objects.

3.2.7 Library Recompilation
So far, the techniques described assume that the application is linked to a pre-
packaged library implementation.  Although the library might contain different 
variations on some functions, it is still pre-packaged (the templates possibly 
instantiated by the user can also be considered to be pre-packaged).  This is however, 
often not a necessary assumption!  If the library code is available, the Standard library 
can also be recompiled.

This leads to the “two phase” building of an application; where in a first phase, the 
application is compiled against a "normal", fully-fledged implementation.  The 
resulting object files are automatically analysed for features actually used, by looking 
at the unresolved references.  The result of this analysis is some configuration 
information (possible a file), which uses conditional compilation to remove all unused 
features from the Standard library; in particular, removing unused member variables 
and unnecessary code.  In the second phase, this configuration information is then 
used to recompile the Standard library and the application code for the final program.
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This approach does not suffer from drawbacks due to dynamic determination of what 
are effectively static features.  For example, if it is known at compile-time which 
IOStreams features are used, the stream objects can be organised to include members 
for exactly those features.  Thus, it is not necessary to use a lookup in a dynamically 
allocated array, possibly using a dynamically assigned index.  Also, in the final 
compilation phase, it is possible to inline functions that were not previously inlined 
(in order to produce the unresolved symbol references).
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4 Using C++ in Embedded Systems
4.1 ROMability
For the purposes of this paper, the terms “ROMable” and “ROMability” refer to 
entities that are appropriate for placement in “Read-Only- Memory” and to the process 
of placing entities into Read-Only-Memory so as to enhance the performance of 
programs written in C++.

There are two principal domains that benefit from this process:

• Embedded programs which have constraints on available memory, where code 
and data must be stored in physical ROM whenever possible.

• Modern operating systems which support the sharing of code and data among 
many instances of a program, or among several programs sharing invariant 
code and data.

The subject of ROMability therefore has performance application to all programs, 
where immutable aspects of the program can be placed in a shared and “Read-Only” 
space.  On hosted systems, Read-Only is enforced by the memory manager, while in 
embedded systems, it is enforced by the physical nature of ROM devices.

For embedded programs where memory requirements are scarce, it is critical that 
compilers identify strictly ROMable objects and allocate only ROM area for them.  
For hosted systems, the requirement to share ROMable information is not as critical, 
but there are inevitable performance advantages to hosted programs as memory 
footprint and the time it takes to load a program can be greatly reduced.  All the 
techniques described in this section will benefit such programs.

4.1.1 ROMable Objects
Most constant information is ROMable.  Obvious candidates for ROMability are 
objects of static extent that are declared const, and which have constant initializers; 
but there are several other significant candidates too.

Objects which are not declared const can be modified, and are consequently not 
ROMable.  But these objects may have constant initializers, and those initializers may 
be ROMable.  This paper considers those entities in a program that are obviously 
ROMable such as global const objects; entities that are generated by the compilation 
system to support functionality such a switch-statements; and also places where 
ROMability can be applied to intermediate entities which are not so obvious.

4.1.1.1 User-defined objects
Objects declared const that are initialised with constant expressions.  Examples:

• An aggregate (§IS-18.5.1) object with static storage duration (§IS-3.7.1) 
whose initializers are all constants:

static const int tab[] = {1,2,3};
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• Objects of scalar type with external linkage:

A const-qualified object of scalar type has internal (§IS-7.1.5.1) or no 
(§IS-3.2¶5) linkage and thus can usually be treated as a compile-time constant, 
i.e. object data areas are not allocated, even in ROM.  For example:

const int tabelsize = 48
double table[tablesize];  // table has space for 48 doubles

However, if an object of scalar type is used for initialisation or assignment of 
pointer or reference variables, it has internal linkage and is ROMable.  For 
example:

extern const int a = 1;   // extern linkage
const int b = 1;          // internal linkage
const int *c = &b;        // variable b should be allocated
const int tbsize = 256;   // it is expected that tbsize is not
                          // allocated at run-time
char ctb[tbsize];

• String literals:

An ordinary string literal has the type “array of n const char“ (§IS-2.13.4), 
and so they are ROMable.  A string literal used as the initializer of a character 
array if ROMable, but if the variable to be initialised is not a const-qualified 
array of char, then the variable being initialised is not ROMable:

const char *str1 = "abc"; // both str1 and “abc” are ROMable
char str2[] = "def";      // str2 is not ROMable

A compiler may achieve further space savings by sharing the representation of 
string literals in ROM.  For example:

const char* str1 = "abc"; // only one copy of "abc" needs
const char* str2 = "abc"; // to exist, and it is ROMable

Yet further possibilities for space saving exists if a string literal is identical to 
the trailing portion of a larger string literal, as only the larger string literal is 
necessary, as the smaller one can reference the common sub-string of the 
larger.  For example:

const char* str1 = "Hello World";
const char* str2 = "World";

// Could be considered to be implicitly:
const char* str1 = "Hello World";
const char* str2 = str1 + 6;

4.1.1.2 Compiler-generated objects
• Jump tables for switch statements:

If a jump table is generated to implement switch statement, the table is 
ROMable, since it consists of a fixed number of constants known at compile-
time.
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• Virtual function tables:

Virtual function tables of a class are usually21 ROMable.

• Type identification tables:

When a table is generated to identify RTTI types, the table is usually22
ROMable.

• Exception tables:

When exception handling is implemented using a static table, the table are 
usually23 ROMable.

• Reference to constants:

If a constant expression is specified as the initializer for a const-qualified 
reference, a temporary object is generated (§IS-8.5.3).

This temporary object is ROMable, for example:
// The declaration:
const double & a = 2.0;

// May be represented as:
static const double tmp = 2.0; // ‘tmp’ is ROMable
const double & b = tmp;

• Initializers for aggregate objects with automatic storage duration:

If all the initializers for an aggregate object that has automatic storage duration 
are constant expressions, a temporary object that has the value of the constant 
expressions and a code that copies the value of the temporary object to the 
aggregate object may be generated.  This temporary object ROMable, for 
example:

struct A {
    int a;
    int b;
    int c;
};
void test() {
    A a = {1,2,3};
}

// May be interpreted as:
void test () {
   static const A tmp = {1,2,3};  // ‘tmp’ is ROMable

    A b = tmp;
}

Thus, the instruction code for initialising the aggregate object can be replaced 
by a simple bitwise copy, saving both code space and execution time.

21 For some systems, virtual function tables may not be ROMable if they are dynamically linked from a shared library
22 For some systems, RTTI tables may not be ROMable if they are dynamically linked from a shared library
23 For some systems, exception tables may not be ROMable if they are dynamically linked from a shared library
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• Constants created during code generation:

Some literals such as integer literals, floating point literals and addresses can 
be implemented as either instruction code or data.  If they are represented as 
data, then these objects are ROMable.  For example:

void test() {
    double a;
    a += 1.0;
}

// May be interpreted as:
void test () {
    static const double tmp  = 1.0;  // ‘tmp’ is ROMable
    double a;
    a += tmp;
}

4.1.2 Constructors and ROMable Objects
In general, const objects of classes with constructors must be dynamically initialised.  
However, in some cases the initialisation could be performed if static analyses of the 
constructors resulted in constant values being used.  In this case, the object could be 
ROMable.  Similar analyses would need to be performed on the destructor.

class A {
    int a;
public:
    A(int v) : a(v) { }
};
const A tab[2] = {1,2};

Even if it is not a const object, the initialisation “pattern” may be ROMable, and can 
be bitwise copied to the actual object when it is initialised.  For example:

class X {
int a;

    char* p;
public:
    A ()
    : a ( 7 )
    { p = "Hi"; }
};
A not_const;

In this case, all objects are initialised to a constant value (i.e. the pair {7, ”Hi”}).  This 
constant initial value is ROMable, and the constructor could perform a bitwise copy 
of that constant value.

4.2 Hard Real-Time Considerations
For most embedded systems, only a very small part of the software is really real-time 
critical.  But for that part of the system, it is important to exactly determine the time a 
specific piece of software needs to run.  Unfortunately, this is not an easy analysis to 
do for modern computer architectures using multiple pipelines and different types of 
caches.  Nevertheless, for a lot of code sequences it is still quite straightforward to do 
a worst-case analysis.
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While it may not be possible to do this analysis in the abstract case, it is possible to 
for a detailed analysis to be performed when the details of the specific architecture are 
well understood.

This statement also holds for C++.  Here is a short description of several C++ features 
and their time predictability.

4.2.1 C++ Features for which Accurate Timing Analysis is Easy

4.2.1.1 Templates
As pointed out in detail in 2.5, there is no real-time relevant overhead for calling 
function-templates or member functions of class-templates.  On the contrary, 
templates often allow for better inlining and therefore reduce the overhead of the 
function call.

If the function is a virtual function, the normal rules for virtual functions apply.

4.2.1.2 Inheritance
Converting a pointer to a derived class to a pointer to base class24 will not introduce 
any run-time overhead in most implementations (§2.3).  If there is an overhead (very 
few implementations), it is a fixed number of machine instructions (typically one) and 
can be easily tested with a test program.  Being a fixed overhead, this overhead does 
not depend on the deepness of the derivation.

4.2.1.2.1 multiple inheritance
Converting a pointer to a derived class to a pointer to base class might introduce run-
time overhead (§2.3.5).  This overhead is a fixed number of machine instructions 
(typically one).

4.2.1.2.2 virtual inheritance
Converting a pointer to a derived class to a pointer to a virtual base class will 
introduce run-time overhead in most implementations (§2.3.6).  This overhead is 
typically a fixed number of machine instructions.

4.2.1.3 Virtual functions
Calling a virtual function often does not produce any run-time overhead (§2.3.3).  If it 
does, it will typically be a fixed number of machine instructions.

4.2.2 C++ Features, for which Real-Time Analysis is More Complex
The following features are often considered to be prohibitively slow for hard real-time 
code sequences.  But this is not always true.  For one, the run-time overhead of these 
features is often quite small, and on the other-hand even in the real-time parts of the 
program, there may be quite a number of CPU cycles available to spend.  If the 
real-time task is complex, a clean structure that allows for an easier overall timing 

24 Such a conversion is also necessary if a function is called for a derived class object that is implemented in a base class.
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analysis is often better than hand-optimised but complicated code – as long as the 
former is fast enough.  The hand-optimised code might run faster but is in most cases 
more difficult to analyse correctly.  And the features mentioned below often allow for 
clearer designs.

4.2.2.1 Dynamic casts
In most implementations, dynamic casts from a pointer (or reference) to base class to 
pointer (or reference) to derived class (i.e. a down-cast) will produce an overhead that 
is not fixed but depends on the details of the implementation and there is no general 
rule to test the worst case.

The same is true for cross-casts (§2.2).

As an alternate option to using dynamic-casts, consider using the typeid operator.  
This is a much cheaper way to check if the target’s dynamic type is known exactly.

4.2.2.2 Dynamic memory allocation
Dynamic memory allocation has in typical implementations a run-time overhead that 
is not easy to analyse.  In most cases, for the purpose of real-time analysis it is 
appropriate to assume dynamic memory allocation (and also memory de-allocation) to 
be non-deterministic.

The most obvious way to avoid dynamic memory allocation is to pre-allocate the 
memory – either statically at compile- (or more correctly link-) time or during the 
general set-up-phase of the system.  For deferred initialisation, pre-allocate raw 
memory and initialise it later using placement new.

If the real-time code really needs dynamic memory allocation, use an implementation 
for which all the implementation details are known.  The best way to know all the 
implementation details is to write a custom memory allocation mechanism.  This is 
easily done in C++ by overriding the class’ member operator new (or even the 
global one) or by providing an allocator argument in standard library containers.

But in all cases, if dynamic memory allocation is used, it is important to ensure that 
memory exhaustion is properly considered.

4.2.2.3 Exceptions
Enabling exceptions for compilation may introduce overhead on each function call 
(§2.4).  In general, it is not so difficult to analyse the overhead of exception handling 
as long as no exceptions are thrown.  Enable exception handling for real-time critical 
programs only if exceptions are actually used, therefore a complete analysis must 
always include the throwing of an exception, and this analysis will always be 
implementation dependent.  On the other hand, the requirement to act within a 
deterministic time might loosen in the case of an exception (e.g. there is no need to 
handle any more input from a device when a connection has broken down).

An overview of alternatives for exception handling is given in 2.4.  But as shown 
there, all options have their run-time costs, and throwing exceptions might still be the 
best way to deal with exceptional cases.  And as long as no exceptions are thrown a 
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long way (i.e. there are only a few functions between the throw and the handler), it 
might be even reduce run-time costs.

4.2.3 Testing Timing
For those features that compile to a fixed number of machine instructions, the number 
and nature of these instructions (and therefore an exact worst-case timing) can be 
tested with a simple program that includes just this specific feature and then looking 
at the created code.  In general, for those simple cases, optimisation should not make a 
difference.  But for example, if a virtual function call can be resolved to a static 
function call at compile-time, the overhead of the virtual function call will not show 
up in the code.  So, it is important to ensure that the program really test what it needs 
to test.

For the more complex cases, testing the timing is not so easy.  Compiler optimisation 
can make a big difference, and a simple test case might produce completely different 
code than the real production code.  It is important to really know the details for the 
specific implementation in order to test those cases.  Given this information, it is 
normally possible to write test programs which produce code from which the correct 
derive timing information may be derived.
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5 Hardware Addressing Interface
As the C language has matured over the years, various extensions for accessing basic 
I/O-Hardware registers have been added to address deficiencies in the language.  
Today almost all C compilers for freestanding environments and embedded systems 
support some method of direct access to I/O-Hardware registers from the C source 
level.  However, these extensions have not been consistent across dialects.  As a 
growing number of C++ compiler vendors are now entering the same market, the 
same I/O driver portability problems become apparent for C++.

As a simple portability goal, the driver source code for some given I/O-Hardware 
should be portable to all processor architectures where the hardware itself can be 
connected.  Ideally, it should be possible to compile source code that operates directly 
on I/O-Hardware registers with different compiler implementations for different 
platforms and get the same logical behaviour at run-time.

Obviously standard interface definitions written in the common subset of C and C++ 
would have the widest potential audience, since they would be readable by compilers 
for both languages.  But the additional abstraction mechanisms of C++, such as 
classes and templates, are useful in writing code at the hardware access layer.  They 
allow the encapsulation of features into classes, providing type safety along with 
maximum efficiency through the use of templates.

Nevertheless, it is an important goal to provide an interface that allows device driver 
implementers to write code that compiles equally under C and C++ compilers.  
Therefore, this report specifies two interfaces: one using the common subset and a 
second using modern C++ constructs.  Implementers of the common subset-style 
interface might use functions or inline functions, or might decide that function-like 
macros or intrinsic functions better serve their objectives.

A proposed interface for addressing I/O-Hardware in the C language is described in:

Technical Report ISO/IEC WDTR 18037
“ Extensions for the programming language C to support embedded 
processors ”

This interface is referred to as iohw in this report.  It is includes in this report for the 
convenience of the reader.  If the description of iohw in this report differs from the 
description in ISO/IEC WDTR 18037, the description there takes precedence.  iohw is 
also used to refer to both the C and C++ interface where they share common 
characteristics.  In parallel with that document, the interfaces using the common 
subset of C and C++ are contained in a header named <iohw.h>.
Although the C variant of the iohw interface is based on macros, the C++ language 
provides features which make it possible to create efficient and flexible 
implementations of this interface, while maintaining I/O driver source code 
portability.  The C++ interface is contained in a header named <hardware>, and its 
symbols are placed in the namespace std::hardware.
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The name is deliberately different, as it is the intention that <hardware> provides 
similar functionality to <iohw.h>, but through a different implementation, just as 
<iostream> provides parallel functionality with <stdio.h> through different 
interfaces and implementation.  There is no header <ciohw> specified, as that name 
would imply (by analogy with other standard library headers) that the C++ interfaces 
were identical to those in <iohw.h> but placed inside a namespace.
This report provides:

• A general introduction and overview to the iohw interface (§5.1),
• A copy of the C interface (§5.2),
• The description of the C++ interface (§5.2.5),
• Usage guidelines for the C++ interface (§0),
• General implementation guidelines for both interfaces (§A.1)
• Implementation guidelines for the C++ interface (§B.1.7)
• Implementation guidelines and example for the C interface on top of the C++ 

interface (§Appendix C:)

5.1 Introduction to I/O-Hardware Addressing
The purpose of the iohw access functions defined in the iohw header file is to promote 
portability of iohw driver source code across different execution environments.

5.1.1 Basic Standardisation Objectives
A standardisation method for basic I/O-Hardware addressing must be able to fulfil 
three requirements at the same time:

• A standardised interface must not prevent compilers from producing machine 
code that has no additional overhead compared to code produced by existing 
proprietary solutions.  This requirement is essential in order to get widespread 
acceptance from the embedded programming community.

• The I/O driver source code modules should be completely portable to any 
processor system without any modifications to the driver source code being 
required  [i.e. the syntax should promote I/O driver source code portability 
across different execution environments].

• A standardised interface should provide an “encapsulation” of the underlying 
access mechanisms to allow different access methods, different processor 
architectures, and different bus systems to be used with the same I/O driver 
source code  [i.e. the standardisation method should separate the characteris-
tics of the I/O register itself from the characteristics of the underlying 
execution environment (processor architecture, bus system, addresses, 
alignment, endian, etc.)].

5.1.2 Overview and Principles
The iohw access functions create a simple and platform independent interface between 
I/O driver source code and the underlying access methods used when addressing the 
hardware registers on a given platform.
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The primary purpose of the interface is to separate characteristics which are portable 
and specific for a given hardware register, for instance the register bit width; from 
characteristics which are related to a specific execution environment, such as the 
hardware register address; processor bus type and endian; device bus size and 
endianness, address interleave; compiler access method; etc.  Use of this separation 
principle enables I/O driver source code itself to be portable to all platforms where the 
hardware registers can be connected.

In the driver source code, a hardware register must always be referred to using a 
symbolic name.  The symbolic name must refer to a complete definition of the access 
method used with the given register.  A standardised I/O syntax approach creates a 
conceptually simple model for hardware registers:

symbolic name for hardware register ⇔ complete definition of the access method
When porting the driver source code to a new platform, only the definition of the 
access method (definition of the symbolic name) needs to be updated.

5.1.3 The Abstract Model
The standardisation of basic iohw addressing is based on a three layer abstract model:

The users portable source code

The users I/O register definitions

The vendors iohw implementation

The top layer contains the driver source code written by the compiler user.  The 
source code in this layer is fully portable to any platform where the hardware device 
can be connected.  This code may only access hardware registers via the standardized 
functions described in this section.  Each hardware register must be identified using a 
symbolic name.

The bottom layer is the compiler vendors implementation of iohw.  It provides 
prototypes for the functions defined in this section and specifies the various access 
methods supported by the given processor and platform architecture (“access 
methods” refers to the various ways of connecting and addressing hardware registers 
or hardware devices in the given processor architecture).

B.1.2 contains some general considerations that should be addressed when a compiler 
vendor implements the iohw functionality.
The middle layer contains the user’s specification of the symbolic hardware register 
names used by the source code in the top layer.  This layer associates the symbolic 
names with access-specifications for a specific hardware register on the given 
platform.  The syntax notation and access- specification parameters used in this layer 
are specific to the platform architecture and are defined by the compiler vendor in the 
iohw header.  The user must update these hardware register access- specifications
when the hardware driver source code is ported to a different platform.



Technical Report on C++ Performance (DRAFT) 02-0017/N1359

Page 80 of 142

B.1.3 proposes a generic C++ syntax for hardware register access- specifications.  
Using a general syntax in this layer may extend portability to include user’s hardware 
register specifications, so it can be used with different compiler implementations for 
the same platform.

5.1.3.1 The module set
A typical device driver operates with a minimum of three modules, one for each of the 
abstraction layers.  For example, it is convenient to locate all hardware register name 
definitions in a separate header file (called ”iohw_ta.h” in this example):

1. Device driver module

� The I/O driver source code
� Portable across compilers and platforms
� Includes <iohw.h> and "iohw_ta.h"

2. Interface header <iohw.h>

� Defines I/O functions and access methods
� Typically specific for a given compiler
� Implemented by the compiler vendor

3. "iohw_ta.h"
� Defines symbolic hardware register names and their corresponding access 

methods
� Specific to the execution environment
� Implemented and maintained by the programmer

And might be used as follows (in a common subset of C and C++):
#include <iohw.h>
#include "iohw_ta.h"   // my HW register definitions for target

unsigned char mybuf[10];
//...
iowr(MYPORT1, 0x8);                  // write single register
for (int i = 0; i < 10; i++)
    mybuf[i] = iordbuf(MYPORT2, i);  // read register array

In C++:
#include <hardware>
struct UCharBuf {
    unsigned char buffer[10];
};
#include "iohw_ta.h" // my HW register definitions for target

// contains:
//    definitions of MyPort1T, MyPort2T, MyPort3T
//    the value type for MyPort3T is UCharBuf

Editor’s Note: Is the value type for MyPort2T not unsigned char[]?  It is subscripted 
in the following example.

//    the value type for MyPort1T and MyPort2T is
//        unsigned char
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unsigned char mybuf[10];
using namespace std::hardware;
//...
MyPort1T myPort1;  // define HW register object
myPort1 = 0x08;    // write single register

MyPort2T myPort2;
for (int i = 0; i < 10; i++)
    mybuf[i] = myPort2[i];  // read register array bytewise

MyPort3T myPort3;
UCharBuf mybufBlock;
mybufBlock = myPort3;       // reads the whole register array at once

The programmer only sees the characteristics of the hardware register itself.  The 
underlying platform, bus architecture, and compiler implementation do not matter 
during driver programming.  The underlying system hardware may later be changed 
without modifications to the hardware device driver source code being necessary.

5.1.4 Hardware Register Characteristics
The principle behind iohw is that all hardware register characteristics should be 
visible to the driver source code, while all platform specific characteristics are 
encapsulated by the header files and the underlying iohw implementation.
Hardware registers often behave differently from the traditional memory model.  They 
may be “read-only”, “write-only” or “read-modify-write”, often read and write 
operations are only allowed once for each event, etc.

All such hardware register specific characteristics should be visible at the driver 
source code level and should not be hidden by the iohw implementation.

5.1.5 The Most Basic Hardware Access Operations
The most common operations on hardware registers are READ and WRITE.
Bit-set, bit-clear and bit-invert of individual bits in an iohw register are also 
commonly used operations.  Many processors have special machine instructions for 
doing these.

For the convenience of the programmer, and in order to promote good compiler 
optimisation for bit operations, the basic logical operations OR, AND and XOR are 
defined by iohw in addition to READ and WRITE.
All other arithmetic and logical operations used by the driver source code can be built 
on top of these few basic operations.
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5.1.6 The access-specification
The access- specifications defined in iohw are used only as parameters in the functions 
for defining hardware register access.

The access- specification parameter represents or references a complete description of 
how the hardware register should be addressed in the given hardware platform.  It is 
an abstract data type with a well-defined behaviour25.

The specification method and the implementation of access- specifications are 
processor and platform specific.

In general, an access-specification will specify at least the following characteristics:
● Logical register size (mapping to a data type)
● Access limitations (read-only, write-only)
● Bus address for register

Other access characteristics typically specified via the access-specification:
● Processor bus (if more than one)
● Access method (if more than one)
● Hardware register endianness (if register width is larger than the device bus 

width)
● Interleave factor for hardware register buffers (if device bus width is smaller 

than the processor bus width)

● User supplied access driver functions

The definition of a hardware register object may or may not require a memory 
instantiation, depending on how a compiler vendor has chosen to implement access-
specifications.  For maximum performance, this could be a simple definition based on 
compiler specific address range and type qualifiers, in which case no instantiation of 
an access-specification object would be needed in data memory.
See also Appendix B: for further details and implementation considerations.

5.1.7 The access-base-specification
Often hardware registers are only portable between platforms as a single physical 
entity26.  In such cases it is often convenient to make all the hardware register access-
specification definitions relative to a single access-base-specification common for all 
registers in the physical entity.

When defining one or more registers as based, the access- specification for the 
individual registers must at least identify the access-base-specification plus a logical 
offset relative to the access- base-specification. The properties of the logical offset  are 
given in the context of the access-base-specification.

25 This use of an abstract data type is similar to the philosophy behind the well-known FILE type in C.  Some general properties 
for FILE and streams are defined in the Standard, but the Standard deliberately avoids describing how the underlying file system 
should be implemented.
26 For instance hardware registers in a chip, an FPGA cell or a plug-in board
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The use of based register definitions should be encapsulated in the two lower layers of 
the abstract model for hardware register access, and should therefore not be invisible 
in the user driver source code.

However, if the access base initialisation is completed at run-time it must be possible 
to define in the user driver code when such initialisation should or may take place.  
The iohw interface defines three functions for initialisation, assignment, and 
eventually release of access bases.  The access-base-specification defined in the 
header <iohw.h> are used only as parameters in these functions.

5.1.7.1 Combined access-specification and access-base-specification
characteristics

When based register definitions are used, the hardware register access characteristics 
are given by the combined characteristics of access- specification and access-base-
specification. The total access characteristics are divided in such a way that 
characteristics given by the hardware register are defined by access- specification and 
characteristics related to the processor and platform are defined by the access-base-
specification.
With based register definitions, an access-specification definition will generally 
specify at least the following hardware register and hardware device characteristics:

● Logical register size (mapping to a data type)
● Logical offset relative to access-base-specification
● Access limitations (read-only, write-only)
● Hardware register endian (if register width is larger than the device bus width)
● Interleave factor for hardware register buffers (if device bus width is smaller 

than the bus width defined by access- base-specification)
The access- base-specification will in general define the following platform related 
characteristics:

● Bus address for access-base-specification
● Processor bus (if more than one)
● Access method (if more than one)
● Platform specific access driver functions (if any)

5.1.7.2 Virtual addressing
A property of access bases is that they create their own virtual addressing range, and 
that all hardware register access must take place in a context given by the access base.

This concept give a high degree of freedom and flexibility when implementing the 
two lower layers of the abstract model for hardware register access.

The access base can be a simple pointer, in which case the access base context is 
inherited from the underlying platform, or the access base can be implemented by use 
of access functions, in which case any virtual access base context can be created.

An implementation can elaborate this further, for instance, by enabling use of nested 
access functions.  One perspective of such a feature is that the iohw interface itself can 
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be used by the device driver programmer to create access functions, which are then 
again used as the access base for access- specifications in other parts of the user source 
code.

Note (JK): These concepts will be discussed further in a future annex.

5.2 The C Interface <iohw.h>
The iohw C-style interface is a copy of the iohw C interface from Technical Report 
ISO/IEC WDTR 18037 “Extensions for the programming language C to support 
embedded processors,” included here as a convenience to the reader.  If ever this copy 
differs from the original in WDTR 18037, that original takes precedence.

The header <iohw.h> declares several function-like macros which together create a 
data type-independent interface for basic hardware register addressing.

The iohw interface is here described in terms of function like macros.  An 
implementation is allowed to implement the interface by use of inline, template or 
intrinsic functions, and still be conforming, as long as the interface seen from the user 
source remains the same.

5.2.1 Function-Like Macros for Single Register Access
Synopsis

#include <iohw.h>

iord(  access_spec )
iowr(  access_spec, value )
ioor(  access_spec, value )
ioand( access_spec, value )
ioxor( access_spec, value )

Description
These names map an iohw register operation to an underlying (platform specific) 
implementation which provides access to the hardware register identified by 
access_spec, and perform the basic operations READ, WRITE, OR, AND or XOR as 
identified by the function name on this register.

The data type (the hardware register size) for value parameters and the value returned 
by iord is defined by the access_spec definition for the given register.  The 
function-like macros iowr, ioor, ioand and ioxor do not return a value.
It is a requirement that a given hardware register is addressed exactly once during a 
READ or WRITE operation and exactly twice27 during the read-modify-write operations 
OR, AND or XOR.

27 As seen from the device register, this requirement is independent of whether the read-modify-write operation is made by a 
single read-modify-write processor instruction or by seperate read and write processor instructions.
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5.2.2 Function-Like Macros for Register Buffer Access
Synopsis

#include <iohw.h>

iordbuf(  access_spec, index )
iowrbuf(  access_spec, index, value )
ioorbuf(  access_spec, index, value )
ioandbuf( access_spec, index, value )
ioxorbuf( access_spec, index, value )

Description
These function-like macros map an iohw register buffer operation to an underlying 
(platform specific) implementation which provides access to the hardware register 
buffer identified by access_spec, and perform the basic operations READ, WRITE, OR, 
AND or XOR as identified by the function named on this register.
The data type (the hardware register size) for value parameters and the value returned 
by iordbuf is defined by the access_spec definition for the given hardware register.  
iowrbuf, ioorbuf, ioandbuf and ioxorbuf do not return a value.
The index parameter is an offset in the register buffer (or register array) starting from 
the hardware register location specified by access_spec, where element 0 is the first 
element located at the address defined by access_spec, and element n+1 is located at 
a higher address than element n.
It should be noted that the index parameter is the offset in the hardware register 
buffer, not the processor address offset.  Conversion from a logical index to a physical 
address requires that interleave calculations are performed by the underlying 
implementation.  This is discussed further in B.1.2.2.

It is a requirement that a given hardware register is addressed exactly once during a 
READ or WRITE operation and exactly twice during the read-modify-write operations 
OR, AND or XOR.

5.2.3 Function-Like Macros for access-base-specification
Initialisation

Synopsis
#include <iohw.h>

io_abs_init( access_base_spec )
io_abs_release( access_base_spec )

Description
The io_abs_init function-like macro maps to an underlying (platform specific) 
implementation, which provides any access- base-specification initialisation before 
performing any other operation on the hardware register (or set of hardware registers) 
identified by access_base_spec.  A call to io_abs_init should be placed in the 
driver source code so it is invoked exactly once before any other operations on the 
related registers are performed.  io_abs_init does not return a value.
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The io_abs_release function-like macro maps to an underlying (platform specific) 
implementation which releases any resources obtained by a previous call to 
io_abs_init for the same access-base-specification.  A call to io_abs_release
should be placed in the driver source code so it is invoked exactly once after all 
operations on the related registers have been completed.  io_abs_release does not 
return a value.

Example
In an implementation for a hosted environment, the call to io_abs_init is used to 
identify the point in an execution sequence where the underlying access method 
should obtain, or have obtained, a handle from the operating system.  This handle is 
used in all following access operations on hardware registers based on this access-
base-specification.  The call to io_abs_release identifies the point in an execution 
sequence where the handle can be returned to the operating system.

5.2.4 Functions-Like Macros for access-base-specification Re-
Mapping

Synopsis
#include <iohw.h>

io_abs_remap( access_base_spec dest, access_base_spec src )

Description
This function-like macro maps to an underlying (platform specific) implementation, 
which initialises the access information of the destination access_base_spec with 
access information taken from the source access_base_spec.  The two parameters 
must have compatible access-base-specification types.  The parameter dest must be 
an lvalue.  The parameter src must be an rvalue.  io_abs_remap does not return a 
value.
io_abs_remap can only be used with systems and implementations where the address 
can be initialised at run-time.  If the src and dest access-base-specifications are 
incompatible, or the src access-base-specification cannot be initialised at run-time, a 
compile-time diagnostic is required.

Example
This example illustrates some simple cases of the underlying semantics for 
io_abs_remap:

// Some access bases
#define AddrA    ((uint8_t *)0x23456)

uint8_t*  get_os_base(void);

uint8_t*  base_a;
uint8_t*  base_b;

// Some implementation specific or user specific access base function
void set_my_base(uint8_t* base);
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// Examples of some underlying functionality of io_abs_remap(...)

// The following statements could each be the resulting code after
// expansion of io_abs_remap(...)
base_a = AddrA;              // Initialise with a constant access base
base_b = get_os_base();      // Initialise via an access base function
base_a = base_b;             // Initialise from a variable base

set_my_base(AddrA);          // Initialise with a constant access base
set_my_base(get_os_base());  // Initialise via an access base function
set_my_base(base_a);         // Initialise from a variable access base

// Illegal access base definitions result in errors at compile-time.
AddrA = base_a;              // Error, left operand must be an lvalue
get_os_base() = base_b;      // Error, left operand must be an lvalue

Example
A typical use for io_abs_remap and access_base_spec is when a set of driver 
functions for a given hardware device type are used with multiple hardware instances 
of the same device.

#include <iohw.h>
#include <iohw_ta.h>  // MYDEV_CFG and MYDEV_DATA are defined

// relative to a dynamic MYDEV_BASE

// Portable driver function
uint8_t my_device_driver(void)
{
    iowr(MYDEV_CFG, 0x33);
    return iord(MYDEV_DATA);
}

// Users driver application
uint8_t  d1;
uint8_t  d2;

// Read from both devices
io_abs_remap(MYDEV_BASE, DEV1); // Select device 1
d1 = my_device_driver();
io_abs_remap(MYDEV_BASE, DEV2); // Select device 2
d2 = my_device_driver();

Use of io_abs_remap and access- base-specifications often provide a faster 
alternative than passing an access_base_spec as a function parameter.
Another advantage by using io_abs_remap is that the driver function itself for a 
device can be written without any prior knowledge about whether the driver will be 
used with only a single device (address defined at compile-time) or with multiple 
devices (addresses defined at run-time).  This can be selected later at a higher level.  
In both cases the same source code can generate machine code which have maximum 
performance.
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5.2.5 Information Required by the Interface User
In order to enable a driver library user to define the access- specification and access-
base-specifications for a particular platform, a portable driver library based on the 
iohw interface should (in addition to the library source code) provide at least the 
following information:

● All symbolic names for the device registers used by the library

● Device and register type information for all symbolic names:

� Logical bit width of the device register
� The register type – single register or a register buffer
� Bit width of the device data bus
� Relative address offset of registers in the device (if the device contains 

more than one register)
� Endian of the device (if the register has a width larger than the device bus)

● If run-time initialization of dynamic addresses is required, i.e. io_abs_remap is 
used by the library

5.3 The C++ Interface <hardware>
The programming model behind these definitions is described in 5.1.3.  The header 
<hardware> defines an interface for two layers of that model, the top layer for the 
portable source code and the middle layer for the device register definitions.  This is 
notably different to the C interface described in 5.2.

The header <hardware> declares several types, which together provide a data-type-
independent interface for basic I/O-Hardware addressing.
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Header <hardware> synopsis:
// proposed definition of <hardware>
// this is definition only
namespace std {
    namespace hardware {
        #include "stdint.h"

        struct hw_base { ... };

// required access types
        template <typename                        ValueType,
                  typename hw_base::access_mode   mode,
                  typename hw_base::address_type  address,
                  typename hw_base::device_bus    devWidth,
                  typename hw_base::byte_order    endian,
                  typename hw_base::processor_bus nativeWidth>
        class mm_direct_address;

// [others still missing]
        template <typename ac_type>
        class register_access;
    } // namespace hardware
} // namespace std

5.3.1 The class-template register_access
Note (JK/DV): Introductory text needed

Synopsis
template <typename ac_type>
class register_access
{
private:
    struct _ref
    {
        implementation defined constructor(s)
        operator value_type() const;
        void operator =  (value_type val);
        void operator |= (value_type val);
        void operator &= (value_type val);
        void operator ^= (value_type val);
    };

public:
    typedef typename ac_type::value_type value_type;

    operator value_type() const;
    void operator =  (value_type val);
    void operator |= (value_type val);
    void operator &= (value_type val);

 void operator ^= (value_type val);

    _ref operator[](size_t index;
    _ref operator[](ptrdiff_t index;
};
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Description
struct _ref;

● Provides the same overloaded operators as register_access to allow the 
same operations28.

class register_access<...>
● Provides direct access to hardware registers.  This defines the interface for the 

top layer as described in 5.1.3.
typename ac_type

● The argument to the template-parameter ac_type must be an instantiation of 
an access-specification template type (or a plain class) provided by the 
implementation.

ac_type::value_type value_type
● Names the value_type of the access-specification.

operator value_type() const
● Provides read access to the hardware register.

void operator = (value_type val)
● Writes the value_type argument val to the hardware register.

void operator |= (value_type val)
● Bitwise ors the hardware register with the value_type argument val.

void operator &= (value_type val)
● Bitwise ands the hardware register with the value_type argument val.

void operator ^= (value_type val)
● Bitwise xors the hardware register with the value_type argument val.

Note: The return types for all assignment operators is void to prevent assignment 
chaining that could inadvertently cause considerable harm with device registers.
_ref operator[](size_t index)
_ref operator[](ptrdiff_t index)

● Returns the equivalent of a reference to the location specified by index inside 
of the device register.  The return value can be used like a register_access
object, i.e. it can be written, read, and the bitwise or, and and xor can be 
applied to it.  The subscript operator is explicitly provided for signed and 
unsigned indices29.

Note (LG): We should also provide a function interface.

28 Note: The name _ref is here given for illustration purposes only.  The actual implementation may use a different name.  This 
name shall not be used directly by the user.
29 If value_type is any kind of pointer, overload resolution can result in an unexpected call to the conversion operator, 
followed by the selection of the built-in subscript operator rather than the member subscript operator provided.
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5.3.2 Header "stdint.h"
The header <stdint.h> is specified by C99 (IS 9899-1999), and is not part of the 
C++ IS.  Instead, the implementation defined header "stdint.h" included by 
<hardware> introduces the fixed size integer types described by <stdint.h> into 
namespace std::hardware.
No names are introduced into global namespace.

5.3.3 The struct hw_base
Synopsis

namespace std {
    namespace hardware {
        struct hw_base
        {
           enum access_mode   {random, read_write, write, read};
           enum device_bus    {device8, device16, device32, device64};
           enum byte_order    {msb_low, msb_high};
           enum processor_bus {bus8, bus16, bus32, bus64};

// only identifiers should be present that are supported
           // by the underlying implementation -- Diagnostic required

           typedef implementation defined address_type;
        };
    } // namespace hardware
} // namespace std

Description
struct hw_base

● Provides the names for the supported hardware characteristics.  Only those 
names that are supported by the hardware shall be present.

enum access_mode {random, read_write, write, read};
● Defines the possible modes for accessing a device register.

enum device_bus {device8, device16, device32, device64};
● Defines the names for the width of the hardware register device bus as seen 

from the processor.
enum byte_order {msb_low, msb_high};

● Defines the names for the endianness of the device register.
enum processor_bus {bus8, bus16, bus32, bus64};

● Defines the names for the width of the processor bus.
address_type

● Is an integral type specified by the application to hold a hardware address.

An implementation may define additional names and types in hw_base.
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5.3.4 Common Specifications for access-specification types
typename ValueType

● All access-specification template types have at least a ValueType parameter.  
The argument for this parameter shall be an Assignable and 
CopyConstructable type.

● The arguments for ValueType are not restricted to integral values. [e.g. it 
makes perfect sense for ValueType to be double or long double when 
accessing an external floating-point co-processor.  It might even be useful 
sometimes to have a user-defined struct as ValueType.]

● The memory location of an object of the ValueType argument shall be 
readable and writeable (as required by the access operations) freely by the 
implementation of this interface.  [Note: this requirement essentially disallows 
other hardware registers or types.  Also, their value might be changed through 
the implementation by direct memory access instead of any (possibly
overloaded) assignment operators]

● Most of the access- specification types have a common set of template-
parameters, which are specified as follows:

hw_base::access_mode mode
● Defines the access mode of the device register.

hw_base::device_bus devWidth
● Defines the width of the device to be accessed as seen by the processor.

● However, sizeof(ValueType) must be a whole multiple of devWidth.
hw_base::byte_order endian

● Defines whether the device attached to the bus is to be accessed as little-
endian or big-endian.

hw_base::processor_bus nativeWidth
● Defines the width of the processor bus.

● All access-specification types may have additional template-parameters 
specified by the implementation.  The implementation may also define default 
arguments for some of the template-parameters.  [e.g. on segmented 
architectures there might be an additional segment parameter]

5.3.5 Access Methods
Note (JK/DV): Introductory text needed.
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5.3.5.1 The template<...> struct mm_direct_address
Synopsis

// required access types
template <typename ValueType,
          hw_base::access_mode    mode,
          hw_base::address_type   address,
          hw_base::device_bus     devWidth,
          hw_base::byte_order     endian,
          hw_base::processor_bus  nativeWidth>
struct mm_direct_address
{
    typedef ValueType value_type;

    template <hw_base::address_type other_address> struct rebind
    {
        typedef mm_direct_address<ValueType,
                                  mode,
                                  other_address,

        devWidth,
                                  endian,
                                  nativeWidth> other;
    };
};

Description
mm_direct_address

● Defines the access- specification type for device registers for which the address 
is known at compile-time and the registers are directly mapped to the memory 
bus.

Editor’s Note: Terminology of address is confused; referred to variously as 
memory-address, hardware-address and register-address.

hw_base::address_type address
● The argument address shall be the actual address of the device register to be 

accessed by this access- specification type.
typedef ValueType value_type;

● Holds the ValueType template-parameter.
struct rebind<...>::other

● This is a type with the same hardware characteristics but a different device 
register address.
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Appendix A: Guidelines for Using the 
iohw Interfaces

A.1 Usage Introduction
The design of the C++ iohw interface follows two lines of separation between:

● The definition of access-specifications and device driver code
● What is known at compile-time and what is only known at run-time

Unfortunately, these two lines of separation are neither orthogonal nor identical, for 
example, the base address for base/offset addressing is only known at run-time, but 
belongs to the access- specification.
As C++ is a typed language, the differences for the interface are in type, and therefore 
the main separation line for the interface definition itself is between what is statically 
known at compile-time (this goes as template arguments into types) and what is only 
known at run-time (this goes as function arguments or operator operands into the 
interface of register_access).

A.2 Using access-specifications
access-specifications specify how a given device register can be accessed.  As such, 
they are mainly implementation defined entities, as these access details vary widely 
over different platforms.  But there are some aspects that access-specifications have in 
common:

● Templates with at least ValueType as template-parameter
● Exposition of this ValueType argument as value_type typedef

● A “template typedef” rebind to provide a simple way to define access-
specifications that differ from an existing one only in a specific aspect 
(typically the hardware address)

Also, on platforms where they are available, the names of some access-specification
templates are pre-defined:

● mm_direct_address for memory-mapped addresses that are known at 
compile-time.
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● This has at least three template arguments: ValueType, mode (read, write, etc.) 
and address.  So on some platforms the user should be able to define a 
specific hardware port like this:

typedef mm_direct_address<uint16_t,
                          hw_base::read,
                          0x1234,
                          ...>  InPort1;

● dynamic_address for memory-mapped addresses that are only known at run-
time

This assumes that the hardware register is 16-bits, and all other characteristics are pre-
defined by the platform’s implementation.  But on most implementations, the user has 
to specify additional template-parameters.  But as already said, these template-
parameters are platform dependent and can vary widely for more exotic platforms.  
Even the address parameter might vary; for example, on a segmented addressing 
architecture there might be two parameters for a segment and an offset address instead 
of a single address parameter.

If there already exists a quite elaborate type definition ComplexPortA for a specific 
device register with lots of template arguments and now another one is required with 
the same characteristics that differs only in its hardware address, this can be done with 
the rebind template:

typedef ComplexPortA::rebind<0x9876>::other ComplexPortB;

A.2.1 Using access-specifications with Dynamic Information
Some access-specifications may require additional information that is not available at 
compile-time.  For those access-specifications, the access- specification template 
defines an additional parameter for the type of the dynamic data.  The properties of 
this type are defined by the implementation, but the type itself is provided by the user 
to allow user-control of the initialization.

For example. an implementation might provide a dynamic_address for which the 
dynamic data type must provide a public data member address of type unsigned 
long.  Then the user can provide a corresponding class:

struct DynAddressPortDA
{
    DynAddressPortDA() : address(globalBase+0x120) {}

    unsigned long address;
};
typedef dynamic_address<uint32_t,
                        hw_base::random,
                        DynAddressPortDA>  PortDA_t;

Here, the initialization of the dynamic data is provided by some global variable.
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As another example, on a different platform an implementation might require for the 
dynamic data two public data members segment and offset, both of type 
unsigned short.  A user class may look like this:

struct DynAddressPortDB
{
    DynAddressPortDB(unsigned short off)
        : segment(0xF0), offset(off)
    {}

    unsigned short segment;
    unsigned short offset;
};
typedef dynamic_address<uint32_t,
                        hw_base::random,
                        DynAddressPortDB> PortDB_t;

Here, the constructor requires an argument.  Therefore some initialization code must 
provide that argument.  But the mechanics of the initialization are always left to the 
user to choose the best fitting method.

A.3 Hardware Access
All hardware access is provided through the class-template register_access.  For 
access-specifications that require no dynamic information the respective 
register_access objects contain no data and therefore are optimized completely out 
of existence by most compilers.  So, a typical usage might be:

// defined access-specifications with ValueType = uint8_t:
//   InPort, OutPort and ControlPort
register_access<InPort>  ip;
register_access<OutPort> op;
register_access<ControlPort> ctl_p;

unint8_t tmp = ip;     // read from InPort, uses
// register_access::operator value_type();

op = 0x12;             // write to OutPort, uses
// register_access::operator=(value_type);

ctl_p |= 0x34;         // set bits 5, 4 and 2 in ControlPort

As the register_access object is empty, there is no real need to define these 
objects, but it is also possible to use temporary objects created on the fly.  The 
example above would then become:

// defined access-specifications with ValueType = uint8_t:
//   InPort, OutPort and ControlPort
typedef register_access<InPort> InP;
typedef register_access<OutPort> OutP;
typedef register_access<ControlPort> CtlP;

uint8_t tmp = InP();   // read from InPort, uses
// register_access::operator value_type();

OutP() = 0x12;         // write to OutPort, uses
// register_access::operator=(value_type);

CtlP() |= 0x34;        // set bits 5, 4 and 2 in ControlPort

But this is a rather unnatural syntax and is generally not necessary as compilers are 
smart enough to optimise away the objects from the first example.
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A.3.1 Indexed Access
register_access allows not only for access to single registers, but also for register 
blocks.  The ValueType parameter of the access-specification denotes in this case the 
type of a single register and the address is the base address (index 0).  The registers in 
the block can then be addressed through the index (subscript) operator:

// assume register block PortBuffer with random access
register_access<PortBuffer> portBuf;
uint8_t buf[sz];

portBuf[0] &= 0x03;
portBuf[1] = sz – 2;

for (int i=2; i != sz; ++i)
    buf[i] = portBuf[i];

If a full register block is always to be accessed, a respective ValueType can be 
defined:

struct Buffer32 { uint8_t data[32]; };
typedef mm_direct_address<Buffer32,
                          hw_base::random,
                          0x35800,
                          ...>  XYBlock;
register_access<XYBlock> blockBuf;
Buffer32 tmpBlock;

tmpBlock = blockBuf;   // read whole block at once

The binary layout of the ValueType must match the register block, which is normally 
only guaranteed for PODs.  But if the register block has a complex layout (e.g. mix of 
different data types), the ValueType may be a correspondingly complex struct.

A.3.2 Initialisation of register_access
For static access-specifications that are fully specified at compile-time 
register_access provides only a default constructor (in these cases there is nothing 
to construct).  But if the access- specification contains dynamic data, this must be 
initialized at run-time.  For those cases, register_access provides only a 
constructor that takes the dynamic data type of the access- specification as parameter.  
How this dynamic type is initialized is under control of the user, as explained above.  
So, regarding the examples from above, the initialization can either be:

register_access<PortDA_t> portDA=DynAddressPortDA();

or
register_access<PortDB_t> portDB=DynAddressPortDB(portDBOffset);
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Appendix B: Implementing the iohw
Interfaces

B.1 General Implementation Considerations

B.1.1 Purpose
iohw defines a standardised function syntax for basic hardware addressing.  The 
interface can either be provided by a library vendor or by the compiler vendor.  If it is 
provided by the compiler vendor, it can contain special “compiler magic” that may be 
necessary to access special hardware with special addressing needs (or it might just 
provide better performance).

While a standardised function syntax for basic hardware addressing provides a simple, 
easy-to-use method for a programmer to write portable and hardware-platform-
independent driver code, the iohw header itself may require careful consideration to 
achieve an efficient implementation.

This section gives some guidelines for implementers on how to implement iohw in a 
relatively straightforward manner given a specific processor and bus architecture.

B.1.1.1 Recommended steps
Briefly, the recommended steps for implementing the iohw headers are:

• Get an overview of all the possible and relevant ways the hardware register is 
typically connected with the given bus hardware architectures, and get an 
overview of the basic software methods typically used to address such 
hardware registers.

• Define a number of functions, macros and access-specifications which support 
the relevant hardware access methods for the intended compiler market.

• Provide a way to select the right access function at compile-time and generate 
the right machine code based on the access-specification type or the access-
specification value.

B.1.1.2 Compiler considerations
In practice, an implementation will often require that very different machine code is 
generated for different hardware access cases.  Furthermore, with some processor 
architectures, hardware register access will require the generation of special machine 
instructions not typically used when generating code for the traditional C or C++ 
memory model.

Selection between different code generation alternatives must be determined solely 
from the access- specification declaration for each hardware register.  Whenever 
possible, this access method selection should be implemented such that it may be 
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determined entirely at compile-time, in order to avoid any run-time or machine code 
overhead.

For a compiler vendor, selection between code generation alternatives can always be 
implemented by supporting different intrinsic access-specification types and 
keywords designed specially for the given processor architecture, in addition to the 
Standard types and keywords defined by the language.

However, with a conforming C++ compiler, an efficient, all-round implementation of  
both the C and C++ interface headers can usually be achieved using the C++ template 
functionality (see also §5.2 and §B.1.3).  A template-based solution allows the 
number of compiler specific intrinsic hardware access types or intrinsic hardware 
access functions to be minimized or even removed completely, depending on the 
processor architecture.

For compilers not supporting templates (such as C compilers) other implementation 
methods must be used.  In any case, at least the most basic iohw functionality can be 
implemented efficiently using a mixture of macros, inline functions and intrinsic 
types or functions.

For many architectures, fully featured, zero-overhead implementations of iohw can be 
done using templates.  An approach to doing this is discussed in 5.2.5. .  Nevertheless, 
fully featured iohw implementations for several architectures will usually require 
direct compiler support.

B.1.2 Overview of Hardware Device Connection Options
The various ways of connecting an external device’s register to processor hardware 
are determined primarily by combinations of the following three hardware 
characteristics:

• The bit width of the logical device register
• The bit width of the data-bus of the device
• The bit width of the processor-bus

B.1.2.1 Multi-addressing and device register endian
If the width of the logical device register is greater than the width of the device data 
bus, a hardware access operation will require multiple consecutive addressing 
operations.

The device register endianness information describes whether the most significant 
byte (MSB) or the least significant byte (LSB) byte of the logical I/O register is 
located at the lowest processor bus address.
[Note: while this section illustrates architectures that use 8-bit bytes and words 
widths that are factorable by 8, it is not intended to imply that these are the only 
possible architectures.]
[Note also: that the device register endianness is not coupled to the endianness of the 
underlying processor hardware architecture.]
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Table B-1: Logical I/O register / I/O device addressing overview30

device bus width

8-bit device bus 16-bit device bus 32-bit device bus 64-bit device bus
Logical register 

width
LSB-MSB MSB-LSB LSB-MSB MSB-LSB LSB-MSB MSB-LSB LSB-MSB MSB-LSB

8-bit register Direct n/a n/a n/a

16-bit register r8{0-1} r8{1-0} Direct n/a n/a

32-bit register r8{0-3} r8{3-0} r16{0-1} r16{1-0} Direct n/a

64-bit register r8{0-7} r8{7-0} r16{0-3} r16{3-0} r32{0-1} r32{1-0} Direct
(For byte-aligned address ranges)

B.1.2.2 Address interleave
If the size of the device data bus is less than the size of the processor data bus, buffer 
register addressing will require the use of address interleave.
For example:

If the processor architecture has a byte-aligned addressing range with a 32-bit 
processor data bus, and an 8-bit device is connected to the 32-bit data bus, then three 
adjacent registers in the device will have the processor addresses:

<addr + 0>, <addr + 4>, <addr + 8>

This can also be written as 
<addr + interleave*0>, <addr + interleave*1>, <addr + interleave*2>

where interleave = 4.

Table B-2: Interleave overview: (bus to bus interleave relationship)

Processor bus width
Device bus width

8-bit bus 16-bit bus 32-bit bus 64-bit bus

8-bit device bus interleave 1 interleave 2 interleave 4 interleave 8

16-bit device bus n/a interleave 2 interleave 4 interleave 8

32-bit device bus n/a n/a interleave 4 interleave 8

64-bit device bus n/a n/a n/a interleave 8
(For byte-aligned address ranges)

30 Note, that this table describes some common bus and register widths for I/O devices.  A given hardware platform may use 
other register and bus widths.
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B.1.2.3 Device connection overview
The two tables above when combined, show all relevant cases for how device 
registers can be connected to a given processor hardware bus, thus:

Table B-3: Interleave between adjacent I/O registers in buffer

Device bus Processor data bus width

Width=8 Width=16 Width=32 Width=64Register
width Width LSB

MSB

No. 
Oper-
ations. size 1 size 2 size 4 size 8

8-bit 8-bit n/a 1 1 2 4 8

LSB 2 2 4 8 16
8-bit

MSB 2 2 4 8 1616-bit

16-bit n/a 1 n/a 2 4 8

LSB 4 4 8 16 32
8-bit

MSB 4 4 8 16 32

LSB 2 n/a 4 8 16
16-bit

MSB 2 n/a 4 8 16

32-bit

32-bit n/a 1 n/a n/a 4 8

MSB 8 8 16 32 64
8-bit

LSB 8 8 16 32 64

LSB 4 n/a 8 16 32
16-bit

MSB 4 n/a 8 16 32

LSB 2 n/a n/a 8 16
32-bit

MSB 2 n/a n/a 8 16

64-bit

64-bit n/a 1 n/a n/a n/a 8
(For byte-aligned address ranges)

B.1.2.4 Generic buffer index
The interleave distance between two logically adjacent registers in a device register 
array can be calculated from31:

• The size of the logical register in bytes
• The processor data bus width in bytes
• The device data bus width in bytes

31 For systems with byte-aligned addressing.
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Conversion from register index to address offset can be calculated using the following 
general formula:

Address_offset = index * 
                  sizeof( logical_IO_register ) * 
                   sizeof( processor_data_bus ) / 
                    sizeof( device_data_bus )

Assumptions:
● Bytes are 8-bits wide
● Address range is byte-aligned
● Data bus widths are a whole number of bytes
● The width of the logical_IO_register is greater than or equal to the width 

of the device_data_bus
● The width of the device_data_bus is less than or equal to the width of the 

processor_data_bus

B.1.3 Implementing access-specifications for Different Device 
Addressing Methods

A processor may have more than one addressing range32.  For each processor 
addressing range an implementor should consider the following typical addressing 
methods:

• Address is defined at compile-time:
The address is a constant.  This is the simplest case and also the most common 
case with smaller architectures.

• Base address initialised at run-time:
Variable base-address + constant-offset i.e. the access-specification must 
contain an address pair (address of base register + offset of address).

The user-defined base-address is normally initialised at run-time (by some 
platform-dependent part of the program).  This also enables a set of driver 
functions to be used with multiple instances of the same device type.

• Indexed bus addressing:
Also called orthogonal or pseudo-bus addressing.  This is a common way to 
connect a large number of device registers to a bus, while still occupying only 
a few addresses in the processor address space.

This is how it works: first the index-address (or pseudo-address) of the device 
register is written to an address bus register located at a given processor 
address.  Then the data read/write operation on the pseudo-bus is done via the 
following processor address, i.e. the access-specification must contain an 
address pair (the processor-address of the indexed bus, and the pseudo-bus
address (or index) of the device register itself).  Whenever possible atomic 

32 Processors with a single addressing range use only memory mapped I/O.
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operations should be applied to indexed bus addressing in order to prevent an 
interrupt occurring between setting up the address and the data operation

This access method also makes it particularly easy for a user to connect 
common devices that have a multiplexed address/data bus, to a processor 
platform with non-multiplexed busses, using a minimum amount of glue logic.  
The driver source code for such a device is then automatically made portable 
to both types of bus architecture.

• Access via user-defined access driver functions:
These are typically used with larger platforms and with small single-chip 
processors (e.g. to emulate an external bus).  In this case, the access-
specification must contain pointers or references to access functions.

The access driver solution makes it possible to connect a given device driver source 
library to any kind of platform hardware and platform software using the appropriate 
platform-specific interface functions.

In general, an implementation should always support the simplest addressing case, 
whether it is the constant-address or base-address method that is used will depend on 
the processor architecture.  Apart from this, an implementer is free to add any 
additional cases required to satisfy a given domain.

Because of the different number of parameters required and the parameter ranges used 
in an access-specification, the C++ interface requires the definition of different 
access-specification templates for each of the different addressing methods.
For the C-style interface, it is often convenient for the implementor of this (the 
<iohw.h> middle layer) to provide definitions for each of the different addressing 
methods using access-specification templates too, therefore implementing the C 
interface(§Appendix C:) on top of the C++ interface.  This allows the implementor to 
share a common implementation between the C and C++ interfaces, while also 
providing greater type safety than the macro-based pure C implementation can 
provide.

B.1.3.1 Bus connection parameters
The possible device register to bus connections can be completely specified using 
only two parameters:

● A bus parameter, which specifies the access relationships between the device 
data bus and the processor data bus

● A multi-addressing and endian parameter, which specifies the access 
relationships between the logical device register and the device data bus

For example, a possible definition of general device register connection types might 
be [Note (JK/DV): Change example to use C++ implementation]:

enum bus_t    { bw8 = 1, bw16 = 2, bw32 = 4, bw64 = 8 };
enum device_t { device8,  device16,  device16l, device16h,
                device32, device32l, device32h, device64 };
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For another example, an implementation for a given processor architecture may only 
support a subset of the device register connection types.  Possible device register 
connections with the processor H8/300H (supporting only an 8-bit and a 16-bit 
processor data bus) [Note (JK/DV): Change example to use C++ implementation]:

enum bus_t    { bw8 = 1, bw16 = 2 };
enum device_t { device8, device16, device16l, device16h };

B.1.3.2 Detection of read / write violations in device registers
The access-specifications can specify a limitation parameter, which makes it possible 
to detect illegal use of a device register at compile-time.

The minimal parameter set for a read / write limitation specification would be:

• Defined as Read-Modify-Write register (behaves like a RAM cell)
• Defined as Read and Write register (read value may be different from write 

value)
• Defined as Write-Only register
• Defined as Read-Only register

Table B-4: Allowed operations on different device register types:

iowr iord Ioor ioand ioxor

Read-Modify-Write   rmw_e Yes Yes Yes Yes Yes

Read-and-Write   rw_e Yes Yes No No No

Write-Only  wo_e Yes No No No No

Read-Only   ro_e No Yes No No No

The “not-allowed” cases should generate some kind of error message at compile-time.  
With a template implementation of <iohw.h>, the compiler will typically diagnose 
that no matching function-template can be found for the “not-allowed” cases.
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For example [Note (JK/DV): Change example to new C++ implementation]:
// --- part of the <iohw.h> header
//
// Define a type to validate device register access
enum rw_t          // Access mode type
{
    rmw_e,         // Read-Modify-Write access
    rw_e,          // Read-and-Write access
    wo_e,          // Write-Only access
    ro_e           // Read-Only access
};

// Include ‘exact-width’ integer types (defined in the header
// ‘stdint.h’ in C)
#include <stdint.h>  // Or possibly <cstdint>33

// Define access_spec template for direct addressing
template <class T, rw_t access, device_t devicetype,
          address_t address, bus_t buswidth>
    class IO_MM { };

// --- part of the “iohw_ta.h” header
//
// User declaration of device registers in platform
typedef IO_MM <uint8_t, wo_e,  device8, 10200, bw8>  WR_PORT;
typedef IO_MM <uint8_t, ro_e,  device8, 20400, bw8>  RD_PORT;
typedef IO_MM <uint8_t, rmw_e, device8, 20800, bw8>  RDWR_PORT;

// --- portable user code
uint8_t myval;
myval = iord(RD_PORT);       // ok
myval += iord(RDWR_PORT);    // ok
iowr(WR_PORT,myval);         // ok
iowr(RDWR_PORT,0x45);        // ok

myval = iord(WR_PORT);       // Illegal, generate compile-time error
iowr(RD_PORT,0x55);          // Illegal, generate compile-time error

B.1.3.3 Implementation for different processor busses
An implementation shall define at least one access method for each processor 
addressing range.  If the processor architecture has multiple different addressing 
ranges (i.e. it requires different sets of machine instructions for the different busses), 
each addressing range should have its own set of access-specifications.

33 ISO C++ was ratified in 1997.  At that time, the header file <stdint.h> was not present in ISO C, and was added to ISO C 
in 1999.  The naming convention used for C headers by ISO C++ would result in this being known as <cstdint>.
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For example, on the 80x86 family, an implementation must define at least two sets of 
access methods; one for the memory-mapped range, and another for the I/O mapped 
range [Note (JK/DV): Change example to new C++ implementation]:

typedef uint32_t address_t;   // Memory-mapped address range
typedef uint16_t io_addr_t;   // IO-mapped address range

template <class T, rw_t access, device_t devicetype,
          address_t address, bus_t buswidth>
    class IO_MM { };
template <class T, rw_t access, device_t devicetype,
          io_addr_t address, bus_t buswidth>
    class IO_IOM { };

B.1.3.4 Implementation for different access methods
If several different access methods are supported for a given address range, then an 
access-specification must exist for each access method.
For example [Note (JK/DV): Change example to new C++ implementation]:

// Define types used in access_spec declarations
typedef uint32_t address_t;      // Memory mapped address range
typedef uint8_t  sub_address_t;  // Sub address on indexed bus
typedef uint16_t io_addr_t;      // User device driver address
typedef uint8_t  bit_pos_t;      // Bit position in register

// Define access_spec template for direct addressing
template <class T, rw_t access, device_t devicetype,
          address_t address, bus_t buswidth>
    class IO_MM { };

// Define access_spec template for addressing via base register
template <class T, rw_t access, device_t devicetype,
          address_t* base, address_t offset, bus_t buswidth>
    class IO_MM_BASE { };

// Define access_spec template for indexed bus addressing
template <class T, rw_t access, device_t devicetype,
          address_t address, sub_address_t idx, bus_t buswidth>
    class IO_MM_IDX { };

// Define access_spec for user-supplied access driver functions
template<class T, rw_t access, io_addr_t address,
         T iord( io_addr_t address),
                  void iowr( io_addr_t address, T val)>
    class IO_MM_DRV { };

// Define access_spec for direct addressing of bit in register
template<class T, rw_t access, device_t devicetype,
         address_t address, bit_pos_t bitpos, bus_t buswidth>
    class IO_MM_BIT { };
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B.1.3.5 Optimisation possibilities for typical implementations
Pre-Calculation of Constant Expressions
A high performance compiler would resolve all constant expressions at compile-time.  
Using inline functions, both interleave factors and constant buffer indices would be 
folded into the address value(s) used in the machine code.

Therefore, the following two I/O write statements would result in exactly the same 
machine code:

iowr(PORT1,0x33);
iowrbuf(PORT1, 0, 0x33);

An implementation can take advantage of this, because the number of hardware 
register access functions that have to be implemented can be reduced with no 
efficiency penalty using simple delegation, using inline-functions or macros such as:

#define iowr(access_spec,val)  iowrbuf(access_spec,0,(val))

or function-templates such as:
template <class access_spec>
    inline void iowr (typename access_spec::value_type val)
    {

      iowrbuf<access_spec>(0, val);
    }

Multi-Addressing and Endianness
Typical candidates for platform dependent optimisations are hardware iohw functions 
for the multi-addressing cases (logical device register width > device bus width) 
where the width of the device data bus matches the width of the processor data bus; 
for example, the combinations of:

● (device16h or device16l) and bw16
● (device32h or device32l) and bw32

In these cases, multi-byte access can often use data types that are directly supported 
by the processor for either the LSB or MSB endianness functions.  The other 
endianness functions can often be implemented efficiently using one load or store 
operation, plus one or more register swap operations.

B.1.4 Atomic Operation
It is a requirement of the iohw implementation, that in each iohw function, a given 
(partial34) device register is addressed exactly once during a read or a write operation 
and exactly twice during a read-modify-write operation.
It is recommended that each iohw function in an iohw implementation, be 
implemented such that the device access operation becomes atomic whenever 
possible.  However, atomic operation is not guaranteed to be portable across platforms 
for the logical read-modify-write operations (i.e. the or, and, and xor operations) or 
for multi-addressing cases.  The reason for this is simply that many processor 

34 A 32-bit logical register in a device with an 8-bit data bus contains 4 partial I/O registers.
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architectures do not have the instruction set features required for assuring atomic 
operation.

B.1.5 Read-Modify-Write Operations and Multi-Addressing
On processor architectures where the modifying operations (or, and, xor) can not be 
realised as single instruction operations, an implementation shall provide an access-
specification that guarantees a complete read-modify-complete write realisation for 
the modifying operations.

The rationale for this restriction is to allow iohw uses to use the lowest common 
denominator of multi-addressing hardware implementations in order to support the 
widest possible range of iohw register implementations.
For instance, more advanced multi-addressing device register implementations often 
take a snap-shot of the whole logical device register when the first partial register is 
being read, so that data will be stable and consistent during the whole read operation.  
Similarly, write registers are often “double-buffered”, so that a consistent data set is 
presented to the internal logic at the time when the access operation is completed by 
the last partial write.
Such hardware implementations often require that each access operation be completed 
before the next access operation is initiated.

B.1.6 Initialisation
With respect to the standardisation process, it is important to make a clear distinction 
between hardware (device) related initialisation, and platform related initialisation.  
Typically, three types of initialisation are related to device register operation:

● hardware (device) initialisation
● access-specification initialisation
● device selector initialisation35

Here only access- specification initialisation and device selector initialisation are 
relevant for the specification of iohw:

● Hardware initialisation: This is a natural part of a hardware driver, and 
should always be considered part of the device driver application itself.  This 
initialisation is done using the standard functions for basic iohw addressing.  
Hardware initialisation is therefore not a topic for the standardisation process.

● access-specification initialisation: This concerns the initialisation and 
definition of the access_spec objects themselves.
For many access-specifications, there is no run-time initialisation necessary.  
However, for some access methods, some run-time initialisation is required.

35 If for instance the access method is implemented as (base_address + constant_offset) then "device selector 
initialisation" refers to assignment of the base_address value.
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using the iohw C-style interface, the function:
io_abs_init(access_base_spec)

can be used as a portable way to specify in the source code where and when 
such initialisation should take place.

The iohw C++ interface provides the constructor
template <typename initType> 
    register_access::register_access(initType);

with an implementation defined initType for the same purpose.
● device selector initialisation: This is used when, for instance, the same 

device driver code needs to service multiple devices of the same type.

A common possible solution is to define multiple access-specification objects, 
one for each of the devices, and then have the access-specification passed to 
the driver functions from the calling function.

The iohw C-style interface provides another solution – the use access-
specification copying, and access- specifications with dynamic access 
information:

io_abs_remap(access_base_spec dest, access_base_spec src)

In C++, this is most easily accomplished by providing a function-template
with the access-specification as template argument.  For access-specifications 
with no run-time information this requires no data transfer (i.e. no function 
parameters).  For access-specifications with dynamic information, this 
dynamic information must be passed as function parameters.  rebind in the 
access-specification provides a portable way to get an access- specification that 
differs from a formerly defined access- specification in only one parameter.

With most freestanding environments and embedded systems, the platform hardware 
is well defined; so all access-specifications for device registers used by the program 
can be completely defined at compile- time.  For such platforms, standardised access-
specification initialisation is not an issue.
With larger processor systems, device hardware is often allocated dynamically at run-
time.  Here the access-specification information can only be partly defined at 
compile-time.  Some platform dependent part of the software must be initialised at 
run-time.

When designing the access_spec objects, the or compiler or library implementer 
must therefore make a clear distinction between static information and dynamic
information; i.e. what can be defined and initialised at compile-time, and what must 
be initialised at run-time.

Depending on the implementation method, and depending on whether the 
access_spec objects need to contain dynamic information, the access_spec objects 
may or may not require instantiation in data memory.  Better execution performance 
can usually be achieved if more of the information is static.
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B.1.7 Intrinsic Features for I/O Hardware Access
The implementation of iohw access require for many platforms use of special machine 
instructions not otherwise used with the normal C/C++ memory model.  It is 
recommended that the compiler vendor provide the necessary intrinsics for operating 
on any special addressing range supported by the processor.

In C++ special machine instructions can be inserted inline using the asm declaration.  
However when using asm in connection with hardware register access, intrinsic 
functionality is often still required in order to enable easy load of symbolic named 
variables to processor registers and to handle return values from asm operations. 
An iohw implementation should completely encapsulate any intrinsic functionality.

B.2 Implementation Guidelines for the C++ Interface
There are two main design alternatives in implementing register_access for the 
different access-specifications:

• Using the access-specifications as full-fledged traits classes that contain the 
information for register_access to behave accordingly (this is the approach 
chosen in the sample implementation).

• Using the access-specifications as mere labels and specializing 
register_access for each of these access- specifications (this is a useful 
approach if there are very few commonalities between the different access-
specifications).

In any case, carefully implemented specializations of helper classes used in 
register_access can provide resulting code that only contains the necessary 
hardware access statements and produces absolutely no overhead.

The ultimate hardware access statements typically will be realised either as inline 
assembler or as compiler intrinsics.  But this is hidden in the implementation; the user 
does not see them.

Note (DV): Do we need internal structure here?
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In this sample implementation the access-specification holds all necessary address 
information and provides them to the register_access implementation.  To produce 
as few overheads as possible, in cases where the address information is known at run-
time no object data is produced.  To achieve this, this implementation generally uses 
typedefs where the real address information is kept in an enum value.  For this, a 
small helper struct _Int2Type is used (the typedef _ul is purely to save some 
typing):

typedef unsigned long _ul;

// helper class for saving integral values as types
struct _Int2Type
{

 enum constants    // Technique uses an enum to group constants
    {
        value_ = val
    };
    _ul value() const {return value_;}
};

As the implementation has to deal with value types of unknown size, this 
implementation uses internally unsigned integer of an appropriate size.  For that 
purpose, another helper template is defined that provides that type:

// and to create an integral type for a given sizeof
template <_ul size> struct _uint_type;
template <> struct _uint_type<1> { typedef uint8_t  ui_type; };
template <> struct _uint_type<2> { typedef uint16_t ui_type; };
template <> struct _uint_type<4> { typedef uint32_t ui_type; };

#ifdef UINT64_MAX
template <> struct _uint_type<8> { typedef uint64_t ui_type; };
#endif

And _EmptyType is a simple placeholder that can be used anywhere where a type 
template-parameter is needed that is not useful for this particular instantiation:

// and an empty helper class for default DynamicData
struct _EmptyType {};

hw_base defines all the constants that are necessary in the access- specifications.  Of 
course, this is highly dependant on the specific hardware, and only those that are used 
in this implementation are shown here.  In general, there are two different ways to 
define constants: the standard IOStreams library defines constants as static.  This 
allows for easier implementation, but has some space and possibly run-time 
overheads.  For performance reasons, the enum approach is chosen here, where all 
constant values are defined as enumerates.  This has the additional advantage that they 
can be used as type-safe template value parameters in the access-specification
templates.
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According to the interface specification, an implementation can define additional 
members in hw_base.  This implementation defines two tagging types data_bus and 
io_bus for use access-specifications.

// the definitions of access_types' parameter types
struct hw_base
{
    enum access_mode   {random, read_write, write, read};
    enum device_bus    {device8  = 1, device16 = 2,

         device32 = 4, device64 = 8};
    enum byte_order    {msb_low, msb_high};
    enum processor_bus {bus8 = 1, bus16 = 2, bus32 = 4, bus64 = 8};

    // only identifiers should be present that are supported by
    // the underlying implementation! (Diagnostic required.)

    typedef _ul address_type;

    // specialization types for different implementations for
    // different bus types
    enum data_bus { ... };
    enum io_bus   { ... };
};

_native_endian is a helper to optimize behavior for the byte ordering of the 
underlying processor:

typedef _Int2Type<hw_base::msb_high> _native_endian;

For this implementation a fairly simple addressing scheme is assumed, but on any 
implementation all address information should be a small bounded set that fits into a 
respective class.  Here, a helper template to hold the information necessary to 
calculate the address offset is defined.  In this implementation all access-
specifications contain the same address information, but they require different 
operations for different busses.  Therefore, the _AddressInfo class contains a marker 
_BusTag that differentiates the different busses.

// helper template to hold the info necessary to calculate the
// address offset
template <_ul _valueSize,
          hw_base::device_bus    _deviceWidth,
          hw_base::processor_bus _procBusWidth,
          class                  _AddressHolderT,
          class                  _Toggle>
struct _AddressInfo
{
    enum constants    // Technique uses an enum to group constants
    {
        _registerSize = _valueSize,
        _devWidth     = _deviceWidth,
        _nativeWidth  = _procBusWidth
    };
    typedef _AddressHolderT _AddressHolder;
    typedef _Toggle         _BusTag;
};

In general, a lot of different access-specification types are possible.  But for any given 
implementation only a small set makes sense, and only that small set should be 
provided.  This implementation only provides two access- specifications for direct 
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address (mm_direct_address for memory mapped registers as specified in the 
interface description, io_direct_address for registers on a separate I/O bus) and 
one quite general access- specification general_address to provide a user function to 
calculate the address.  This general_address is used for simple dynamic addressing 
and segmented addressing as well by providing fix_address_holder and 
segmented_address_holder.  Both access-specifications are templates with 
template-parameters for the value type and all relevant hardware parameters required 
for the correct accessing of device registers on a simple platform.

As both direct address types are essentially the same and differ only in the associated 
bus, a common base class _direct_address is provided.  The actual access-
specifications are derived from this base class and just specify the respective 
_BusToggle. The direct access-specifications have all necessary information at 
compile-time, so it doesn’t contain any run-time data but provides everything as types 
or enumerates (a typical traits class).  Some additional types (dynamic_data and 
_BaseAddressHolder) are provided as empty types to provide a consistent interface 
for mm_direct_address and general_address.

// common direct address for address known at compile-time
template <typename _ValueType,
          hw_base::access_mode   mode,
          hw_base::address_type  address,
          hw_base::device_bus    devWidth,
          hw_base::byte_order    endian,
          hw_base::processor_bus nativeWidth,
          typename               _BusToggle>
class _direct_address
{
public:
    typedef _ValueType value_type;
    typedef _EmptyType dynamic_data;
    enum constants
    {
        access_mode = mode
    };

    template <hw_base::address_type other_address>
    struct rebind
    {
        typedef _direct_address<_ValueType,
                                mode,
                                other_address,
                                devWidth,
                                endian,
                                nativeWidth,

  _BusToggle> other;
    };

    typedef _EmptyType _dynDataHolder;
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    // we don't want to spend any space, so all arguments are saved
    // as types
    typedef _Int2Type<address> _BaseAddressHolder;
    typedef _Int2Type<endian>  device_endian;
    typedef _AddressInfo<sizeof(_ValueType),
                                devWidth,
                                nativeWidth,
                                _BaseAddressHolder,
                                _BusToggle> _AddressT;
};

// direct address for memory mapped registers
template <typename               _ValueType,
          hw_base::access_mode   mode,
          hw_base::address_type  address,
          hw_base::device_bus    devWidth,
          hw_base::byte_order    endian,
          hw_base::processor_bus nativeWidth>
class mm_direct_address
    : public _direct_address<_ValueType, mode, address, devWidth,
                             endian, nativeWidth, hw_base::data_bus>
{
};

// direct address for registers on I/O bus
template <typename _ValueType,
          hw_base::access_mode mode,
          hw_base::address_type address,
          hw_base::device_bus devWidth,
          hw_base::byte_order endian,
          hw_base::processor_bus nativeWidth>
class io_direct_address
    : public _direct_address<_ValueType, mode, address, devWidth,
                             endian, nativeWidth, hw_base::io_bus>
{
};

The general_address access-specification template uses an additional template-
parameter _AddressType that has to provide a const member function value().  
The return value of this function is used as the address.  For the user’s convenience 
two types fix_address_holder and segmented_address_holder are provided that 
can be used for simple cases.  Also, the template-parameter _BusToggle can be 
directly provided by the user.



Technical Report on C++ Performance (DRAFT) 02-0017/N1359

Page 116 of 142

// dynamic address for memory mapped registers and address only
// known at run-time
template <typename               _ValueType,
          hw_base::access_mode   mode,
          typename               _AddressType,

   typename               _BusToggle  = hw_base::data_bus,
          hw_base::device_bus    devWidth    = hw_base::device32,
          hw_base::byte_order    endian      = hw_base::msb_high,
          hw_base::processor_bus nativeWidth = hw_base::bus32>
class general_address
{
public:
    typedef _ValueType   value_type;
    typedef _AddressType dynamic_data;
    enum constants

{
        access_mode = mode
    };

    typedef _AddressType _BaseAddressHolder;

    typedef _Int2Type<endian> device_endian;
    typedef _AddressInfo<sizeof(_ValueType),
                         devWidth,
                         nativeWidth,
                         _BaseAddressHolder,
                         _BusToggle> _AddressT;
};

The fix_address_holder serves as AddressType for 4 when the access is memory-
mapped but the address only known at run-time.

struct fix_address_holder
{
    explicit fix_address_holder(_ul addr) : value_(addr) {}
    _ul value() const { return value_; }
    _ul value_;
};

The segmented_address_holder serves as AddressType for general_address
when the access is memory mapped but the address only known at run-time and is 
composed from a segment and offset address.  [Note: this implementation is probably 
too simple and is only provided to illustrate an AddressType with two constructor 
parameters.]

struct segmented_address_holder
{
    explicit segmented_address_holder(unsigned short segment,
                                      unsigned short offset)
        : value_(segment << 16 + offset) {} // much simplified
    _ul value() const { return value_; }
    _ul value_;
};

The helper classes _hwOp and _hwRead save a lot of typing in this simple 
implementation.  Also as these are effectively the functions eventually executed (not 
really called, as they are inline) when a device register is accessed, they typically 
use some assembler or compiler intrinsics different for all access- specification types, 
and this specific functionality can be provided in one place this way.  They must be 
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specialized for all bus types (data_bus and io_bus) and the _hwOp additionally for all 
binary operators.

// helper classes for all provided operations to be specialised
// on _implTag
template <typename _RetType, typename _implTag> struct _hwRead;

// helper class for all provided binary operations
enum _binops { _write_op, _or_op, _and_op, _xor_op };
template <typename int_type, _binops, typename _implTag> struct _hwOp;

// implementation for hw_base::data_bus
template <typename _RetType>
struct _hwRead<_RetType, hw_base::data_bus>
{
    static _RetType r(_ul const & _addr)
    {
        return *const_cast<_RetType volatile *>
               (reinterpret_cast<_RetType *>(_addr));
    }
};

// and yet another helper function to avoid to write the same
// ugly cast for each op:
template <typename int_type, _binops>
struct _hwOp_data;

template <typename int_type>
struct _hwOp_data<int_type, _write_op>
{
    static void f(int_type volatile &lhs, int_type rhs)
    { lhs = rhs; }
};
template <typename int_type>
struct _hwOp_data<int_type, _or_op>
{
    static void f(int_type volatile &lhs, int_type rhs)
    { lhs |= rhs; }
};
template <typename int_type>
struct _hwOp_data<int_type, _and_op>
{
    static void f(int_type volatile &lhs, int_type rhs)
    { lhs &= rhs; }
};
template <typename int_type>
struct _hwOp_data<int_type, _xor_op>
{
    static void f(int_type volatile &lhs, int_type rhs)
    { lhs ^= rhs; }
};
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// this does the casting necessary for hw_base::data_bus and
// delegates further for _op:
template <typename int_type, _binops _op>
struct _hwOp<int_type, _op, hw_base::data_bus>
{
    static void f(_ul _addr, int_type rhs)
    {
       _hwOp_data<int_type, _op>::f(
            *const_cast<int_type volatile *>
            (reinterpret_cast<int_type *>(_addr)), rhs);
    }
};

// implementation for hw_base::io_bus
template <typename _RetType>
struct _hwRead<_RetType, hw_base::io_bus>
{
    static _RetType r(_ul const & _addr)
    { return i_io_rd(_addr); }
};
template <typename int_type>
struct _hwOp<int_type, _write_op, hw_base::io_bus>
{
    static void f(_ul _addr, int_type rhs)
    { i_io_wr(_addr, rhs); }
};
template <typename int_type>
struct _hwOp<int_type, _or_op, hw_base::io_bus>
{
    static void f(_ul _addr, int_type rhs)
    { i_io_or(_addr, rhs); }
};
template <typename int_type>
struct _hwOp<int_type, _and_op, hw_base::io_bus>
{
    static void f(_ul _addr, int_type rhs)
    { i_io_and(_addr, rhs); }
};
template <typename int_type>
struct _hwOp<int_type, _xor_op, hw_base::io_bus>
{
    static void f(_ul _addr, int_type rhs)
    { i_io_xor(_addr, rhs); }
};
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As the calculation of the actual address is used in quite a number of places, it is 
provided here as a helper function that takes the type with the actual address 
information as template-parameter (this will normally some instantiation of 
_AddressInfo).

// a helper function for the actual address calculation
template <class _AddressInfoT>
inline _ul _addrCalc(
              ptrdiff_t                                     idx,
              typename _AddressInfoT::_AddressHolder const& addr)
{
    return addr.value()
              + idx
                  * _AddressInfoT::_registerSize
                  * _AddressInfoT::_nativeWidth
                      / _AddressInfoT::_devWidth;
}

// a helper class to provide all useful (partial) specialisations
// for register_access
template <typename _ValueType,
          _ul      devEndian,
          class    _AddressInfoT>
struct _AccessHelper
{
    static _ValueType _read(
              _ul baseIdx,
              typename _AddressInfoT::_AddressHolder const &);
    template <_binops function>
    static void _op(_ValueType val,
                    _ul        baseIdx,
                    typename _AddressInfoT::_AddressHolder const&);
};
// no definition of the functions for the general case:
//    all valid cases must be provided as (partial) specialisations
//
// value_size must always be a multiple of dev_width (otherwise
// it doesn't make sense for this example)

// here a specialisation where deviceWidth matches nativeWidth
// and ValueType
template <typename _ValueType,
          class    _AddressHolder,
          class    _implToggle>
struct _AccessHelper<_ValueType,
                     _native_endian::value_,
                     _AddressInfo<sizeof(_ValueType),

                     hw_base::device_bus(sizeof(_ValueType)),
                           hw_base::processor_bus(sizeof(_ValueType)),
                           _AddressHolder,
                           _implToggle> >
{
    typedef _AddressInfo<sizeof(_ValueType),
                           hw_base::device_bus(sizeof(_ValueType)),
                           hw_base::processor_bus(sizeof(_ValueType)),
                           _AddressHolder,
                           _implToggle>   AddressT;
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    static _ValueType _read(_ul baseIdx, _AddressHolder const &addr)
    {   // the _implToggle argument selects the correct function
//      _AddressT::bogus();
        return _hwRead<_ValueType, _implToggle>::r(
                                 _addrCalc<_AddressT>(baseIdx, addr));
    }
    template <_binops function>
    static void _op(_ValueType            val,
                    _ul                   baseIdx,
                    _AddressHolder const& addr)
    {
        _hwOp<_ValueType, function, _implToggle>::f(
            *const_cast<_ValueType volatile *>
                (reinterpret_cast<_ValueType*>(
                          _addrCalc<_AddressT>(baseIdx, addr))), val);
    }
};

// this is the general implementation for any sizeof(_ValueType)
// and _native_endian
template <typename _ValueType,
          class    _AddressInfoT>
struct _AccessHelper<_ValueType,
                     _native_endian::value_,
                     _AddressInfoT>
{
    typedef typename _AddressInfoT::_AddressHolder _AddressHolder;
    enum constants
    {
        _wordCount = _AddressInfoT::_registerSize
                        / _AddressInfoT::_devWidth,
        _step      = _AddressInfoT::_nativeWidth
    };
    typedef typename _uint_type<_AddressInfoT::_devWidth>::ui_type

                      reg_t;
    struct buf_t
    {
       reg_t values[_wordCount];
    };

    static _ValueType _read(_ul baseIdx, _AddressHolder const &addr)
    {
        buf_t buffer;
        for (_ul idx=0; idx != _wordCount; ++idx)
        { // use new style casts
//          _AddressInfoT::bogus();
            buffer.values[idx] = _hwRead<reg_t,
                            typename _AddressInfoT::_BusTag>::r(
                               _addrCalc<_AddressInfoT>(baseIdx, addr)

               + idx
                                      * _step);
        }
        return *((_ValueType *)buffer.values);
    }
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    template <_binops function>
    static void _op(_ValueType            val,
                    _ul                   baseIdx,
                    _AddressHolder const& addr)
    {
        for (_ul idx=0; idx != _wordCount; ++idx)
        {
            _hwOp<reg_t,
                  function,
                  typename _AddressInfoT::_BusTag>::f(
                      *const_cast<reg_t volatile *>
                          (reinterpret_cast<reg_t*>
                              (_addrCalc<_AddressInfoT>
                                  (baseIdx, addr)
                               + idx*_step)),
                      reinterpret_cast<reg_t *>(val)[idx]);
        }
    }
};

template <typename T>
struct _TypeHolder
{
    _TypeHolder(T const &v) : value_(v) {}

    T value_;
    T value() const { return value_; }
};

// the actual access interface
template <class _RAType>
inline void operator|=(_RAType const&               lhs,
                       typename _RAType::value_type val)
{
    lhs.template _op<_or_op>(val);
}

template <class _AcType, class _AddressHolder, typename _IndexType>
class _RAImpl
{
public:
    typedef typename _AcType::value_type value_type;
    static value_type _read(_AddressHolder const& _addr,
                            _IndexType const&     _idx)
    {
        return _AccessHelper<value_type,
                             _AcType::device_endian::value_,
                             typename _AcType::_AddressT>
                                 ::_read(_idx.value(), _addr);
    }

    template <_binops function>
    static void _op(_AddressHolder const& _addr,
                    _IndexType const&     _idx,
                     value_type           _val)
    {
        _AccessHelper<value_type,
                      _AcType::device_endian::value_,
                      typename _AcType::_AddressT>
                           ::_op<function>(_val, _idx.value(), _addr);
    }
};
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template <class _AcType, class _AddressHolder, typename _IndexType>
class _RAInterface
{
public:
    typedef typename _AcType::value_type                 value_type;
    typedef _RAImpl<_AcType, _AddressHolder, _IndexType> _Impl;

  _RAInterface() : _addr(), _idx() {}
    explicit _RAInterface(typename _AcType::dynamic_data const& _d)
    : _addr(_d), _idx() {}
    _RAInterface(_AddressHolder const& _a, _IndexType const& _i)
    : _addr(_a), _idx(_i) {}

    operator value_type() const
    {
        return _Impl::_read(_addr, _idx);
    }
    value_type read() const
    {
        return _Impl::_read(_addr, _idx);
    }
    void operator = (value_type val)
    {
        _Impl::template _op<_write_op>(_addr, _idx, val);
    }
    void operator |= (value_type val)
    {
        _Impl::template _op<_or_op>(_addr, _idx, val);
    }
    void operator &= (value_type val)
    {
        _Impl::template _op<_and_op>(_addr, _idx, val);
    }
    void operator ^= (value_type val)
    {
        _Impl::template _op<_xor_op>(_addr, _idx, val);
    }

protected:
    const _AddressHolder _addr;
    const _IndexType     _idx;
};

// the second template-parameter is only to provide a means
// to create a partial specialisation for non-dynamic data
template <class _AcType,
          class _DynData = typename _AcType::dynamic_data>
class register_access
    : public _RAInterface<_AcType,
                          typename _AcType::_BaseAddressHolder,
                          _Int2Type<0> >
{
    typedef typename _AcType::_BaseAddressHolder _AddressHolder;
    typedef _RAInterface<_AcType,
                         _AddressHolder,
                         _TypeHolder<_ul> > _RefT;
    typedef _RAInterface<_AcType,
                         typename _AcType::_BaseAddressHolder,
                         _Int2Type<0> > _Base;
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public:
    explicit register_access(typename _AcType::dynamic_data const& d)
        : _RAInterface<_AcType,
                       typename _AcType::_BaseAddressHolder,

    _Int2Type<0> >(d) {}

    using _Base::operator =;
    using _Base::_addr;

    _RefT operator [] (size_t index) const
    {
        return _RefT(_addr, index);
    }
    _RefT operator [] (ptrdiff_t index) const
    {
        return _RefT(_addr, index);
    }
};

// specialisation for no dynamic data
template <class _AcType>
class register_access<_AcType, _EmptyType>
    : public _RAInterface<_AcType,
                          typename _AcType::_BaseAddressHolder,
                          _Int2Type<0> >
{
    typedef typename _AcType::_BaseAddressHolder _AddressHolder;
    typedef _RAInterface<_AcType,
                         _AddressHolder,
                         _TypeHolder<_ul> > _RefT;

public:
    typedef _AcType _AccessType;    // for C interface only
    typedef typename _AcType::value_type value_type;

    register_access() {}
    using _RAInterface<_AcType,
                       typename _AcType::_BaseAddressHolder,
                       _Int2Type<0> >::operator=;

    _RefT operator[](size_t index) const
    {
        return _RefT(_AddressHolder(), index);
    }
    _RefT operator[](ptrdiff_t index) const
    {
        return _RefT(_AddressHolder(), index);
    }
};
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Appendix C: Implementing the C 
Interface in Terms of the 
C++ Interface

Note (DV): This will contain a full implementation.
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Appendix D: Timing Code
/*
    Simple/naive measurements to give a rough idea of the relative
    cost of facilities related to OOP.

    I think this could be fooled/foiled by clever optimizers and by
    cache effects.

    Run at least three times to ensure that results are repeatable.

    Tests:

        virtual function
        global function called indirectly
        nonvirtual member function
        global function
        inline member function
        macro
        1st branch of MI
        2nd branch of MI
        call through virtual base
        call of virtual base function

        dynamic cast
        two-level dynamic cast
        typeid()

        call through pointer to member

        call-by-reference
 call-by-value

        pass as pointer to function
        pass as function object

    not yet:

        co-variant return

    The cost of the loop is not measurable at this precision:
    see inline tests

    By default do 1000000 iterations to cout

    1st optional argument: number of iterations
    2nd optional argument: target file name
 */

//int body(int i) { return i*(i+1)*(i+2); }
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class X {
    int x;
    static int st;
public:
    virtual void f(int a);
    void g(int a);
    static void h(int a);
    void k(int i) { x+=i; }    // inline
};

struct S {
    int x;
};

int glob = 0;

extern void f(S* p, int a);
extern void g(S* p, int a);
extern void h(int a);
typedef void (*PF)(S* p, int a);
PF p[10] = { g , f };
// inline void k(S* p, i) { p->x+=i; }
#define K(p,i)  ((p)->x+=(i))

struct T {
    const char* s;
    double t;

    T(const char* ss, double tt) : s(ss), t(tt) { }
    T() : s(0), t(0) { }
};

struct A {
    int x;
    virtual void f(int) = 0;
    void g(int);
};

struct B {
    int xx;
    virtual void ff(int) = 0;
    void gg(int);
};

struct C : A, B {
    void f(int);
    void ff(int);
};

struct CC : A, B {
    void f(int);
    void ff(int);
};

void A::g(int i)   { x+=i; }
void B::gg(int i)  { xx+=i; }
void C::f(int i)   { x+=i; }
void C::ff(int i)  { xx+=i; }
void CC::f(int i)  { x+=i; }
void CC::ff(int i) { xx+=i; }
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template<class T, class T2> inline T* cast(T* p, T2* q)
{
    glob++; return dynamic_cast<T*>(q);
}

struct C2 : virtual A {  // note: virtual base
};

struct C3 : virtual A {
};

struct D : C2, C3 {  // note: virtual base
    void f(int);
};

void D::f(int i)  { x+=i; }

struct P { int x,y; };

void by_ref(P& a) { a.x++; a.y++; }
void by_val(P a)  { a.x++; a.y++; }

template<class F, class V> inline void oper(F f, V val) { f(val); }

struct FO {
    void operator()(int i) { glob+=i; }
};

// --------------------------------------------------------------

#include <stdlib.h>  // Why not <cstdlib> ?
#include <iostream>
#include <fstream>
#include <time.h>    // Why not <ctime> ?
#include <vector>
#include <typeinfo>
using namespace std;

template<class T> inline T* ti(T* p)
{
    if(typeid(p)==typeid(int*))
        p++;
    return p;
}

int main(int argc, char* argv[])
{
    int i;   // loop variable here for the benefit of non-conforming
             // compilers

    int n = (1<argc) ? atoi(argv[1]) : 10000000;  // number of 
                                                  // iterations

    ofstream target;
    ostream* op = &cout;
    if (2<argc) {  // place output in file
        target.open(argv[2]);
        op = &target;
    }
    ostream& out = *op;
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// output command for documentation:
    for (i = 0; i<argc; ++i)
        out << argv[i] << " ";
    out << endl;

    X* px = new X;
    X x;
    S* ps = new S;
    S s;

    vector<T> v;

    clock_t t = clock();
    if (t == clock_t(-1)) {
        cerr << "sorry, no clock\n";
        exit(1);
    }

    for (i = 0; i<n; i++) px->f(1);
    v.push_back(T("virtual px->f(1)            ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) p[1](ps,1);
    v.push_back(T("ptr-to-fct p[1](ps,1)       ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) x.f(1);
    v.push_back(T("virtual x.f(1)              ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) p[1](&s,1);
    v.push_back(T("ptr-to-fct p[1](&s,1)       ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) px->g(1);
    v.push_back(T("member px->g(1)             ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) g(ps,1);
    v.push_back(T("global g(ps,1)              ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) x.g(1);
    v.push_back(T("member x.g(1)               ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) g(&s,1);
    v.push_back(T("global g(&s,1)              ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) X::h(1);
    v.push_back(T("static X::h(1)              ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) h(1);
    v.push_back(T("global h(1)                 ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) px->k(1);
    v.push_back(T("inline px->k(1)             ",clock()-t));
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    t = clock();
    for (i = 0; i<n; i++) K(ps,1);
    v.push_back(T("macro K(ps,1)               ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) x.k(1);
    v.push_back(T("inline x.k(1)               ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) K(&s,1);
    v.push_back(T("macro K(&s,1)               ",clock()-t));

    C* pc = new C;
    A* pa = pc;
    B* pb = pc;

    t = clock();
    for (i = 0; i<n; i++) pc->g(i);
    v.push_back(T("base1 member pc->g(i)       ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) pc->gg(i);
    v.push_back(T("base2 member pc->gg(i)      ",clock()-t));

    t = clock();
for (i = 0; i<n; i++) pa->f(i);

    v.push_back(T("base1 virtual pa->f(i)      ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) pb->ff(i);
    v.push_back(T("base2 virtual pb->ff(i)     ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) cast(pa,pc);
    v.push_back(T("base1 down-cast cast(pa,pc)  ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) cast(pb,pc);
    v.push_back(T("base2 down-cast cast(pb,pc)  ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) cast(pc,pa);

v.push_back(T("base1 up-cast cast(pc,pa)    ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) cast(pc,pb);
    v.push_back(T("base2 up-cast cast(pc,pb)    ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) cast(pb,pa);
    v.push_back(T("base2 cross-cast cast(pb,pa) ",clock()-t));

    CC* pcc = new CC;
    pa = pcc;
    pb = pcc;

    t = clock();
    for (i = 0; i<n; i++) cast(pa,pcc);
    v.push_back(T("base1 down-cast2 cast(pa,pcc)",clock()-t));
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    t = clock();
    for (i = 0; i<n; i++) cast(pb,pcc);
    v.push_back(T("base2 down-cast  cast(pb,pcc)",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) cast(pcc,pa);
    v.push_back(T("base1 up-cast cast(pcc,pa)   ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) cast(pcc,pb);
    v.push_back(T("base2 up-cast2 cast(pcc,pb)  ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) cast(pb,pa);
    v.push_back(T("base2 cross-cast2 cast(pa,pb)",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) cast(pa,pb);
    v.push_back(T("base1 cross-cast2 cast(pb,pa)",clock()-t));

    D* pd = new D;
    pa = pd;

    t = clock();
    for (i = 0; i<n; i++) pd->g(i);
    v.push_back(T("vbase member pd->gg(i)      ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) pa->f(i);

 v.push_back(T("vbase virtual pa->f(i)      ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) cast(pa,pd);
    v.push_back(T("vbase down-cast cast(pa,pd)  ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) cast(pd,pa);
    v.push_back(T("vbase up-cast cast(pd,pa)    ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) ti(pa);
    v.push_back(T("vbase typeid(pa)            ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) ti(pd);
    v.push_back(T("vbase typeid(pd)            ",clock()-t));

    void (A::* pmf)(int) = &A::f; // virtual

    t = clock();
    for (i = 0; i<n; i++) (pa->*pmf)(i);
    v.push_back(T("pmf virtual (pa->*pmf)(i)   ",clock()-t));

    pmf = &A::g; // non virtual

    t = clock();
    for (i = 0; i<n; i++) (pa->*pmf)(i);
    v.push_back(T("pmf (pa->*pmf)(i)           ",clock()-t));
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    P pp;

    t = clock();
    for (i = 0; i<n; i++) by_ref(pp);
    v.push_back(T("call by_ref(pp)             ",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) by_val(pp);
    v.push_back(T("call by_val(pp)             ",clock()-t));

    FO fct;

    t = clock();
    for (i = 0; i<n; i++) oper(h,glob);
    v.push_back(T("call ptr-to-fct oper(h,glob)",clock()-t));

    t = clock();
    for (i = 0; i<n; i++) oper(fct,glob);
    v.push_back(T("call fct-obj oper(fct,glob) ",clock()-t));

    if (clock() == clock_t(-1)) {
        cerr << "sorry, clock overflow\n";
        exit(2);
    }

    out << "\n";
    for (i = 0; i<v.size(); i++) {
        out << v[i].s << " :\t"
           << v[i].t*(double(1000000)/n)/CLOCKS_PER_SEC << " ms\n";
    }

    if (argc<2) {    // if output is going to cout
        cout << "press any character to finish\n";
        char c;
        cin >> c;    // to placate windows console mode
    }

    return 0;        // shut up noncompliant compilers
}

int X::st = 0;
void X::f(int a) { x+=a; }
void X::g(int a) { x+=a; }
void X::h(int a) { st+=a; }

void f(S* p, int a) { p->x += a; }
void g(S* p, int a) { p->x += a; }
void h(int a)       { glob += a; }
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Appendix E: Bibliography
These references may serve as a starting point for finding more information about 
programming for performance.

[BIBREF - 1] Bentley, Jon Louis

Writing Efficient Programs
Prentice-Hall, Inc., 1982

Unfortunately out of print, but a classic catalogue of techniques that can be 
used to optimise the space and time consumed by an application (often by 
trading one resource to minimise use of the other).  Because this book predates 
the public release of C++, code examples are given in Pascal.

“The rules that we will study increase efficiency by making changes to a 
program that often decrease program clarity, modularity, and robustness.  
When this coding style is applied indiscriminately throughout a large system 
(as it often has been), it usually increases efficiency slightly but leads to late 
software that is full of bugs and impossible to maintain.  For these reasons, 
techniques at this level have earned the name of "hacks"....  But writing 
efficient code need not remain the domain of hackers.  The purpose of this 
book is to present work at this level as a set of engineering techniques.”

[BIBREF - 2] Bulka, Dov, and David Mayhew

Efficient C++: Performance Programming Techniques
Addison-Wesley, 2000

Contains many specific low-level techniques for improving time performance, 
with measurements to illustrate their effectiveness.

"If used properly, C++ can yield software systems exhibiting not just 
acceptable performance, but superior software performance.”

[BIBREF - 3] Cusumano, Michael A., and David B. Yoffie

What Netscape Learned from Cross-Platform Software Development
Communications of the ACM, October 1999.

Faster run-time performance brings commercial advantage, sometimes enough 
to outweigh other considerations such as portability and maintainability (an 
argument also advanced in the Bulka-Mayhew book).
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[BIBREF - 4] Embedded C++ Technical Committee

Embedded C++ Language Specification, Rationale, & Programming Guidelines
http://www.caravan.net/ec2plus

EC++ is a subset of Standard C++ that excludes some significant features of 
the C++ programming language, including:

● exception handling (EH)
● run-time type identification (RTTI)
● templates
● multiple inheritance (MI)
● namespaces

[BIBREF - 5] Glass, Robert L

Software Runaways: Lessons Learned from Massive Software Project Failures
Prentice Hall PTR, 1998.

Written from a management perspective rather than a technical one, this book 
makes the point that a major reason why some software projects have been 
classified as massive failures is for failing to meet their requirements for 
performance.

“Of all the technology problems noted earlier, the most dominant one in our 
own findings in this book is that performance is a frequent cause of failure. A 
fairly large number of our runaway projects were real-time in nature, and it 
was not uncommon to find that the project could not achieve the response 
times and/or functional performance times demanded by the original 
requirements.”

[BIBREF - 6] Gorlen, Keith, et al.

Data Abstraction and Object Oriented Programming in C++
NIH 1990

Based on the Smalltalk model of object orientation, the “NIH Class Library” 
also known as the “OOPS Library” was one of the earliest Object Oriented 
libraries for C++.  As there were no "standard" classes in the early days of 
C++, and because the NIHCL was freely usable having been funded by the US 
Government, it had a lot of influence on design styles in C++ in subsequent 
years.

http://www.caravan.net/ec2plus
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[BIBREF - 7] Henrikson, Mats, and Erik Nyquist.

Industrial Strength C++: Rules and Recommendations
Prentice Hall PTR, 1997.

Coding standards for C++, with some discussion on performance aspects that 
influenced them.

[BIBREF - 8] Knuth, Donald E.

The Art of Computer Programming, Volume 1, Reissued 3rd Edition
Addison-Wesley

Fundamental Algorithms [1997]
Semi-numerical Algorithms [1998]
Sorting and Searching [1998]

The definitive work on issues of algorithmic efficiency.

[BIBREF - 9] Koenig, A., and B. Stroustrup

Exception Handling for C++ (revised)
Proceedings of the 1990 Usenix C++ Conference, pp149-176, San Francisco, April 
1990.

This paper discusses the two approaches to low-overhead exception handling.

[BIBREF - 10] Koenig, Andrew, and Barbara E. Moo

Performance: Myths, Measurements, and Morals
The Journal of Object-Oriented Programming

Part 1: Myths [Oct ‘99]
Part 2: Even Easy Measurements Are Hard [Nov/Dec ‘99]
Part 3: Quadratic Behavior Will Get You If You Don't Watch Out [Jan ‘00]
Part 4: How Might We Speed Up a Simple Program [Feb ‘00]
Part 5: How Not to Measure Execution Time [Mar/Apr ‘00]
Part 6: Useful Measurements–Finally [May ‘00]
Part 7: Detailed Measurements of a Small Program [Jun ‘00]
Part 8: Experiments in Optimization [Jul/Aug ‘00]
Part 9: Optimizations and Anomalies [Sep ‘00]
Part 10: Morals [Oct ‘00]

Measuring the run-time performance of a program can be surprisingly 
difficult, because of the interaction of many factors.

“The most important way to obtain good performance is to use good 
algorithms.”
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[BIBREF - 11] Lajoie, Joseé

"Exception Handling: Behind the Scenes."
(Included in C++ Gems, edited by Stanley B. Lippman)
SIGS Reference Library, 1996

A brief overview of the C++ language features, which support exception 
handling, and of the underlying mechanisms necessary to support these 
features.

[BIBREF - 12] Lakos, John

Large-Scale C++ Software Design
Addison-Wesley, 1996

Scalability is the main focus of this book, but scaling up to large systems 
inevitably requires performance issues to be addressed.  This book predates 
the extensive use of templates in the Standard Library.

[BIBREF - 13] Levine, John R.

Linkers & Loaders
Morgan Kaufmann Publishers, 2000

This book explains the mechanisms which enable static and dynamic linking 
to create executable programs from multiple translation units.

[BIBREF - 14] Lippman, Stan

Inside the C++ Object Model
Explains typical implementations and overheads of various C++ language 
features, such as multiple inheritance and virtual functions.  A good in-depth 
look at the internals of typical implementations.

[BIBREF - 15] Liu, Yanhong A., and Gustavo Gomez

Automatic Accurate Cost-Bound Analysis for High-Level Languages
IEEE Transactions on Computers, Vol. 50, No. 12, December 2001

This paper describes a language-independent approach to assigning cost 
parameters to various language constructs, then through static analysis and 
transformations automatically calculating the cost bounds of whole programs. 
Example programs in this article are written in a subset of Scheme, not C++. 
The article discusses how to obtain cost bounds in terms of costs of language 
primitives, though it does not really discuss how to obtain such costs.  
However, it includes a list of references to other resources discussing how to 
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perform respective measurements for different hardware architectures and 
programming languages.

“It is particularly important for many applications, such as real-time systems 
and embedded systems, to be able to predict accurate time bounds and space 
bounds automatically and efficiently and it is particularly desirable to be able 
to do so for high-level languages.”

[BIBREF - 16] Meyer, Scott

Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template 
Library
Addison-Wesley, 2001.

In keeping with the philosophy of the Standard Library, this book carefully 
documents the performance implications of different choices in design and 
coding, such as whether to use std::map::operator[] or 
std::map::insert.
“The fact that function pointer parameters inhibit inlining explains an 
observation that long-time C programmers often find hard to believe: C++'s 
sort virtually always embarrasses C's qsort when it comes to speed.  Sure, 
C++ has function- and class-templates to instantiate and funny-looking 
operator() functions to invoke while C makes a simple function call, but all 
that C++ "overhead" is absorbed during compilation... It's easy to verify that 
when comparing function objects and real functions as algorithm parameters, 
there's an abstraction bonus.”

[BIBREF - 17] Mitchell, Mark

Type-Based Alias Analysis
Dr. Dobbs’ Journal, October 2000.

Some techniques for writing source code that is easier for a compiler to 
optimise.

“Although C++ is often criticized as being too slow for high-performance 
applications, ... C++ can actually enable compilers to create code that is even 
faster than the C equivalent.”

[BIBREF - 18] Mussar, David R., Gillmer J. Derge, and Atul Saini

STL Tutorial and Reference Guide, Second Edition:  C++ Programming with the 
Standard Template Library
Addison-Wesley, 2001.

Among the tutorial material and example code is a chapter describing a class 
framework for timing generic algorithms.
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[BIBREF - 19] Noble, James, and Charles Weir

Small Memory Software: Patterns for Systems with Limited Memory
Addison-Wesley, 2001

A book of design patterns illustrating a number of strategies for coping with 
memory constraints.

“But what is small memory software?  Memory size, like riches or beauty, is 
always relative.  Whether a particular amount of memory is small or large 
depends on the requirements the software should meet, on the underlying 
software and hardware architecture, and on much else.  A weather-calculation 
program on a vast computer may be just as constrained by memory limits as a 
word-processor running on a mobile phone, or an embedded application on a 
smart card.  Therefore:
Small memory software is any software that doesn’t have as much memory as 
you’d like!”

[BIBREF - 20] Prechelt, Lutz

Technical opinion: comparing Java vs. C/C++ efficiency differences to 
interpersonal differences
Communications of the ACM, October 1999.

This article compares the memory footprint and run-time performance of 40 
implementations of the same program, written in C++, C, and Java.  The 
difference between individual programmers was more significant than the 
difference between languages.

“The importance of an efficient technical infrastructure (such as 
language/compiler, operating system, or even hardware) is often vastly 
overestimated compared to the importance of a good program design and an 
economical programming style.”
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[BIBREF - 21] Saks, Dan

C++ Theory and Practice
C/C++ Users Journal

Standard C++ as a High-Level Language? [Nov ‘99]
Replacing Character Arrays with Strings, Part 1 [Jan ‘00]
Replacing Character Arrays with Strings, Part 2 [Feb ‘0]

These articles are part of a series on migrating a C program to use the greater 
abstraction and encapsulation available in C++.  The run-time and executable 
size are measured as more C++ features are added, such as Standard strings, 
IOStreams, and containers.
“A seemingly small change in a string algorithm [such as reserving space for
string data, or erasing the data as an additional preliminary step,] might 
produce a surprisingly large change in program execution time.”
The conclusion is that you should "program at the highest level of abstraction 
that you can afford”.

[BIBREF - 22] Schilling, Jonathan

Optimizing Away C++ Exception Handling
ACM SIGPLAN Notices, August 1998, also at

http://www.ocston.org/~jls/ehopt.html

This article discusses ways to measure the overhead, if any, of the exception
handling mechanisms.  A common implementation of EH incurs no run-time 
penalty unless an exception is actually thrown, but at a cost of greater static 
data space and some interference with compiler optimisations.  By identifying 
sections of code in which exceptions cannot possibly be thrown, these costs 
can be reduced.

“This optimization produces modest but useful gains on some existing C++ 
code, but produces very significant size and speed gains on code that uses 
empty exception specifications, avoiding otherwise serious performance 
losses.”

[BIBREF - 23] Stepanov, Alex

Abstraction Penalty Benchmark
http://www.kai.com/C_plus_plus/benchmarks/_index.html

A brief discussion and downloadable code for this benchmark, mentioned in 
2.3.1.

http://www.kai.com/C_plus_plus/benchmarks/_index.html
http://www.ocston.org/~jls/ehopt.html
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[BIBREF - 24] Stroustrup, Bjarne

The C++ Programming Language, 3rd Edition
Addison-Wesley, 1998

This definitive work from the language’s author has been extensively revised 
to present Standard C++.

[BIBREF - 25] Stroustrup, Bjarne

The Design and Evolution of C++
Addison-Wesley, 1994

The creator of C++ discusses the design objectives that shaped the 
development of the language, especially the need for efficiency.

“The immediate cause for the inclusion of inline functions ... was a project 
that couldn't afford function call overhead for some classes involved in 
real-time processing.  For classes to be useful in that application, crossing the 
protection barrier had to be free.  [...]
Over the years, considerations along these lines grew into the C++ rule that it 
was not sufficient to provide a feature, it had to be provided in an affordable 
form.  Most definitely, affordable was seen as meaning "affordable on 
hardware common among developers" as opposed to "affordable to 
researchers with high-end equipment" or "affordable in a couple of years 
when hardware will be cheaper.”

[BIBREF - 26] Stroustrup, Bjarne

Learning Standard C++ as a New Language
C/C++ Users Journal, May 1999

http://www.research.att.com/~bs/papers.html
http://www.research.att.com/~bs/cuj_code.html
This paper compares a few examples of simple C++ programs written in a 
modern style using the standard library to traditional C-style solutions.  It 
argues briefly that lessons from these simple examples are relevant to large 
programs.  More generally, it argues for a use of C++ as a higher-level 
language that relies on abstraction to provide elegance without loss of 
efficiency compared to lower-level styles.

“I was appalled to find examples where my test programs ran twice as fast in 
the C++ style compared to the C style on one system and only half as fast on 
another.  ...  Better-optimized libraries may be the easiest way to improve both 
the perceived and actual performance of Standard C++.  Compiler 
implementers work hard to eliminate minor performance penalties compared 

http://www.research.att.com/~bs/cuj_code.html
http://www.research.att.com/~bs/papers.html
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with other compilers.  I conjecture that the scope for improvements is larger in 
the standard library implementations.”

[BIBREF - 27] Sutter, Herb

Exceptional C++
Addison-Wesley, 2000.

This book includes a long discussion on minimizing compile-time 
dependencies using compiler firewalls (the PIMPL idiom), and how to 
compensate for the space and run-time consequences.

[BIBREF - 28] Veldhuizen, Todd

Five compilation models for C++ templates
Proceedings of the 2000 Workshop on C++ Template Programming

http://www.oonumerics.org/tmpw00
This paper describes a work in progress on a new C++ compiler.  Type 
analysis is removed from the compiler and replaced with a type system library, 
which is treated as source code by the compiler.

“By making simple changes to the behavior of the partial evaluator, a wide 
range of compilation models is achieved, each with a distinct trade-off of 
compile-time, code size, and execution speed.  ...  This approach may solve 
several serious problems in compiling C++: it achieves separate compilation 
of templates, allows template code to be distributed in binary form by 
deferring template instantiation until run-time, and reduces the code bloat 
associated with templates.”

[BIBREF - 29] Vollmann, Detlef

Exception Handling Alternatives
Published by ACCU – Overload, Issues 30 and 31 (February 1999)

http://www.accu.org/c++sig/public/Overload.html
http://www.vollmann.ch/en/pubs/cpp-excpt-alt.html
This article shows some pros and cons of the C++ exception handling 
mechanism and outlines several possible alternative approaches.

http://www.vollmann.ch/en/pubs/cpp-excpt-alt.html
http://www.accu.org/c++sig/public/Overload.html
http://www.oonumerics.org/tmpw00
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[BIBREF - 30] Williams, Stephen

Embedded Programming with C++
Originally published in the Proceedings of the Third USENIX Conference on Object-
Oriented Technologies and Systems, 1997

http://www.usenix.org/publications/library/proceedings\
/coots97/williams.html

Describes experience in programming board-level components in C++, 
including a library of minimal run-time support functions portable to any 
board.

“We to this day face people telling us that C++ generates inefficient code that 
cannot possibly be practical for embedded systems where speed matters. The 
criticism that C++ leads to bad executable code is ridiculous, but at the same 
time accurate. Poor style or habits can in fact lead to awful results. On the 
other hand, a skilled C++ programmer can write programs that match or 
exceed the quality of equivalent C programs written by equally skilled C 
programmers. 
The development cycle of embedded software does not easily lend itself to the 
trial-and-error style of programming and debugging, so a stubborn C++ 
compiler that catches as many errors as possible at compile-time significantly 
reduces the dependence on run-time debugging, executable run-time support 
and compile/download/test cycles.
This saves untold hours at the test bench, not to mention strain on PROM 
sockets.”

Vendors of development tools often provide guidance on programming for maximum 
performance. Here are some of the documents available:

[BIBREF - 31] Hewlett-Packard Corp.

CXperf User's Guide
http://docs.hp.com/hpux/onlinedocs/B6323-96001/B6323-96001.html
This guide describes the CXperf Performance Analyser, an interactive run-
time performance analysis tool for programs compiled with HP ANSI C (c89), 
ANSI C++ (aCC), Fortran 90 (f90), and HP Parallel 32-bit Fortran 77 (f77) 
compilers.  This guide helps you prepare your programs for profiling, run the 
programs, and analyse the resulting performance data.

http://docs.hp.com/hpux/onlinedocs/B6323-96001/B6323-96001.html
http://www.usenix.org/publications/library/proceedings/coots97/williams.html
http://www.usenix.org/publications/library/proceedings/coots97/williams.html
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[BIBREF - 32] IBM

AIX Versions 3.2 and 4 Performance Tuning Guide, 5th Edition (April 1996)
http://www.rs6000.ibm.com/doc_link/en_US\

/a_doc_lib/aixbman/prftungd/toc.htm
An extensive discussion of performance issues in many areas, such as CPU 
use, disk I/O, and memory management, and even the performance effects of 
shared libraries.  It discusses AIX tools available to measure performance, and 
the compiler options, which can be used to optimise an application for space 
or time.  The chapter "Design and Implementation of Efficient Programs"
http://www.rs6000.ibm.com/doc_link/en_US\

/a_doc_lib/aixbman/prftungd/desnimpl.htm
includes low-level recommendations such as these:

“Whenever possible, use int instead of char or short.  In most cases, 
char and short data items take more instructions to manipulate.  The extra 
instructions cost time, and, except in large arrays, any space that is saved by 
using the smaller data types is more than offset by the increased size of the 
executable.  If you have to use a char, make it unsigned, if possible.  A 
signed char takes another two instructions more than an unsigned
char each time the variable is loaded into a register.”

[BIBREF - 33] Wind River Systems

Advanced Compiler Optimization Techniques
http://wrs.com/products/html/optimization_wp.html
This technical white paper discusses techniques for compiler optimisations in 
general, and more specifically those provided by the Wind River Systems 
“Diab” C++ compiler for embedded program development.

http://wrs.com/products/html/optimization_wp.html
http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixbman/prftungd/desnimpl.htm
http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixbman/prftungd/desnimpl.htm
http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixbman/prftungd/toc.htm
http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixbman/prftungd/toc.htm
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