
Library active issues list 1

Doc. no. J16/00-0046

 WG21 N1269

Date: 10 Nov 2000

Project: Programming Language C++

Reply to: Matt Austern <austern@research.att.com>

C++ Standard Library Active Issues List (Revision 16)

Reference ISO/IEC IS 14882:1998(E)

Also see:

• Table of Contents for all library issues.
• Index by Section for all library issues.
• Index by Status for all library issues.
• Library Defect Report List
• Library Closed Issues List
• How to prepare and submit an issue.

The purpose of this document is to record the status of issues which have come before the Library Working Group (LWG)
of the ANSI (J16) and ISO (WG21) C++ Standards Committee. Issues represent potential defects in the ISO/IEC IS
14882:1998(E) document. Issues are not to be used to request new features or other extensions.

This document contains only library issues which are actively being considered by the Library Working Group. That is,
issues which have a status of New, Open, Review, and Ready. See "C++ Standard Library Defect Report List" for issues
considered defects and "C++ Standard Library Closed Issues List" for issues considered closed.

The issues in these lists are not necessarily formal ISO Defect Reports (DR's). While some issues will eventually be
elevated to official Defect Report status, other issues will be disposed of in other ways. See Issue Status.

This document is in an experimental format designed for both viewing via a world-wide web browser and hard-copy
printing. It is available as an HTML file for browsing or PDF file for printing.

Prior to Revision 14, library issues lists existed in two slightly different versions; a Committee Version and a Public
Version. Beginning with Revision 14 the two versions were combined into a single version.

This document includes [bracketed italicized notes] as a reminder to the LWG of current progress on issues. Such notes
are strictly unofficial and should be read with caution as they may be incomplete or incorrect. Be aware that LWG support
for a particular resolution can quickly change if new viewpoints or killer examples are presented in subsequent discussions.

For the most current version of this document see http://www.dkuug.dk/jtc1/sc22/wg21. Requests for further information
about this document should include the document number above, reference ISO/IEC 14882:1998(E), and be submitted to
Information Technology Industry Council (ITI), 1250 Eye Street NW, Washington, DC 20005.

Public information as to how to obtain a copy of the C++ Standard, join the standards committee, submit an issue, or
comment on an issue can be found in the C++ FAQ at http://www.research.att.com/~austern/csc/faq.html. Public discussion
of C++ Standard related issues occurs on news:comp.std.c++.

For committee members, files available on the committee's private web site include the HTML version of the Standard
itself. HTML hyperlinks from this issues list to those files will only work for committee members who have downloaded
them into the same disk directory as the issues list files.

Library active issues list 2

Revision history

• R16: post-Toronto mailing; reflects actions taken in Toronto. Added issues 265-277.
• R15: pre-Toronto mailing. Added issues 233-264. Some small HTML formatting changes so that we pass Weblint

tests.
• R14: post-Tokyo II mailing; reflects committee actions taken in Tokyo. Added issues 228 to 232. (00-

0019R1/N1242)
• R13: pre-Tokyo II updated: Added issues 212 to 227.
• R12: pre-Tokyo II mailing: Added issues 199 to 211. (00-0003/N1226)
• R11: post-Kona mailing: Updated to reflect LWG and full committee actions in Kona (99-0048/N1224). Note

changed resolution of issues 4 and 38. Added issues 196 to 198. Closed issues list split into "defects" and "closed"
documents.

• R10: pre-Kona updated. Added proposed resolutions 83, 86, 91, 92, 109. Added issues 190 to 195. (99-
0033/D1209, 14 Oct 99)

• R9: pre-Kona mailing. Added issues 140 to 189. Issues list split into separate "active" and "closed" documents.
(99-0030/N1206, 25 Aug 99)

• R8: post-Dublin mailing. Updated to reflect LWG and full committee actions in Dublin. (99-0016/N1193, 21 Apr
99)

• R7: pre-Dublin updated: Added issues 130, 131, 132, 133, 134, 135, 136, 137, 138, 139 (31 Mar 99)
• R6: pre-Dublin mailing. Added issues 127, 128, and 129. (99-0007/N1194, 22 Feb 99)
• R5: update issues 103, 112; added issues 114 to 126. Format revisions to prepare for making list public. (30 Dec

98)
• R4: post-Santa Cruz II updated: Issues 110, 111, 112, 113 added, several issues corrected. (22 Oct 98)
• R3: post-Santa Cruz II: Issues 94 to 109 added, many issues updated to reflect LWG consensus (12 Oct 98)
• R2: pre-Santa Cruz II: Issues 73 to 93 added, issue 17 updated. (29 Sep 98)
• R1: Correction to issue 55 resolution, 60 code format, 64 title. (17 Sep 98)

Issue Status

New - The issue has not yet been reviewed by the LWG. Any Proposed Resolution is purely a suggestion from the issue
submitter, and should not be construed as the view of LWG.

Open - The LWG has discussed the issue but is not yet ready to move the issue forward. There are several possible reasons
for open status:

• Consensus may have not yet have been reached as to how to deal with the issue.
• Informal consensus may have been reached, but the LWG awaits exact Proposed Resolution wording for review.
• The LWG wishes to consult additional technical experts before proceeding.
• The issue may require further study.

A Proposed Resolution for an open issue is still not be construed as the view of LWG. Comments on the current state of
discussions are often given at the end of open issues in an italic font. Such comments are for information only and should
not be given undue importance. They do not appear in the public version.

Dup - The LWG has reached consensus that the issue is a duplicate of another issue, and will not be further dealt with. A
Rationale identities the duplicated issue's issue number.

NAD - The LWG has reached consensus that the issue is not a defect in the Standard, and the issue is ready to forward to
the full committee as a proposed record of response. A Rationale discusses the LWG's reasoning.

Review - Exact wording of a Proposed Resolution is now available for review on an issue for which the LWG previously
reached informal consensus.

Library active issues list 3

Ready - The LWG has reached consensus that the issue is a defect in the Standard, the Proposed Resolution is correct, and
the issue is ready to forward to the full committee for further action as a Defect Report (DR).

DR - (Defect Report) - The full J16 committee has voted to forward the issue to the Project Editor to be processed as a
Potential Defect Report. The Project Editor reviews the issue, and then forwards it to the WG21 Convenor, who returns it to
the full committee for final disposition. This issues list accords the status of DR to all these Defect Reports regardless of
where they are in that process.

TC - (Technical Corrigenda) - The full WG21 committee has voted to accept the Defect Report's Proposed Resolution as a
Technical Corrigenda. Action on this issue is thus complete and no further action is possible under ISO rules.

RR - (Record of Response) - The full WG21 committee has determined that this issue is not a defect in the Standard.
Action on this issue is thus complete and no further action is possible under ISO rules.

Future - In addition to the regular status, the LWG believes that this issue should be revisited at the next revision of the
standard. It is usually paired with NAD.

Issues are always given the status of New when they first appear on the issues list. They may progress to Open or Review
while the LWG is actively working on them. When the LWG has reached consensus on the disposition of an issue, the
status will then change to Dup, NAD, or Ready as appropriate. Once the full J16 committee votes to forward Ready issues
to the Project Editor, they are given the status of Defect Report (DR). These in turn may become the basis for Technical
Corrigenda (TC), or are closed without action other than a Record of Response (RR). The intent of this LWG process is
that only issues which are truly defects in the Standard move to the formal ISO DR status.

Active Issues

23. Num_get overflow result

Section: 22.2.2.1.2 lib.facet.num.get.virtuals Status: Open Submitter: Nathan Myers Date: 6 Aug 98

The current description of numeric input does not account for the possibility of overflow. This is an implicit result of
changing the description to rely on the definition of scanf() (which fails to report overflow), and conflicts with the
documented behavior of traditional and current implementations.

Users expect, when reading a character sequence that results in a value unrepresentable in the specified type, to have an
error reported. The standard as written does not permit this.

Further comments from Dietmar:

I don't feel comfortable with the proposed resolution to issue 23: It kind of simplifies the issue to much. Here is what is
going on:

Currently, the behavior of numeric overflow is rather counter intuitive and hard to trace, so I will describe it briefly:

• According to 22.2.2.1.2 (lib.facet.num.get.virtuals) paragraph 11 failbit is set if scanf() would return an
input error; otherwise a value is converted to the rules of scanf.

• scanf() is defined in terms of fscanf().
• fscanf() returns an input failure if during conversion no character matching the conversion specification could

be extracted before reaching EOF. This is the only reason for fscanf() to fail due to an input error and clearly
does not apply to the case of overflow.

Library active issues list 4

• Thus, the conversion is performed according to the rules of fscanf() which basically says that strtod,
strtol(), etc. are to be used for the conversion.

• The strtod(), strtol(), etc. functions consume as many matching characters as there are and on overflow
continue to consume matching characters but also return a value identical to the maximum (or minimum for signed
types if there was a leading minus) value of the corresponding type and set errno to ERANGE.

• Thus, according to the current wording in the standard, overflows can be detected! All what is to be done is to
check errno after reading an element and, of course, clearing errno before trying a conversion. With the
current wording, it can be detected whether the overflow was due to a positive or negative number for signed
types.

Now the proposed resultion results in not modifying the value passed as last argument if an overflow is encountered but
failbit is set. Checking errno for ERANGE still allows for detection of an overflow but not what the sign was.

Actually, my problem is not that much with the sign but this is at least making things worse... My problem is more that it is
still necessary to check errno for the error discription. Thus, I propose the following resolution:

Change paragraph 11 from

-11- Stage 3: The result of stage 2 processing can be one of

• A sequence of chars has been accumulated in stage 2 that is converted (according to the rules
of scanf) to a value of the type of val. This value is stored in val and
ios_base::goodbit is stored in err.

• The sequence of chars accumulated in stage 2 would have caused scanf to report an input
failure. ios_base::failbit is assigned to err.

to become

-11- Stage 3: The result of stage 2 processing can be one of

• A sequence of chars has been accumulated in stage 2 that is converted (according to the rules
of scanf) to a value of the type of val. This value is stored in val. If the conversion reported
an overflow error for the type of val (ie. errno would be set to ERANGE by the used
conversion function) then ios_base::failbit is stored in err, otherwise
ios_base::goodbit is stored in err.

• The sequence of chars accumulated in stage 2 would have caused scanf to report an input
failure. ios_base::failbit is assigned to err.

With this definition, overflow can be detected easily by storing a value different from the maximum value in val and
checking whether this value was modified in case failbit is set: If it was, there was an overflow error, otherwise some
other input error occured (under the conditions for the second bullet val is not changed).

Proposed Resolution:

In 22.2.2.1.2 [lib.facet.num.get.virtuals], paragraph 11, second bullet item, change

The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure.

to

Library active issues list 5

The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure, or the
value of the sequence cannot be represented in the type of _val_.

[post-Toronto: "cannot be represented" is probably wrong: infinity can be represented on an IEC559 platform, but 0.1
cannot be represented exactly. However, the alternate proposal may be wrong as well. It's not clear whether overflow (and
underflow?) should always be treated as errors. This issue requires much more thought.]

44. Iostreams use operator== on int_type values

Section: 27 [lib.input.output] Status: Open Submitter: Nathan Myers Date: 6 Aug 98

Many of the specifications for iostreams specify that character values or their int_type equivalents are compared using
operators == or !=, though in other places traits::eq() or traits::eq_int_type is specified to be used throughout. This is an
inconsistency; we should change uses of == and != to use the traits members instead.

Proposed Resolution:

[Kona: Nathan to supply proposed wording.

Tokyo: the LWG reaffirmed that this is a defect, and requires careful review of clause 27 as the changes are context
sensitive.]

49. Underspecification of ios_base::sync_with_stdio

Section: 27.4.2.4 lib.ios.members.static Status: Open Submitter: Matt Austern Date: 21 Jun 98

Two problems.

(1) 27.4.2.4 doesn't say what ios_base::sync_with_stdio(f) returns. Does it return f, or does it return the previous
synchronization state? My guess is the latter, but the standard doesn't say so.

(2) 27.4.2.4 doesn't say what it means for streams to be synchronized with stdio. Again, of course, I can make some
guesses. (And I'm unhappy about the performance implications of those guesses, but that's another matter.)

Proposed Resolution:

Change the following sentenance in 27.4.2.4 lib.ios.members.static returns clause from:

true if the standard iostream objects (27.3) are synchronized and otherwise returns false.

to:

true if the previous state of the standard iostream objects (27.3) was synchronized and otherwise returns
false.

[The LWG agrees (2) that a definition of synchronized is required. Jerry Schwarz will work by email with Matt Austern
to provide such a definition.

 Tokyo: PJP knows approximate wording, and will help Matt formulate final wording.]

Library active issues list 6

76. Can a codecvt facet always convert one internal character at a time?

Section: 22.2.1.5 lib.locale.codecvt Status: Open Submitter: Matt Austern Date: 25 Sep 98

This issue concerns the requirements on classes derived from codecvt, including user-defined classes. What are the
restrictions on the conversion from external characters (e.g. char) to internal characters (e.g. wchar_t)? Or,
alternatively, what assumptions about codecvt facets can the I/O library make?

The question is whether it's possible to convert from internal characters to external characters one internal character at a
time, and whether, given a valid sequence of external characters, it's possible to pick off internal characters one at a time.
Or, to put it differently: given a sequence of external characters and the corresponding sequence of internal characters, does
a position in the internal sequence correspond to some position in the external sequence?

To make this concrete, suppose that [first, last) is a sequence of M external characters and that [ifirst,
ilast) is the corresponding sequence of N internal characters, where N > 1 . That is, my_encoding.in(), applied to
[first, last), yields [ifirst, ilast). Now the question: does there necessarily exist a subsequence of external
characters, [first, last_1), such that the corresponding sequence of internal characters is the single character
*ifirst?

(What a "no" answer would mean is that my_encoding translates sequences only as blocks. There's a sequence of M
external characters that maps to a sequence of N internal characters, but that external sequence has no subsequence that
maps to N-1 internal characters.)

Some of the wording in the standard, such as the description of codecvt::do_max_length (22.2.1.5.2, paragraph 11)
and basic_filebuf::underflow (27.8.1.4, paragraph 3) suggests that it must always be possible to pick off internal
characters one at a time from a sequence of external characters. However, this is never explicitly stated one way or the
other.

This issue seems (and is) quite technical, but it is important if we expect users to provide their own encoding facets. This is
an area where the standard library calls user-supplied code, so a well-defined set of requirements for the user-supplied code
is crucial. Users must be aware of the assumptions that the library makes. This issue affects positioning operations on
basic_filebuf, unbuffered input, and several of codecvt's member functions.

Proposed Resolution:

[Kona: Matt Austern will attempt wording; it is very complex.]

91. Description of operator>> and getline() for string<> might cause endless loop

Section: 21.3.7.9 lib.string.io Status: Open Submitter: Nico Josuttis Date: 29 Sep 1998

Operator >> and getline() for strings read until eof() in the input stream is true. However, this might never happen, if the
stream can't read anymore without reaching EOF. So shouldn't it be changed into that it reads until !good() ?

Proposed resolution:

In 21.3.7.9 [lib.string.io], paragraph 1, last sentence "Characters are extracted and appended until any of the following
occurs:...", replace:

Library active issues list 7

 - end-of-file occurs on the input sequence;

with:

 - an attempt to extract a character fails;

In 21.3.7.9 [lib.string.io], paragraph 5, last sentence, replace :

 - end-of-file occurs on the input sequence (in which case, the getline function calls is.setstate(ios_base::eofbit)).

with:

 - an attempt to extract a character fails

In 23.3.5.3 [lib.bitset.operators], paragraph 5, last sentence, replace:

 - end-of-file occurs on the input sequence;

with:

 - an attempt to extract a character fails;

[Toronto: The issue was clarified. If characters are extracted from the streambuf (e.g. with sgetc or with
streambuf_iterator), then there is no issue: a streambuf can signal failure only by throwing an exception or by returning
eof. So the question is whether the string input operations are supposed to obtain each character using the streambuf, or
using an istream member function such as get(). The answer has implications for gcount.

We already have an explicit answer for the input operations of clause 27: see 27.6.1.1 lib.istream, paragraph 2. We also
already have an answer for bitset input, since 23.3.5.3 lib.bitset.operators, paragraph 4, says that bitset's operator>> is a
formatted input function, and includes a reference to the appropriate definition in 27.6.1.2 lib.istream.formatted.

It is only string input, in 21.3.7.9 lib.string.io, that is potentially ambiguous. The LWG believes it was clearly intended that
string's input functions obtain characters from the streambuf, rather than by using something like basic_istream::get().
Howard will provide wording.]

92. Incomplete Algorithm Requirements

Section: 25 lib.algorithms Status: Open Submitter: Nico Josuttis Date: 29 Sep 98

The standard does not state, how often a function object is copied, called, or the order of calls inside an algorithm. This may
lead to suprising/buggy behavior. Consider the following example:

class Nth { // function object that returns true for the nth element
 private:
 int nth; // element to return true for
 int count; // element counter
 public:
 Nth (int n) : nth(n), count(0) {
 }
 bool operator() (int) {
 return ++count == nth;
 }
};
....

Library active issues list 8

// remove third element
 list<int>::iterator pos;
 pos = remove_if(coll.begin(),coll.end(), // range
 Nth(3)), // remove criterion
 coll.erase(pos,coll.end());

This call, in fact removes the 3rd AND the 6th element. This happens because the usual implementation of the algorithm
copies the function object internally:

template <class ForwIter, class Predicate>
ForwIter std::remove_if(ForwIter beg, ForwIter end, Predicate op)
{
 beg = find_if(beg, end, op);
 if (beg == end) {
 return beg;
 }
 else {
 ForwIter next = beg;
 return remove_copy_if(++next, end, beg, op);
 }
}

The algorithm uses find_if() to find the first element that should be removed. However, it then uses a copy of the passed
function object to process the resulting elements (if any). Here, Nth is used again and removes also the sixth element. This
behavior compromises the advantage of function objects being able to have a state. Without any cost it could be avoided
(just implement it directly instead of calling find_if()).

Proposed resolution:

In [lib.function.objects] 20.3 Function objects add as new paragraph 6 (or insert after paragraph 1):

Option 1:

Predicates are functions or function objects that fulfill the following requirements:
 - They return a Boolean value (bool or a value convertible to bool)
 - It doesn't matter for the behavior of a predicate how often it is copied or assigned and how often it is
called.

Option 2:

- if it's a function:
 - All calls with the same argument values yield the same result.
- if it's a function object:
 - In any sequence of calls to operator () without calling any non-constant member function, all calls with
the same argument values yield the same result.
- After an assignment or copy both objects return the same result for the same values.

[Santa Cruz: The LWG believes that there may be more to this than meets the eye. It applies to all function objects,
particularly predicates. Two questions: (1) must a function object be copyable? (2) how many times is a function object
called? These are in effect questions about state. Function objects appear to require special copy semantics to make state
work, and may fail if calling alters state and calling occurs an unexpected number of times.

Dublin: Pete Becker felt that this may not be a defect, but rather something that programmers need to be educated about.
There was discussion of adding wording to the effect that the number and order of calls to function objects, including
predicates, not affect the behavior of the function object.

Library active issues list 9

Pre-Kona: Nico comments: It seems the problem is that we don't have a clear statement of "predicate" in the standard.
People including me seemed to think "a function returning a Boolean value and being able to be called by an STL
algorithm or be used as sorting criterion or ... is a predicate". But a predicate has more requirements: It should never
change its behavior due to a call or being copied. IMHO we have to state this in the standard. If you like, see section 8.1.4
of my library book for a detailed discussion.

Kona: Nico will provide wording to the effect that "unless otherwise specified, the number of copies of and calls to function
objects by algorithms is unspecified". Consider placing in 25 lib.algorithms after paragraph 9

Pre-Tokyo: Angelika Langer comments: if the resolution is that algorithms are free to copy and pass around any function
objects, then it is a valid question whether they are also allowed to change the type information from reference type to
value type.

Tokyo: Nico will discuss this further with Matt as there are multiple problems beyond the underlying problem of no
definition of "Predicate".

Post-Tokyo: Nico provided the above proposed resolutions.]

94. May library implementors add template parameters to Standard Library classes?

Section: 17.4.4 lib.conforming Status: NAD Submitter: Matt Austern Date: 22 Jan 98

Is it a permitted extension for library implementors to add template parameters to standard library classes, provided that
those extra parameters have defaults? For example, instead of defining template <class T, class Alloc =
allocator<T> > class vector; defining it as template <class T, class Alloc =
allocator<T>, int N = 1> class vector;

The standard may well already allow this (I can't think of any way that this extension could break a conforming program,
considering that users are not permitted to forward-declare standard library components), but it ought to be explicitly
permitted or forbidden.

Proposed Resolution:

Add a new subclause [presumably 17.4.4.9] following 17.4.4.8 [lib.res.on.exception.handling]:

17.4.4.9 Template Parameters

A specialization of a template class described in the C++ Standard Library behaves the same as if the
implementation declares no additional template parameters.

Footnote/ Additional template parameters with default values are thus permitted.

Add "template parameters" to the list of subclauses at the end of 17.4.4 paragraph 1 [lib.conforming].

[Kona: The LWG agreed the standard needs clarification. After discussion with John Spicer, it seems added template
parameters can be detected by a program using template-template parameters. A straw vote - "should implementors be
allowed to add template parameters?" found no consensus ; 5 - yes, 7 - no.]

[Post-Kona comment from Steve Cleary via comp.std.c++:

Library active issues list 10

I disagree [with the proposed resolution] for the following reason: consider user library code with template template
parameters. For example, a user library object may be templated on the type of underlying sequence storage to use
(deque/list/vector), since these classes all take the same number and type of template parameters; this would allow the user
to determine the performance tradeoffs of the user library object. A similar example is a user library object templated on the
type of underlying set storage (set/multiset) or map storage (map/multimap), which would allow users to change (within
reason) the semantic meanings of operations on that object.

I think that additional template parameters should be forbidden in the Standard classes. Library writers don't lose any
expressive power, and can still offer extensions because additional template parameters may be provided by a non-Standard
implementation class:

 template <class T, class Allocator = allocator<T>, int N = 1>
 class __vector
 { ... };
 template <class T, class Allocator = allocator<T> >
 class vector: public __vector<T, Allocator>
 { ... };

]

Rationale:

There is no ambiguity; the standard is clear as written. Library implementors are not permitted to add template parameters
to standard library classes. This does not fall under the "as if" rule, so it would be permitted only if the standard gave
explicit license for implementors to do this. This would require a change in the standard.

The LWG decided against making this change, because it would break user code involving template template parameters or
specializations of standard library class templates.

96. Vector<bool> is not a container

Section: 23.2.5 lib.vector.bool Status: Open Submitter: AFNOR Date: 7 Oct 98

vector<bool> is not a container as its reference and pointer types are not references and pointers.

Also it forces everyone to have a space optimization instead of a speed one.

See also: 99-0008 == N1185 Vector<bool> is Nonconforming, Forces Optimization Choice.

Proposed Resolution:

[In Santa Cruz the LWG felt that this was Not A Defect.]

[In Dublin many present felt that failure to meet Container requirements was a defect. There was disagreement as to
whether or not the optimization requirements constituted a defect.

The LWG looked at the following resolutions in some detail:

 * Not A Defect.
 * Add a note explaining that vector<bool> does not meet Container requirements.
 * Remove vector<bool>.
 * Add a new category of container requirements which vector<bool> would meet.

Library active issues list 11

 * Rename vector<bool>.

No alternative had strong, wide-spread, support and every alternative had at least one "over my dead body" response.

There was also mention of a transition scheme something like (1) add vector_bool and deprecate vector<bool> in the next
standard. (2) Remove vector<bool> in the following standard.

Modifying container requirements to permit returning proxies (thus allowing container requirements conforming
vector<bool>) was also discussed.

It was also noted that there is a partial but ugly workaround in that vector<bool> maybe further specialized with a
customer allocator.

Kona: Herb Sutter presented his paper J16/99-0035==WG21/N1211, vector<bool>: More Problems, Better Solutions.
Much discussion of a two step approach: a) deprecate, b) provide replacement under a new name. LWG straw vote on
that: 1-favor, 11-could live with, 2-over my dead body. This resolution was mentioned in the LWG report to the full
committee, where several additional committee members indicated over-my-dead-body positions.

Tokyo: Not discussed by the full LWG; no one claimed new insights and so time was more productively spent on other
issues. In private discussions it was asserted that requirements for any solution include 1) Increasing the full committee's
understanding of the problem, and 2) providing compiler vendors, authors, teachers, and of course users with specific
suggestions as to how to apply the eventual solution.]

98. Input iterator requirements are badly written

Section: 24.1.1 lib.input.iterators Status: Open Submitter: AFNOR Date: 7 Oct 98

Table 72 in 24.1.1 (lib.input.iterators) specifies semantics for *r++ of:

 { T tmp = *r; ++r; return tmp; }

This does not work for pointers and over constrains implementors.

Proposed Resolution:

Add for *r++: “To call the copy constructor for the type T is allowed but not required.”

[Dublin: Pete Becker will attempt improved wording.]

[Tokyo: The essence of the issue seems to have escaped. Pete will email Valentin to try to recapture it.]

102. Bug in insert range in associative containers

Section: 23.1.2 lib.associative.reqmts Status: Dup Submitter: AFNOR Date: 7 Oct 98

Table 69 of Containers say that a.insert(i,j) is linear if [i, j) is ordered. It seems impossible to implement, as it means that if
[i, j) = [x], insert in an associative container is O(1)!

Proposed Resolution:

Library active issues list 12

N+log (size()) if [i,j) is sorted according to value_comp()

Rationale:

Subsumed by issue 264.

103. set::iterator is required to be modifiable, but this allows modification of keys

Section: 23.1.2 lib.associative.reqmts Status: Ready Submitter: AFNOR Date: 7 Oct 98

Set::iterator is described as implementation-defined with a reference to the container requirement; the container
requirement says that const_iterator is an iterator pointing to const T and iterator an iterator pointing to T.

23.1.2 paragraph 2 implies that the keys should not be modified to break the ordering of elements. But that is not clearly
specified. Especially considering that the current standard requires that iterator for associative containers be different from
const_iterator. Set, for example, has the following:

typedef implementation defined iterator;
 // See _lib.container.requirements_

23.1 lib.container.requirements actually requires that iterator type pointing to T (table 65). Disallowing user modification of
keys by changing the standard to require an iterator for associative container to be the same as const_iterator would be
overkill since that will unnecessarily significantly restrict the usage of associative container. A class to be used as elements
of set, for example, can no longer be modified easily without either redesigning the class (using mutable on fields that have
nothing to do with ordering), or using const_cast, which defeats requiring iterator to be const_iterator. The proposed
solution goes in line with trusting user knows what he is doing.

Other Options Evaluated:

Option A. In 23.1.2 lib.associative.reqmts, paragraph 2, after first sentence, and before "In addition,...", add one line:

Modification of keys shall not change their strict weak ordering.

Option B. Add three new sentences to 23.1.2 lib.associative.reqmts:

At the end of paragraph 5: "Keys in an associative container are immutable." At the end of paragraph 6:
"For associative containers where the value type is the same as the key type, both iterator and
const_iterator are constant iterators. It is unspecified whether or not iterator and
const_iterator are the same type."

Option C. To 23.1.2 lib.associative.reqmts, paragraph 3, which currently reads:

The phrase ``equivalence of keys'' means the equivalence relation imposed by the comparison and not the
operator== on keys. That is, two keys k1 and k2 in the same container are considered to be equivalent if
for the comparison object comp, comp(k1, k2) == false && comp(k2, k1) == false.

 add the following:

For any two keys k1 and k2 in the same container, comp(k1, k2) shall return the same value whenever it
is evaluated. [Note: If k2 is removed from the container and later reinserted, comp(k1, k2) must still
return a consistent value but this value may be different than it was the first time k1 and k2 were in the

Library active issues list 13

same container. This is intended to allow usage like a string key that contains a filename, where comp
compares file contents; if k2 is removed, the file is changed, and the same k2 (filename) is reinserted,
comp(k1, k2) must again return a consistent value but this value may be different than it was the previous
time k2 was in the container.]

Proposed Resolution:

Add the following to 23.1.2 lib.associative.reqmts at the indicated location:

At the end of paragraph 3: "For any two keys k1 and k2 in the same container, calling comp(k1, k2) shall
always return the same value."

At the end of paragraph 5: "Keys in an associative container are immutable."

At the end of paragraph 6: "For associative containers where the value type is the same as the key type,
both iterator and const_iterator are constant iterators. It is unspecified whether or not
iterator and const_iterator are the same type."

Rationale:

Several arguments were advanced for and against allowing set elements to be mutable as long as the ordering was not
effected. The argument which swayed the LWG was one of safety; if elements were mutable, there would be no compile-
time way to detect of a simple user oversight which caused ordering to be modified. There was a report that this had
actually happened in practice, and had been painful to diagnose. If users need to modify elements, it is possible to use
mutable members or const_cast.

Simply requiring that keys be immutable is not sufficient, because the comparison object may indirectly (via pointers)
operate on values outside of the keys.

The types iterator and const_iterator are permitted to be different types to allow for potential future work in
which some member functions might be overloaded between the two types. No such member functions exist now, and the
LWG believes that user functionality will not be impaired by permitting the two types to be the same. A function that
operates on both iterator types can be defined for const_iterator alone, and can rely on the automatic convertion
from iterator to const_iterator.

[Tokyo: The LWG crafted the proposed resolution and rationale.]

109. Missing binders for non-const sequence elements

Section: 20.3.6 lib.binders Status: Open Submitter: Bjarne Stroustrup Date: 7 Oct 98

There are no versions of binders that apply to non-const elements of a sequence. This makes examples like for_each() using
bind2nd() on page 521 of "The C++ Programming Language (3rd)" non-conforming. Suitable versions of the binders need
to be added.

[Dublin: Nico volunteered to organize a discussion of this and related issues. Here it is:]

What is probably meant here is shown in the following example:

class Elem {
 public:
 void print (int i) const { }

Library active issues list 14

 void modify (int i) { }
};
int main()
{
 vector<Elem> coll(2);
 for_each (coll.begin(), coll.end(), bind2nd(mem_fun_ref(&Elem::print),42));
// OK
 for_each (coll.begin(), coll.end(), bind2nd(mem_fun_ref(&Elem::modify),42));
// ERROR
}

The error results from the fact that bind2nd() passes its first argument (the argument of the sequence) as constant reference.
See the following typical implementation:

template <class Operation>
class binder2nd
 : public unary_function<typename Operation::first_argument_type,
 typename Operation::result_type> {
protected:
 Operation op;
 typename Operation::second_argument_type value;
public:
 binder2nd(const Operation& o,
 const typename Operation::second_argument_type& v)
 : op(o), value(v) {}
 typename Operation::result_type
 operator()(const typename Operation::first_argument_type& x) const {
 return op(x, value);
 }
};

The solution is to overload operator () of bind2nd for non-constant arguments:

template <class Operation>
class binder2nd
 : public unary_function<typename Operation::first_argument_type,
 typename Operation::result_type> {
protected:
 Operation op;
 typename Operation::second_argument_type value;
public:
 binder2nd(const Operation& o,
 const typename Operation::second_argument_type& v)
 : op(o), value(v) {}
 typename Operation::result_type
 operator()(const typename Operation::first_argument_type& x) const {
 return op(x, value);
 }
 typename Operation::result_type
 operator()(typename Operation::first_argument_type& x) const {
 return op(x, value);
 }
};

Proposed Resolution:

In 20.3.6.1 [lib.binder.1st] in the declaration of binder1st after:

Library active issues list 15

typename Operation::result_type
 operator()(const typename Operation::second_argument_type& x) const;

insert:

typename Operation::result_type
 operator()(typename Operation::second_argument_type& x) const;

In 20.3.6.3 [lib.binder.2nd] in the declaration of binder2nd after:

typename Operation::result_type
 operator()(const typename Operation::first_argument_type& x) const;

insert:

typename Operation::result_type
 operator()(typename Operation::first_argument_type& x) const;

[Kona: The LWG discussed this at some length. It was agreed that this is a mistake in the design, but there was no
consensus on whether it was a defect in the Standard. Straw vote:

5 NAD
3 As Proposed
6 Leave open

Tokyo: The issue was not discussed.]

111. istreambuf_iterator::equal overspecified, inefficient

Section: 24.5.3.5 [lib.istreambuf.iterator::equal] Status: Open Submitter: Nathan Myers Date: 15 Oct 98

The member istreambuf_iterator<>::equal is specified to be unnecessarily inefficient. While this does not affect the
efficiency of conforming implementations of iostreams, because they can "reach into" the iterators and bypass this function,
it does affect users who use istreambuf_iterators.

The inefficiency results from a too-scrupulous definition, which requires a "true" result if neither iterator is at eof. In
practice these iterators can only usefully be compared with the "eof" value, so the extra test implied provides no benefit, but
slows down users' code.

The solution is to weaken the requirement on the function to return true only if both iterators are at eof.

Proposed Resolution:

Replace 24.5.3.5 [lib.istreambuf.iterator::equal], paragraph 1,

-1- Returns: true if and only if both iterators are at end-of-stream, or neither is at end-of-stream,
regardless of what streambuf object they use.

with

Library active issues list 16

-1- Returns: true if and only if both iterators are at end-of-stream, regardless of what streambuf object
they use.

[Toronto: most people saw no compelling reason to make this change. There was some argument that the standard already
permits this behavior, on the grounds that it is illegal to have two different istreambuf_iterators into the same
stream. A possible counterexample:

 istreambuf_iterator i(cin);
 assert(i == i);

The standard currently requires that the assertion succeeds. (Assuming that we haven't reached eof on standard input.)]

117. basic_ostream uses nonexistent num_put member functions

Section: 27.6.2.5.2 lib.ostream.inserters.arithmetic Status: Open Submitter: Matt Austern Date: 20 Nov 98

The effects clause for numeric inserters says that insertion of a value x, whose type is either bool, short, unsigned
short, int, unsigned int, long, unsigned long, float, double, long double, or const void*, is
delegated to num_put, and that insertion is performed as if through the following code fragment:

bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(), val). failed();

This doesn't work, because num_put<>::put is only overloaded for the types bool, long, unsigned long, double,
long double, and const void*. That is, the code fragment in the standard is incorrect (it is diagnosed as ambiguous
at compile time) for the types short, unsigned short, int, unsigned int, and float.

We must either add new member functions to num_put, or else change the description in ostream so that it only calls
functions that are actually there. I prefer the latter.

Proposed Resolution:

Replace 27.6.2.5.2, paragraph 1 with the following:

The classes num_get<> and num_put<> handle localedependent numeric formatting and parsing.
These inserter functions use the imbued locale value to perform numeric formatting. When val is of
type bool, long, unsigned long, double, long double, or const void*, the formatting
conversion occurs as if it performed the following code fragment:

bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(), val). failed();

When val is of type short or int the formatting conversion occurs as if it performed the following
code fragment:

bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >

Library active issues list 17

 >(getloc()).put(*this, *this, fill(), static_cast<long>(val)).
failed();

When val is of type unsigned short or unsigned int the formatting conversion occurs as if it
performed the following code fragment:

bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(), static_cast<unsigned
long>(val)). failed();

When val is of type float the formatting conversion occurs as if it performed the following code
fragment:

bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(), static_cast<double>(val)).
failed();

[Dublin: The LWG feels this is probably correct, but would like to review it one more time with additional technical
experts. Issue 118 is related.

[Toronto: This resolution may not be adequate for hex and octal output of signed int and signed short: PJP believes they
should be converted to unsigned int and unsigned short first.]

118. basic_istream uses nonexistent num_get member functions

Section: 27.6.1.2.2 lib.istream.formatted.arithmetic Status: Ready Submitter: Matt Austern Date: 20 Nov 98

Formatted input is defined for the types short, unsigned short, int, unsigned int, long, unsigned long,
float, double, long double, bool, and void*. According to section 27.6.1.2.2, formatted input of a value x is
done as if by the following code fragment:

typedef num_get< charT,istreambuf_iterator<charT,traits> > numget;
iostate err = 0;
use_facet< numget >(loc).get(*this, 0, *this, err, val);
setstate(err);

According to section 22.2.2.1.1 lib.facet.num.get.members, however, num_get<>::get() is only overloaded for the
types bool, long, unsigned short, unsigned int, unsigned long, unsigned long, float, double,
long double, and void*. Comparing the lists from the two sections, we find that 27.6.1.2.2 is using a nonexistent
function for types short and int.

Proposed Resolution:

In 27.6.1.2.2 Arithmetic Extractors [lib.istream.formatted.arithmetic], remove the two lines (1st and 3rd) which read:

operator>>(short& val);
...
operator>>(int& val);

And add the following at the end of that section (27.6.1.2.2) :

Library active issues list 18

operator>>(short& val);

The conversion occurs as if performed by the following code fragment (using the same notation as for the
preceding code fragment):

 typedef num_get< charT,istreambuf_iterator<charT,traits> > numget;
 iostate err = 0;
 long lval;
 use_facet< numget >(loc).get(*this, 0, *this, err, lval);
 if (err == 0
 && (lval < numeric_limits<short>::min() ||
numeric_limits<short>::max() < lval))
 err = ios_base::failbit;
 setstate(err);
operator>>(int& val);

The conversion occurs as if performed by the following code fragment (using the same notation as for the
preceding code fragment):

 typedef num_get< charT,istreambuf_iterator<charT,traits> > numget;
 iostate err = 0;
 long lval;
 use_facet< numget >(loc).get(*this, 0, *this, err, lval);
 if (err == 0
 && (lval < numeric_limits<int>::min() ||
numeric_limits<int>::max() < lval))
 err = ios_base::failbit;
 setstate(err);

[Dublin: What about do_get? Aren't two functions need there too? Also, the LWG would like to see full wording for the
Proposed Resolution.

Post-Tokyo: PJP provided the above wording.]

120. Can an implementor add specializations?

Section: 17.4.3.1 lib.reserved.names Status: Open Submitter: Judy Ward Date: 15 Dec 1998

Section 17.4.3.1 says:

It is undefined for a C++ program to add declarations or definitions to namespace std or namespaces
within namespace std unless otherwise specified. A program may add template specializations for any
standard library template to namespace std. Such a specialization (complete or partial) of a standard
library template results in undefined behavior unless the declaration depends on a user-defined name of
external linkage and unless the specialization meets the standard library requirements for the original
template...

This implies that it is ok for library users to add specializations, but not implementors. A user program can actually detect
this, for example, the following manual instantiation will not compile if the implementor has made ctype<wchar_t> a
specialization:

#include <locale>

Library active issues list 19

#include <wchar.h>

template class std::ctype<wchar_t>; // can't be specialization

Lib-7047 [Matt Austern] comments:

The status quo is unclear, and probably contradictory. This issue applies both to explicit instantiations and to
specializations, since it is not permitted to provide both a specialization and an explicit instantiation.

The specialization issue is actually more serious than the instantiation one. One could argue that there is a consistent status
quo as far as instantiations go, but one can't argue that in the case of specializations. The standard must either (1) give
library implementors license to provide explicit specializations of any library template; or (2) give a complete list of exactly
which specializations must be provided, and forbid library implementors from providing any specializations not on that list.
At present the standard does neither.

Proposed Resolution:

Append to 17.4.3.1 lib.reserved.names paragraph 1:

A program may manually instantiate any templates in the standard library only if the declaration depends
on a user-defined name of external linkage and the instantiation meets the standard library requirements
for the original template.

[Kona: Wording should be added to the effect that users will not be allowed to manual instantiate any templates in the
standard library. Judy will work on the proposed wording. Also see issue 177.

Post-Tokyo: Judy Ward provided the above wording.]

[Toronto: The LWG is concerned about the scope of this proposed resolution: manually instantiating standard library
templates is a common method for reducing compilation times. One possible alternative is a core change: allow (and
ignore) manual instantiation requests when there is an explicit specialization. Another possible alternative is requiring that
library implementors provide a list of specializations and explicit instantiations as part of their documentation. Judy has
volunteered to provide wording for the latter alternative.]

123. Should valarray helper arrays fill functions be const?

Section: 26.3.5.4 lib.slice.arr.fill, 26.3.7.4 lib.gslice.array.fill, 26.3.8.4 lib.mask.array.fill, 26.3.9.4 lib.indirect.array..fill
Status: Open Submitter: Judy Ward Date: 15 Dec 1998

One of the operator= in the valarray helper arrays is const and one is not. For example, look at slice_array. This operator=
in Section 26.3.5.2 lib.slice.arr.assign is const:

 void operator=(const valarray<T>&) const;

but this one in Section 26.3.5.4 lib.slice.arr.fill, is not:

 void operator=(const T&);

The description of the semantics for these two functions is similar.

Proposed Resolution:

Library active issues list 20

Make the operator=(const T&) versions of slice_array, gslice_array, indirect_array, and mask_array const
member functions.

[Dublin: Pete Becker spoke to Daveed Vandevoorde about this and will work on a proposed resolution.

Tokyo: Discussed together with the AFNOR paper 00-0023/N1246. The current helper slices now violate language rules
due to a core language change (but most compilers don't check, so the violation has previously gone undetected). Major
surgery is being asked for in this and other valarray proposals (see issue 77 Rationale), and a complete design review is
needed before making piecemeal changes. Robert Klarer will work on formulating the issues.]

136. seekp, seekg setting wrong streams?

Section: 27.6.1.3 lib.istream.unformatted Status: Ready Submitter: Howard Hinnant Date: 6 Mar 99

I may be misunderstanding the intent, but should not seekg set only the input stream and seekp set only the output stream?
The description seems to say that each should set both input and output streams. If that's really the intent, I withdraw this
proposal.

Proposed Resolution:

In section 27.6.1.3 change:

basic_istream<charT,traits>& seekg(pos_type pos);
Effects: If fail() != true, executes rdbuf()->pubseekpos(pos).

To:

basic_istream<charT,traits>& seekg(pos_type pos);
Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, ios_base::in).

In section 27.6.1.3 change:

basic_istream<charT,traits>& seekg(off_type& off, ios_base::seekdir dir);
Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir).

To:

basic_istream<charT,traits>& seekg(off_type& off, ios_base::seekdir dir);
Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::in).

In section 27.6.2.4, paragraph 2 change:

-2- Effects: If fail() != true, executes rdbuf()->pubseekpos(pos).

To:

-2- Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, ios_base::out).

In section 27.6.2.4, paragraph 4 change:

-4- Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir).

Library active issues list 21

To:

-4- Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir,
ios_base::out).

[Dublin: Dietmar Kühl thinks this is probably correct, but would like the opinion of more iostream experts before taking
action.

Tokyo: Reviewed by the LWG. PJP noted that although his docs are incorrect, his implementation already implements the
Proposed Resolution.

Post-Tokyo: Matt Austern comments:

Is it a problem with basic_istream and basic_ostream, or is it a problem with basic_stringbuf?

We could resolve my issue either by changing basic_istream and basic_ostream, or by changing basic_stringbuf. I actually
prefer the latter change (or maybe both changes): I don't see any reason for the standard to require that std::stringbuf
s(std::string("foo"), std::ios_base::in); s.pubseekoff(0, std::ios_base::beg); must fail.

This requirement is actually a bit weird. There's no similar requirement for basic_streambuf<>::seekpos, or for
basic_filebuf<>::seekoff or basic_filebuf<>::seekpos.]

153. Typo in narrow() semantics

Section:: 22.2.1.3.2 lib.facet.ctype.char.members Status: Ready Submitter: Dietmar Kühl Date: 20 Jul 99

The description of the array version of narrow() (in paragraph 11) is flawed: There is no member do_narrow() which
takes only three arguments because in addition to the range a default character is needed.

Proposed resolution:

Change 22.2.1.3.2 lib.facet.ctype.char.members paragraph 10 and 11 from:

 char narrow(char c, char /*dfault*/) const;
 const char* narrow(const char* low, const char* high,
 char /*dfault*/, char* to) const;
 Returns: do_narrow(low, high, to).

to:

 char narrow(char c, char dfault) const;
 const char* narrow(const char* low, const char* high,
 char dfault, char* to) const;
 Returns: do_narrow(c, dfault) or
 do_narrow(low, high, dfault, to), respectively.

[Kona: 1) the problem occurs in additional places, 2) a user defined version could be different.

Post-Tokyo: Dietmar provided the above wording at the request of the LWG. He could find no other places the problem
occurred. He asks for clarification of the Kona "a user defined version..." comment above. Perhaps it was a circuitous way
of saying "dfault" needed to be uncommented?]

Library active issues list 22

165. xsputn(), pubsync() never called by basic_ostream members?

Section:: 27.6.2.1 lib.ostream Status: Ready Submitter: Dietmar Kühl Date: 20 Jul 99

Paragraph 2 explicitly states that none of the basic_ostream functions falling into one of the groups "formatted output
functions" and "unformatted output functions" calls any stream buffer function which might call a virtual function other
than overflow(). Basically this is fine but this implies that sputn() (this function would call the virtual function
xsputn()) is never called by any of the standard output functions. Is this really intended? At minimum it would be
convenient to call xsputn() for strings... Also, the statement that overflow() is the only virtual member of
basic_streambuf called is in conflict with the definition of flush() which calls rdbuf()->pubsync() and
thereby the virtual function sync() (flush() is listed under "unformatted output functions").

In addition, I guess that the sentence starting with "They may use other public members of basic_ostream ..." probably
was intended to start with "They may use other public members of basic_streamuf..." although the problem with the
virtual members exists in both cases.

I see two obvious resolutions:

1. state in a footnote that this means that xsputn() will never be called by any ostream member and that this is
intended.

2. relax the restriction and allow calling overflow() and xsputn(). Of course, the problem with flush() has
to be resolved in some way.

Proposed resolution:

Change the last sentence of 27.6.2.1 (lib.ostream) paragraph 2 from:

They may use other public members of basic_ostream except that they do not invoke any virtual members
of rdbuf() except overflow().

to:

They may use other public members of basic_ostream except that they shall not invoke any virtual
members of rdbuf() except overflow(), xsputn(), and sync().

[Kona: the LWG believes this is a problem. Wish to ask Jerry or PJP why the standard is written this way.

Post-Tokyo: Dietmar supplied wording at the request of the LWG. He comments: The rules can be made a little bit more
specific if necessary be explicitly spelling out what virtuals are allowed to be called from what functions and eg to state
specifically that flush() is allowed to call sync() while other functions are not.]

167. Improper use of traits_type::length()

Section:: 27.6.2.5.4 lib.ostream.inserters.character Status: Review Submitter: Dietmar Kühl Date: 20 Jul 99

Paragraph 4 states that the length is determined using traits::length(s). Unfortunately, this function is not defined
for example if the character type is wchar_t and the type of s is char const*. Similar problems exist if the character
type is char and the type of s is either signed char const* or unsigned char const*.

Library active issues list 23

Proposed resolution:

Change 27.6.2.5.4 (lib.ostream.inserters.character) paragraph 4 from:

Effects: Behaves like an formatted inserter (as described in lib.ostream.formatted.reqmts) of out. After a
sentry object is constructed it inserts characters. The number of characters starting at s to be inserted is
traits::length(s). Padding is determined as described in lib.facet.num.put.virtuals. The traits::length(s)
characters starting at s are widened using out.widen (lib.basic.ios.members). The widened characters and
any required padding are inserted into out. Calls width(0).

to:

Effects: Behaves like an formatted inserter (as described in lib.ostream.formatted.reqmts) of out. After a
sentry object is constructed it inserts characters. The number len of characters starting at s to be inserted
is

- traits::length((const char*)s) if the second argument is of type const charT*
- char_traits<char>::length(s) if the second argument is of type const char*, const signed char*, or const
unsigned char* and and charT is not char.

Padding is determined as described in lib.facet.num.put.virtuals. The len characters starting at s are
widened using out.widen (lib.basic.ios.members). The widened characters and any required padding are
inserted into out. Calls width(0).

[Kona: It is clear to the LWG there is a defect here. Dietmar will supply specific wording.

Post-Tokyo: Dietmar supplied the above wording.]

[Toronto: The original proposed resolution involved char_traits<signed char> and char_traits<unsigned char>. There
was strong opposition to requiring that library implementors provide those specializations of char_traits.

171. Strange seekpos() semantics due to joint position

Section:: 27.8.1.4 lib.filebuf.virtuals Status: Ready Submitter: Dietmar Kühl Date: 20 Jul 99

Overridden virtual functions, seekpos()

In 27.8.1.1 (lib.filebuf) paragraph 3, it is stated that a joint input and output position is maintained by basic_filebuf.
Still, the description of seekpos() seems to talk about different file positions. In particular, it is unclear (at least to me)
what is supposed to happen to the output buffer (if there is one) if only the input position is changed. The standard seems to
mandate that the output buffer is kept and processed as if there was no positioning of the output position (by changing the
input position). Of course, this can be exactly what you want if the flag ios_base::ate is set. However, I think, the
standard should say something like this:

• If (which & mode) == 0 neither read nor write position is changed and the call fails. Otherwise, the joint
read and write position is altered to correspond to sp.

• If there is an output buffer, the output sequences is updated and any unshift sequence is written before the position
is altered.

• If there is an input buffer, the input sequence is updated after the position is altered.

Plus the appropriate error handling, that is...

Library active issues list 24

Proposed resolution:

Change the unnumbered paragraph in 27.8.1.4 (lib.filebuf.virtuals) before paragraph 14 from:

pos_type seekpos(pos_type sp, ios_base::openmode = ios_base::in | ios_base::out);

Alters the file position, if possible, to correspond to the position stored in sp (as described below).

- if (which&ios_base::in)!=0, set the file position to sp, then update the input sequence

- if (which&ios_base::out)!=0, then update the output sequence, write any unshift sequence, and set the
file position to sp.

to:

pos_type seekpos(pos_type sp, ios_base::openmode = ios_base::in | ios_base::out);

Alters the file position, if possible, to correspond to the position stored in sp (as described below).
Altering the file position performs as follows:

1. if (om & ios_base::out)!=0, then update the output sequence and write any unshift sequence;

2. set the file position to sp;

3. if (om & ios_base::in)!=0, then update the input sequence;

where om is the open mode passed to the last call to open(). The operation fails if is_open() returns false.

[Kona: Dietmar is working on a proposed resolution.]

[Post-Tokyo: Dietmar supplied the above wording.]

179. Comparison of const_iterators to iterators doesn't work

Section: 23.1 lib.container.requirements Status: Ready Submitter: Judy Ward Date: 2 Jul 1998

Currently the following will not compile on two well-known standard library implementations:

#include <set>
using namespace std;

void f(const set<int> &s)
{
 set<int>::iterator i;
 if (i==s.end()); // s.end() returns a const_iterator
}

The reason this doesn't compile is because operator== was implemented as a member function of the nested classes
set:iterator and set::const_iterator, and there is no conversion from const_iterator to iterator. Surprisingly, (s.end() == i)
does work, though, because of the conversion from iterator to const_iterator.

Library active issues list 25

I don't see a requirement anywhere in the standard that this must work. Should there be one? If so, I think the requirement
would need to be added to the tables in section 24.1.1. I'm not sure about the wording. If this requirement existed in the
standard, I would think that implementors would have to make the comparison operators non-member functions.

This issues was also raised on comp.std.c++ by Darin Adler. The example given was:

bool check_equal(std::deque<int>::iterator i,
std::deque<int>::const_iterator ci)
{
return i == ci;
}

[pre-Toronto: John Potter made the following comment:]

In case nobody has noticed, accepting it will break reverse_iterator.

The fix is to make the comparison operators templated on two types.

 template <class Iterator1, class Iterator2>
 bool operator== (reverse_iterator<Iterator1> const& x,
 reverse_iterator<Iterator2> const& y);

Obviously: return x.base() == y.base();

Currently, no reverse_iterator to const_reverse_iterator compares are valid.

BTW, I think the issue is in support of bad code. Compares should be between two iterators of the same
type. All std::algorithms require the begin and end iterators to be of the same type.

Proposed Resolution:

In section 23.1 (lib.container.requirements) after paragraph 7 add:

It is possible to mix iterators and const_iterators in iterator comparison operations.

[Kona: The LWG does wish the example to work. Judy will provide wording.]

[Post-Tokyo: Judy supplied the above wording at the request of the LWG.]

[Toronto: The LWG believes it is clear that the above wording applies only to the nested types X::iterator and
X::const_iterator. There is no requirement that X::reverse_iterator and
X::const_reverse_iterator can be mixed. If mixing them is considered important, that's a separate issue.]

182. Ambiguous references to size_t

Section: 17 lib.library Status: Review Submitter: Al Stevens Date: 15 Aug 99

Many references to size_t throughout the document omit the std:: namespace qualification.

Library active issues list 26

For example, 17.4.3.4 [lib.replacement.functions] paragraph 2:

— operator new(size_t)
— operator new(size_t, const std::nothrow_t&)
— operator new[](size_t)
— operator new[](size_t, const std::nothrow_t&)

Proposed resolution:

In 17.4.3.4 [lib.replacement.functions] paragraph 2: replace:

- operator new(size_t)
- operator new(size_t, const std::nothrow_t&)
- operator new[](size_t)
- operator new[](size_t, const std::nothrow_t&)

by:

- operator new(std::size_t)
- operator new(std::size_t, const std::nothrow_t&)
- operator new[](std::size_t)
- operator new[](std::size_t, const std::nothrow_t&)

In [lib.allocator.requirements] 20.1.5, paragraph 4: replace:

The typedef members pointer, const_pointer, size_type, and difference_type are required to be T*, T
const*, size_t, and ptrdiff_t, respectively.

 by:

The typedef members pointer, const_pointer, size_type, and difference_type are required to be T*, T
const*, std::size_t, and std::ptrdiff_t, respectively.

In [lib.allocator.members] 20.4.1.1, paragraphs 3 and 6: replace:

3 Notes: Uses ::operator new(size_t) (18.4.1).

6 Note: the storage is obtained by calling ::operator new(size_t), but it is unspecified when or how often
this function is called. The use of hint is unspecified, but intended as an aid to locality if an
implementation so desires.

by:

3 Notes: Uses ::operator new(std::size_t) (18.4.1).

6 Note: the storage is obtained by calling ::operator new(std::size_t), but it is unspecified when or how
often this function is called. The use of hint is unspecified, but intended as an aid to locality if an
implementation so desires.

In [lib.char.traits.require] 21.1.1, paragraph 1: replace:

In Table 37, X denotes a Traits class defining types and functions for the character container type CharT;
c and d denote values of type CharT; p and q denote values of type const CharT*; s denotes a value of

Library active issues list 27

type CharT*; n, i and j denote values of type size_t; e and f denote values of type X::int_type; pos denotes
a value of type X::pos_type; and state denotes a value of type X::state_type.

by:

In Table 37, X denotes a Traits class defining types and functions for the character container type CharT;
c and d denote values of type CharT; p and q denote values of type const CharT*; s denotes a value of
type CharT*; n, i and j denote values of type std::size_t; e and f denote values of type X::int_type; pos
denotes a value of type X::pos_type; and state denotes a value of type X::state_type.

In [lib.char.traits.require] 21.1.1, table 37: replace the return type of X::length(p): "size_t" by "std::size_t".

In [lib.std.iterator.tags] 24.3.3, paragraph 2: replace:
 typedef ptrdiff_t difference_type;
by:
 typedef std::ptrdiff_t difference_type;

In [lib.locale.ctype] 22.2.1.1 put namespace std { ...} around the declaration of template <class charT> class ctype.

In [lib.iterator.traits] 24.3.1, paragraph 2 put namespace std { ...} around the declaration of:

 template<class Iterator> struct iterator_traits
 template<class T> struct iterator_traits<T*>
 template<class T> struct iterator_traits<const T*>

Rationale:

The LWG believes correcting names like size_t and ptrdiff_t to std::size_t and std::ptrdiff_t to be
essentially editorial. The issue is treated as a Defect Report to make explicit the Project Editor's authority to make this
change.

[Post-Tokyo: Nico Josuttis provided the above wording at the request of the LWG.]

[Toronto: This is tangentially related to issue 229, but only tangentially: the intent of this issue is to address use of the
name size_t in contexts outside of namespace std, such as in the description of ::operator new. The proposed
changes should be reviewed to make sure they are correct.]

183. I/O stream manipulators don't work for wide character streams

Section: 27.6.3 lib.std.manip Status: Ready Submitter: Andy Sawyer Date: 7 Jul 99

27.6.3 [lib.std.manip] paragraph 3 says (clause numbering added for exposition):

Returns: An object s of unspecified type such that if [1] out is an (instance of) basic_ostream then the
expression out<<s behaves as if f(s) were called, and if [2] in is an (instance of) basic_istream then the
expression in>>s behaves as if f(s) were called. Where f can be defined as: ios_base& f(ios_base& str,
ios_base::fmtflags mask) { // reset specified flags str.setf(ios_base::fmtflags(0), mask); return str; } [3]
The expression out<<s has type ostream& and value out. [4] The expression in>>s has type istream& and
value in.

Given the definitions [1] and [2] for out and in, surely [3] should read: "The expression out << s has type basic_ostream&
..." and [4] should read: "The expression in >> s has type basic_istream& ..."

Library active issues list 28

If the wording in the standard is correct, I can see no way of implementing any of the manipulators so that they will work
with wide character streams.

e.g. wcout << setbase(16);

Must have value 'wcout' (which makes sense) and type 'ostream&' (which doesn't).

The same "cut'n'paste" type also seems to occur in Paras 4,5,7 and 8. In addition, Para 6 [setfill] has a similar error, but
relates only to ostreams.

I'd be happier if there was a better way of saying this, to make it clear that the value of the expression is "the same
specialization of basic_ostream as out"&

Proposed resolution:

Replace section 27.6.3 [lib.std.manip] except paragraph 1 with the following:

2- The type designated smanip in each of the following function descriptions is implementation-specified
and may be different for each function.

smanip resetiosflags(ios_base::fmtflags mask);

-3- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT,traits>
then the expression out<<s behaves as if f(s, mask) were called, or if in is an instance of
basic_istream<charT,traits> then the expression in>>s behaves as if f(s, mask) were called. The function f
can be defined as:*

[Footnote: The expression cin >> resetiosflags(ios_base::skipws) clears ios_base::skipws in the format
flags stored in the basic_istream<charT,traits> object cin (the same as cin >> noskipws), and the
expression cout << resetiosflags(ios_base::showbase) clears ios_base::showbase in the format flags stored
in the basic_ostream<charT,traits> object cout (the same as cout << noshowbase). --- end foonote]

 ios_base& f(ios_base& str, ios_base::fmtflags mask)
 {
 // reset specified flags
 str.setf(ios_base::fmtflags(0), mask);
 return str;
 }

The expression out<<s has type basic_ostream<charT,traits>& and value out. The expression in>>s has
type basic_istream<charT,traits>& and value in.

 smanip setiosflags(ios_base::fmtflags mask);

-4- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT,traits>
then the expression out<<s behaves as if f(s, mask) were called, or if in is an instance of
basic_istream<charT,traits> then the expression in>>s behaves as if f(s, mask) were called. The function f
can be defined as:

 ios_base& f(ios_base& str, ios_base::fmtflags mask)
 {
 // set specified flags
 str.setf(mask);
 return str;
 }

Library active issues list 29

The expression out<<s has type basic_ostream<charT,traits>& and value out. The expression in>>s has
type basic_istream<charT,traits>& and value in.

smanip setbase(int base);

-5- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT,traits>
then the expression out<<s behaves as if f(s, base) were called, or if in is an instance of
basic_istream<charT,traits> then the expression in>>s behaves as if f(s, base) were called. The function f
can be defined as:

 ios_base& f(ios_base& str, int base)
 {
 // set basefield
 str.setf(base == 8 ? ios_base::oct :
 base == 10 ? ios_base::dec :
 base == 16 ? ios_base::hex :
 ios_base::fmtflags(0), ios_base::basefield);
 return str;
 }

The expression out<<s has type basic_ostream<charT,traits>& and value out. The expression in>>s has
type basic_istream<charT,traits>& and value in.

smanip setfill(char_type c);

-6- Returns: An object s of unspecified type such that if out is (or is derived from)
basic_ostream<charT,traits> and c has type charT then the expression out<<s behaves as if f(s, c) were
called. The function f can be defined as:

 template<class charT, class traits>
 basic_ios<charT,traits>& f(basic_ios<charT,traits>& str, charT c)
 {
 // set fill character
 str.fill(c);
 return str;
 }

The expression out<<s has type basic_ostream<charT,traits>& and value out.

smanip setprecision(int n);

-7- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT,traits>
then the expression out<<s behaves as if f(s, n) were called, or if in is an instance of
basic_istream<charT,traits> then the expression in>>s behaves as if f(s, n) were called. The function f can
be defined as:

 ios_base& f(ios_base& str, int n)
 {
 // set precision
 str.precision(n);
 return str;
 }

The expression out<<s has type basic_ostream<charT,traits>& and value out. The expression in>>s has
type basic_istream<charT,traits>& and value in
.
smanip setw(int n);

Library active issues list 30

-8- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT,traits>
then the expression out<<s behaves as if f(s, n) were called, or if in is an instance of
basic_istream<charT,traits> then the expression in>>s behaves as if f(s, n) were called. The function f can
be defined as:

 ios_base& f(ios_base& str, int n)
 {
 // set width
 str.width(n);
 return str;
 }

The expression out<<s has type basic_ostream<charT,traits>& and value out. The expression in>>s has
type basic_istream<charT,traits>& and value in.

[Kona: Andy Sawyer and Beman Dawes will work to improve the wording of the proposed resolution.

Tokyo - The LWG noted that issue 216 involves the same paragraphs.

Post-Tokyo: The issues list maintainer combined the proposed resolution of this issue with the proposed resolution for
issue 216 as they both involved the same paragraphs, and were so intertwined that dealing with them separately appear
fraught with error.

The full text was supplied by Bill Plauger; it was cross checked against changes supplied by Andy Sawyer. It should be
further checked by the LWG.]

184. numeric_limits<bool> wording problems

Section: 18.2.1.5 lib.numeric.special Status: Ready Submitter: Gabriel Dos Reis Date: 21 Jul 99

bools are defined by the standard to be of integer types, as per 3.9.1/7 [basic.fundamental]. However "integer types" seems
to have a special meaning for the author of 18.2. The net effect is an unclear and confusing specification for
numeric_limits<bool> as evidenced below.

18.2.1.2/7 says numeric_limits<>::digits is, for built-in integer types, the number of non-sign bits in the representation.

4.5/4 states that a bool promotes to int ; whereas 4.12/1 says any non zero arithmetical value converts to true.

I don't think it makes sense at all to require numeric_limits<bool>::digits and numeric_limits<bool>::digits10 to be
meaningful.

The standard defines what constitutes a signed (resp. unsigned) integer types. It doesn't categorize bool as being signed or
unsigned. And the set of values of bool type has only two elements.

I don't think it makes sense to require numeric_limits<bool>::is_signed to be meaningful.

18.2.1.2/18 for numeric_limits<integer_type>::radix says:

For integer types, specifies the base of the representation.186)

This disposition is at best misleading and confusing for the standard requires a "pure binary numeration system" for integer
types as per 3.9.1/7

Library active issues list 31

The footnote 186) says: "Distinguishes types with base other than 2 (e.g BCD)." This also erroneous as the standard never
defines any integer types with base representation other than 2.

Furthermore, numeric_limits<bool>::is_modulo and numeric_limits<bool>::is_signed have similar problems.

Proposed resolution:

Append to the end of 18.2.1.5 [lib.numeric.special]:

The specialization for bool shall be provided as follows:

 namespace std {
 template<> class numeric_limits<bool> {
 public:
 static const bool is_specialized = true;
 static bool min() throw() { return false; }
 static bool max() throw() { return true; }

 static const int digits = 1;
 static const int digits10 = 0;
 static const bool is_signed = false;
 static const bool is_integer = true;
 static const bool is_exact = true;
 static const int radix = 2;
 static bool epsilon() throw() { return 0; }
 static bool round_error() throw() { return 0; }

 static const int min_exponent = 0;
 static const int min_exponent10 = 0;
 static const int max_exponent = 0;
 static const int max_exponent10 = 0;

 static const bool has_infinity = false;
 static const bool has_quiet_NaN = false;
 static const bool has_signaling_NaN = false;
 static const float_denorm_style has_denorm = denorm_absent;
 static const bool has_denorm_loss = false;
 static bool infinity() throw() { return 0; }
 static bool quiet_NaN() throw() { return 0; }
 static bool signaling_NaN() throw() { return 0; }
 static bool denorm_min() throw() { return 0; }

 static const bool is_iec559 = false;
 static const bool is_bounded = true;
 static const bool is_modulo = false;

 static const bool traps = false;
 static const bool tinyness_before = false;
 static const float_round_style round_style =
round_toward_zero;
 };
 }

[Tokyo: The LWG desires wording that specifies exact values rather than more general wording in the original proposed
resolution..

Post-Tokyo: At the request of the LWG in Tokyo, Nico Josuttis provided the above wording.]

Library active issues list 32

185. Questionable use of term "inline"

Section: 20.3 lib.function.objects Status: Ready Submitter: UK Panel Date: 26 Jul 99

Paragraph 4 of 20.3 [lib.function.objects] says:

 [Example: To negate every element of a: transform(a.begin(), a.end(), a.begin(), negate<double>()); The
corresponding functions will inline the addition and the negation. end example]

(Note: The "addition" referred to in the above is in para 3) we can find no other wording, except this (non-normative)
example which suggests that any "inlining" will take place in this case.

Indeed both:

17.4.4.3 Global Functions [lib.global.functions] 1 It is unspecified whether any global functions in the
C++ Standard Library are defined as inline (7.1.2).

and

17.4.4.4 Member Functions [lib.member.functions] 1 It is unspecified whether any member functions in
the C++ Standard Library are defined as inline (7.1.2).

take care to state that this may indeed NOT be the case.

Thus the example "mandates" behavior that is explicitly not required elsewhere.

Proposed resolution:

In 20.3 [lib.function.objects] paragraph 1, remove the sentence:

They are important for the effective use of the library.

Remove 20.3 [lib.function.objects] paragraph 2, which reads:

Using function objects together with function templates increases the expressive power of the library as
well as making the resulting code much more efficient.

In 20.3 [lib.function.objects] paragraph 4, remove the sentence:

The corresponding functions will inline the addition and the negation.

[Kona: The LWG agreed there was a defect.

Tokyo: The LWG crafted the proposed resolution.]

186. bitset::set() second parameter should be bool

Section: 23.3.5.2 lib.bitset.members Status: Ready Submitter: Darin Adler Date: 13 Aug 99

Library active issues list 33

In section 23.3.5.2 [lib.bitset.members], paragraph 13 defines the bitset::set operation to take a second parameter of type
int. The function tests whether this value is non-zero to determine whether to set the bit to true or false. The type of this
second parameter should be bool. For one thing, the intent is to specify a Boolean value. For another, the result type from
test() is bool. In addition, it's possible to slice an integer that's larger than an int. This can't happen with bool, since
conversion to bool has the semantic of translating 0 to false and any non-zero value to true.

Proposed resolution:

In 23.3.5[lib.template.bitset] Para 1 Replace:

bitset<N>& set(size_t pos, int val = true);
With:

bitset<N>& set(size_t pos, bool val = true);

In 23.3.5.2[lib.bitset.members] Para 12(.5) Replace:

bitset<N>& set(size_t pos, int val = 1);
With:

bitset<N>& set(size_t pos, bool val = true);

[Kona: The LWG agrees with the description. Andy Sawyers will work on better P/R wording.

Post-Tokyo: Andy provided the above wording.]

187. iter_swap underspecified

Section: 25.2.2 lib.alg.swap Status: Open Submitter: Andrew Koenig Date: 14 Aug 99

The description of iter_swap in 25.2.2 paragraph 7,says that it ``exchanges the values'' of the objects to which two iterators
refer.

What it doesn't say is whether it does so using swap or using the assignment operator and copy constructor.

This question is an important one to answer, because swap is specialized to work efficiently for standard containers.
For example:

vector<int> v1, v2;
iter_swap(&v1, &v2);

Is this call to iter_swap equivalent to calling swap(v1, v2)? Or is it equivalent to

{
vector<int> temp = v1;
v1 = v2;
v2 = temp;
}

The first alternative is O(1); the second is O(n).

A LWG member, Dave Abrahams, comments:

Not an objection necessarily, but I want to point out the cost of that requirement:

Library active issues list 34

iter_swap(list<T>::iterator, list<T>::iterator)

can currently be specialized to be more efficient than iter_swap(T*,T*) for many T (by using splicing).
Your proposal would make that optimization illegal.

[Kona: The LWG notes the original need for iter_swap was proxy iterators which are no longer permitted.]

Proposed resolution:

Change the effect clause of iter_swap in 25.2.2 paragraph 7 from:

Exchanges the values pointed to by the two iterators a and b.

to

swap(*a, *b).

[post-Toronto: The LWG is concerned about possible overspecification: there may be cases, such as Dave Abrahams's
example above, and such as vector<bool>'s iterators, where it makes more sense for iter_swap to do something other than
swap. If performance is a concern, it may be better to have explicit complexity requirements than to say how iter_swap
should be implemented.]

197. max_size() underspecified

Section: 20.1.5 lib.allocator.requirements, 23.1 lib.container.requirements Status: Review Submitter: Andy Sawyer
Date: 21 Oct 99

Must the value returned by max_size() be unchanged from call to call?

Must the value returned from max_size() be meaningful?

Possible meanings identified in lib-6827:

1) The largest container the implementation can support given "best case" conditions - i.e. assume the run-time platform is
"configured to the max", and no overhead from the program itself. This may possibly be determined at the point the library
is written, but certainly no later than compile time.

2) The largest container the program could create, given "best case" conditions - i.e. same platform assumptions as (1), but
take into account any overhead for executing the program itself. (or, roughly "storage=storage-sizeof(program)"). This does
NOT include any resource allocated by the program. This may (or may not) be determinable at compile time.

3) The largest container the current execution of the program could create, given knowledge of the actual run-time
platform, but again, not taking into account any currently allocated resource. This is probably best determined at program
start-up.

4) The largest container the current execution program could create at the point max_size() is called (or more correctly at
the point max_size() returns :-), given it's current environment (i.e. taking into account the actual currently available
resources). This, obviously, has to be determined dynamically each time max_size() is called.

Proposed Resolution:

Library active issues list 35

Change 20.1.5 lib.allocator.requirements table 32 max_size() wording from:

 the largest value that can meaningfully be passed to X::allocate
to:
 the value of the largest constant expression (5.19 expr.const) that could ever meaningfully be passed to X::allocate

Change 23.1 lib.container.requirements table 65 max_size() wording from:

 size() of the largest possible container.
to:
 the value of the largest constant expression (5.19 expr.const) that could ever meaningfully be returned by X::size().

[Kona: The LWG informally discussed this and asked Andy Sawyer to submit an issue.

Tokyo: The LWG believes (1) above is the intended meaning.

Post-Tokyo: Beman Dawes supplied the above resolution at the request of the LWG. 21.3.3 lib.string.capacity was not
changed because it references max_size() in 23.1. The term "compile-time" was avoided because it is not defined anywhere
in the standard (even though it is used several places in the library clauses).]

[Toronto: The LWG agrees with the general intent of the proposed resolution, but had some quibbles about the wording.
Andy Sawyer has volunteered to provide revised wording.]

198. Validity of pointers and references unspecified after iterator destruction

Section: 24.1 lib.iterator.requirements Status: Review Submitter: Beman Dawes Date: 3 Nov 99

Is a pointer or reference obtained from an iterator still valid after destruction of the iterator?

Is a pointer or reference obtained from an iterator still valid after the value of the iterator changes?

#include <iostream>
#include <vector>
#include <iterator>

int main()
{
 typedef std::vector<int> vec_t;
 vec_t v;
 v.push_back(1);

 // Is a pointer or reference obtained from an iterator still
 // valid after destruction of the iterator?
 int * p = &*v.begin();
 std::cout << *p << '\n'; // OK?

 // Is a pointer or reference obtained from an iterator still
 // valid after the value of the iterator changes?
 vec_t::iterator iter(v.begin());
 p = &*iter++;
 std::cout << *p << '\n'; // OK?

Library active issues list 36

 return 0;
}

The standard doesn't appear to directly address these questions. The standard needs to be clarified. At least two real-world
cases have been reported where library implementors wasted considerable effort because of the lack of clarity in the
standard. The question is important because requiring pointers and references to remain valid has the effect for practical
purposes of prohibiting iterators from pointing to cached rather than actual elements of containers.

The standard itself assumes that pointers and references obtained from an iterator are still valid after iterator destruction or
change. The definition of reverse_iterator::operator*(), 24.4.1.3.3 lib.reverse.iter.op.star, which returns a reference, defines
effects:

Iterator tmp = current;
return *--tmp;

The definition of reverse_iterator::operator->(), 24.4.1.3.4 lib.reverse.iter.opref, which returns a pointer, defines effects:

return &(operator*());

Because the standard itself assumes pointers and references remain valid after iterator destruction or change, the standard
should say so explicitly. This will also reduce the chance of user code breaking unexpectedly when porting to a different
standard library implementation.

Proposed Resolution:

Add a new paragraph and footnote to 24.1 lib.iterator.requirements:

Changing the value of or destroying a forward iterator does not invalidate pointers and references
previously obtained from that iterator.

footnote: This may have the effect for practical purposes of prohibiting forward iterators from pointing to
cached rather than actual elements of containers.

[Tokyo: The LWG reformulated the question purely in terms of iterators. The answer to the question is "no, pointers and
references don't remain valid after iterator destruction." PJP explained that implementors use considerable care to avoid
such ephemeral pointers and references. Several LWG members said that they thought that the standard did not actually
specify the lifetime of pointers and references obtained from iterators, except possibly input iterators.

[Post-Tokyo: The issue has been reformulated purely in terms of iterators.]

[Pre-Toronto: Steve Cleary pointed out the no-invalidation assumption by reverse_iterator. The issue and proposed
resolution was reformulated yet again to reflect this reality.]

[post-Toronto: There is more support in the LWG for this proposed resolution than for other alternatives, but there is still
some uncertainty. Perhaps one problem is that the standard mixes traversal style with access policy.]

200. Forward iterator requirements don't allow constant iterators

Section: 24.1.3 lib.forward.iterators Status: Open Submitter: Matt Austern Date: 19 Nov 99

Library active issues list 37

In table 74, the return type of the expression *a is given as T&, where T is the iterator's value type. For constant iterators,
however, this is wrong. ("Value type" is never defined very precisely, but it is clear that the value type of, say,
std::list<int>::const_iterator is supposed to be int, not const int.)

Proposed Resolution:

In table 74, change the return type column for *a from "T&" to "T& if X is mutable, otherwise const T&".

[Tokyo: The LWG believes this is the tip of a larger iceberg; there are multiple const problems with the STL portion of the
library and that these should be addressed as a single package. Note that issue 180 has already been declared NAD Future
for that very reason.]

201. Numeric limits terminology wrong

Section: 18.2.1 lib.limits Status: Open Submitter: Stephen Cleary Date: 21 Dec 1999

In some places in this section, the terms "fundamental types" and "scalar types" are used when the term "arithmetic types"
is intended. The current usage is incorrect because void is a fundamental type and pointers are scalar types, neither of which
should have specializations of numeric_limits.

Proposed Resolution:

Change 18.2 [lib.support.limits] para 1 from:

The headers <limits>, <climits>, and <cfloat> supply characteristics of implementation-dependent
fundamental types (3.9.1).

to:

The headers <limits>, <climits>, and <cfloat> supply characteristics of implementation-dependent
arithmetic types (3.9.1).

Change 18.2.1 [lib.limits] para 1 from:

The numeric_limits component provides a C++ program with information about various properties of the
implementation's representation of the fundamental types.

to:

The numeric_limits component provides a C++ program with information about various properties of the
implementation's representation of the arithmetic types.

Change 18.2.1 [lib.limits] para 2 from:

Specializations shall be provided for each fundamental type. . .

to:

Specializations shall be provided for each arithmetic type. . .

Change 18.2.1 [lib.limits] para 4 from:

Library active issues list 38

Non-fundamental standard types. . .

to:

Non-arithmetic standard types. . .

Change 18.2.1.1 [lib.numeric.limits] para 1 from:

The member is_specialized makes it possible to distinguish between fundamental types, which have
specializations, and non-scalar types, which do not.

to:

The member is_specialized makes it possible to distinguish between arithmetic types, which have
specializations, and non-arithmetic types, which do not.

[post-Toronto: The opinion of the LWG is that the wording in the standard, as well as the wording of the proposed
resolution, is flawed. The term "arithmetic types" is well defined in C and C++, and it is not clear that the term is being
used correctly. It is also not clear that the term "implementation dependent" has any useful meaning in this context. The
biggest problem is that numeric_limits seems to be intended both for built-in types and for user-defined types, and the
standard doesn't make it clear how numeric_limits applies to each of those cases. A wholesale review of numeric_limits is
needed.]

202. unique() effects unclear when predicate not an equivalence relation

Section: 25.2.8 lib.alg.unique Status: Open Submitter: Andrew Koenig Date: 13 Jan 00

What should unique() do if you give it a predicate that is not an equivalence relation? There are at least two plausible
answers:

1. You can't, because 25.2.8 says that it it "eliminates all but the first element from every consecutive
group of equal elements..." and it wouldn't make sense to interpret "equal" as meaning anything but an
equivalence relation. [It also doesn't make sense to interpret "equal" as meaning ==, because then there
would never be any sense in giving a predicate as an argument at all.]

2. The word "equal" should be interpreted to mean whatever the predicate says, even if it is not an
equivalence relation (and in particular, even if it is not transitive).

The example that raised this question is from Usenet:

int f[] = { 1, 3, 7, 1, 2 };
int* z = unique(f, f+5, greater<int>());

If one blindly applies the definition using the predicate greater<int>, and ignore the word "equal", you get:

Eliminates all but the first element from every consecutive group of elements referred to by the iterator i
in the range [first, last) for which *i > *(i - 1).

The first surprise is the order of the comparison. If we wanted to allow for the predicate not being an equivalence relation,
then we should surely compare elements the other way: pred(*(i - 1), *i). If we do that, then the description would seem to
say: "Break the sequence into subsequences whose elements are in strictly increasing order, and keep only the first element
of each subsequence". So the result would be 1, 1, 2. If we take the description at its word, it would seem to call for strictly

Library active issues list 39

DEcreasing order, in which case the result should be 1, 3, 7, 2.

In fact, the SGI implementation of unique() does neither: It yields 1, 3, 7.

Proposed Resolution:

Options:

1. Impose an explicit requirement that the predicate be an equivalence relation.

2. Drop the word "equal" from the description to make it clear that the intent is to compare pairs of
adjacent elements.

3. Change the effects to:

Effects: Eliminates all but the first element e from every consecutive group of elements
referred to by the iterator i in the range [first, last) for which the following
corresponding conditions hold: e == *i or pred(e,*i) != false.

If we adopt (2), we also need to decide whether pred(*i, *(i - 1)) is really what we meant, or whether pred(*(i - 1), i) is
more appropriate.

A LWG member [Nico Josuttis] comments:

First, I agree that the current wording is simply wrong. However, to follow all [known] current implementations I propose
[option 3 above].

[Tokyo: The issue was discussed at length without reaching consensus.

Straw vote:

Option 1 - preferred by 2 people.
Option 2 - preferred by 0 people.
Option 3 - preferred by 3 people.
Many abstentions.]

207. ctype<char> members return clause incomplete

Section: 22.2.1.3.2 lib.facet.ctype.char.members Status: Open Submitter: Robert Klarer Date: 2 Nov 99

Proposed Resolution:

Change the returns clause in 22.2.1.3.2 lib.facet.ctype.char.members paragraph 10 from:

 Returns: do_widen(low, high, to).

to:

 Returns: do_widen(c) or do_widen(low, high, to), respectively.

Change the returns clause in 22.2.1.3.2 lib.facet.ctype.char.members paragraph 11 from:

Library active issues list 40

 Returns: do_narrow(low, high, to).

to:

 Returns: do_narrow(c) or do_narrow(low, high, to), respectively.

[Post-Tokyo: This appears to be a duplicate of issue 153.]

214. set::find() missing const overload

Section: 23.3.3 23.3.4 lib.set Status: Ready Submitter: Judy Ward Date: 28 Feb 00

The specification for the associative container requirements in Table 69 state that the find member function should "return
iterator; const_iterator for constant a". The map and multimap container descriptions have two overloaded versions of find,
but set and multiset do not, all they have is:

iterator find(const key_type & x) const;

Proposed Resolution:

Change the prototypes for find(), lower_bound(), upper_bound(), and equal_range() in section 23.3.3 lib.set and section
23.3.4 lib.multiset to each have two overloads:

iterator find(const key_type & x);
const_iterator find(const key_type & x) const;
iterator lower_bound(const key_type & x);
const_iterator lower_bound(const key_type & x) const;
iterator upper_bound(const key_type & x);
const_iterator upper_bound(const key_type & x) const;
pair<iterator, iterator> equal_range(const key_type & x);
pair<const_iterator, const_iterator> equal_range(const key_type & x)
const;

[Tokyo: At the request of the LWG, Judy Ward provided wording extending the proposed resolution to lower_bound,
upper_bound, and equal_range.]

221. num_get<>::do_get stage 2 processing broken

Section: 22.2.2.1.2 lib.facet.num.get.virtuals Status: Ready Submitter: Matt Austern Date: 14 Mar 00

Stage 2 processing of numeric conversion is broken.

Table 55 in 22.2.2.1.2 says that when basefield is 0 the integral conversion specifier is %i. A %i specifier determines a
number's base by its prefix (0 for octal, 0x for hex), so the intention is clearly that a 0x prefix is allowed. Paragraph 8 in the
same section, however, describes very precisely how characters are processed. (It must be done "as if" by a specified code
fragment.) That description does not allow a 0x prefix to be recognized.

Very roughly, stage 2 processing reads a char_type ct. It converts ct to a char, not by using narrow but by looking it up in a
translation table that was created by widening the string literal "0123456789abcdefABCDEF+-". The character "x" is not
found in that table, so it can't be recognized by stage 2 processing.

Library active issues list 41

Proposed Resolution:

In 22.2.2.1.2 paragraph 8, replace the line:

static const char src[] = "0123456789abcdefABCDEF+-";

with the line:

static const char src[] = "0123456789abcdefxABCDEFX+-";

225. std:: algorithms use of other unqualified algorithms

Section: 17.4.4.3 lib.global.functions, 25 lib.algorithms Status: Open Submitter: Dave Abrahams Date: 01 Apr 00

Are algorithms in std:: allowed to use other algorithms without qualification, so functions in user namespaces might be
found through Koenig lookup?

For example, a popular standard library implementation includes this implementation of std::unique:

namespace std {
 template <class _ForwardIter>
 _ForwardIter unique(_ForwardIter __first, _ForwardIter __last) {
 __first = adjacent_find(__first, __last);
 return unique_copy(__first, __last, __first);
 }
 }

Imagine two users on opposite sides of town, each using unique on his own sequences bounded by my_iterators . User1
looks at his standard library implementation and says, "I know how to implement a more efficient unique_copy for
my_iterators", and writes:

namespace user1 {
 class my_iterator;
 // faster version for my_iterator
 my_iterator unique_copy(my_iterator, my_iterator, my_iterator);
 }

user1::unique_copy() is selected by Koenig lookup, as he intended.

User2 has other needs, and writes:

namespace user2 {
 class my_iterator;
 // Returns true iff *c is a unique copy of *a and *b.
 bool unique_copy(my_iterator a, my_iterator b, my_iterator c);
 }

User2 is shocked to find later that his fully-qualified use of std::unique(user2::my_iterator, user2::my_iterator,
user2::my_iterator) fails to compile (if he's lucky). Looking in the standard, he sees the following Effects clause for
unique():

Library active issues list 42

Effects: Eliminates all but the first element from every consecutive group of equal elements referred to by
the iterator i in the range [first, last) for which the following corresponding conditions hold: *i == *(i - 1)
or pred(*i, *(i - 1)) != false

The standard gives user2 absolutely no reason to think he can interfere with std::unique by defining names in namespace
user2. His standard library has been built with the template export feature, so he is unable to inspect the implementation.
User1 eventually compiles his code with another compiler, and his version of unique_copy silently stops being called.
Eventually, he realizes that he was depending on an implementation detail of his library and had no right to expect his
unique_copy() to be called portably.

On the face of it, and given above scenario, it may seem obvious that the implementation of unique() shown is non-
conforming because it uses unique_copy() rather than ::std::unique_copy(). Most standard library implementations,
however, seem to disagree with this notion.

[Tokyo: Steve Adamczyk from the core working group indicates that "std::" is sufficient; leading "::" qualification is not
required because any namespace qualification is sufficient to suppress Koenig lookup.]

Proposed Resolution:

Add a paragraph and a note at the end of 17.4.4.3 lib.global.functions:

Unless otherwise specified, no global or non-member function in the standard library shall use a function
from another namespace which is found through argument-dependent name lookup
(basic.lookup.koenig).

[Note: the phrase "unless otherwise specified" is intended to allow Koenig lookup in cases like that of
ostream_iterators:

Effects:

*out_stream << value;
if(delim != 0) *out_stream << delim;
return (*this);

--end note]

[Tokyo: The LWG agrees that this is a defect in the standard, but is as yet unsure if the proposed resolution is the best
solution. Furthermore, the LWG believes that the same problem of unqualified library names applies to wording in the
standard itself, and has opened issue 229 accordingly. Any resolution of issue 225 should be coordinated with the
resolution of issue 229.]

[post-Toronto: The LWG is not sure if this is a defect in the standard. Most LWG members believe that an implementation
of std::unique like the one quoted in this issue is already illegal, since, under certain circumstances, its semantics are
not those specified in the standard. The standard's description of unique does not say that overloading
adjacent_find should have any effect.]

226. User supplied specializations or overloads of namespace std function templates

Section: 17.4.3.1 lib.reserved.names Status: Open Submitter: Dave Abrahams Date: 01 Apr 00

The issues are:

Library active issues list 43

1. How can a 3rd party library implementor (lib1) write a version of a standard algorithm which is specialized to work with
his own class template?

2. How can another library implementor (lib2) write a generic algorithm which will take advantage of the specialized
algorithm in lib1?

This appears to be the only viable answer under current language rules:

namespace lib1
{
 // arbitrary-precision numbers using T as a basic unit
 template <class T>
 class big_num { //...
 };

 // defining this in namespace std is illegal (it would be an
 // overload), so we hope users will rely on Koenig lookup
 template <class T>
 void swap(big_int<T>&, big_int<T>&);
}
#include <algorithm>
namespace lib2
{
 template <class T>
 void generic_sort(T* start, T* end)
 {
 ...
 // using-declaration required so we can work on built-in types
 using std::swap;
 // use Koenig lookup to find specialized algorithm if
available
 swap(*x, *y);
 }
}

This answer has some drawbacks. First of all, it makes writing lib2 difficult and somewhat slippery. The implementor
needs to remember to write the using-declaration, or generic_sort will fail to compile when T is a built-in type. The second
drawback is that the use of this style in lib2 effectively "reserves" names in any namespace which defines types which may
eventually be used with lib2. This may seem innocuous at first when applied to names like swap, but consider more
ambiguous names like unique_copy() instead. It is easy to imagine the user wanting to define these names differently in his
own namespace. A definition with semantics incompatible with the standard library could cause serious problems (see issue
225).

Why, you may ask, can't we just partially specialize std::swap()? It's because the language doesn't allow for partial
specialization of function templates. If you write:

namespace std
{
 template <class T>
 void swap(lib1::big_int<T>&, lib1::big_int<T>&);
}

You have just overloaded std::swap, which is illegal under the current language rules. On the other hand, the following full
specialization is legal:

namespace std

Library active issues list 44

{
 template <>
 void swap(lib1::other_type&, lib1::other_type&);
}

[This issue reflects concerns raised by the "Namespace issue with specialized swap" thread on comp.lang.c++.moderated.
A similar set of concerns was earlier raised on the boost.org mailing list and the ACCU-general mailing list Also see
library reflector message c++std-lib-7354.]

Proposed Resolution:

[Tokyo: Summary, "There is no conforming way to extend std::swap for user defined templates." The LWG agrees that
there is a problem. Would like more information before proceeding. This may be a core issue. Core issue 229 has been
opened to discuss the core aspects of this problem.

It was also noted that submissions regarding this issue have been received from several sources, but too late to be
integrated into the issues list.

Post-Tokyo: A paper with several proposed resolutions, J16/00-0029==WG21/N1252, "Shades of namespace std functions
" by Alan Griffiths, is in the Post-Tokyo mailing. It should be considered a part of this issue.]

Dave Abrahams and Peter Dimov <pdimov@mmltd.net> have proposed an alternative resolution that involves core
changes:

7.3.3/9:

• change the note to refer to partial specializations in general:
"Note: template partial specializations are found by looking up the primary template and then
considering all partial specializations of that template. If a using-declaration names a template,
partial specializations introduced after the using-declaration are effectively visible because the
primary template is visible (14.5.4)."

14/2:

• remove the second sentence
• change the note to read:

"Note: if the declarator-id is a template-id, the declaration declares a template partial
specialization (14.5.4)."

14/4:

• change "class template partial specizalization" to "template partial specialization"

14.5.4:

• change section name to "Template partial specializations"

14.5.4/1:

• remove all occurrences of the word "class".

14.5.4/4:

Library active issues list 45

• optionally provide an example for a function template partial specialization:
•
• template<class T1, class T2, int I> T1 f(T2 (&t2) [I]);
• template<class T, int I> T f<T, T*, I>(T*

(&t) [I]);
• template<class T1, class T2, int I> T1* f<T1*, T2, I>(T2

(&) [I]);
• template<class T> int f<int, T*, 5>(T*

(&t) [5]);
• template<class T1, class T2, int I> T1 f<T1, T2*, I>(T2*

(&a) [I]);

14.5.4/5:

• remove the word "class" in the second sentence

14.5.4/6:

• not sure about that one

14.5.4/7:

• remove the word "class" in the third sentence

14.5.4/9:

• remove the word "class" in the first sentence

14.5.4/11 (new paragraph):

A function template partial specialization specializes a primary template if and only if, after substituting
the template arguments provided in the specialization template argument list into the primary template
declaration, the resulting function signature matches that of the specialization.

[Note: each function template partial specialization specializes at most one primary template.]

14.5.4/12 (new paragraph):

[Example:

template<class T> void f(T x); // primary template #1
template<class U> void f(U* y); // primary template #2

template<class V> void f<V*>(V* z); // specialization of #1, T = V*
template<class W> void f<W*>(W** w); // specialization of #2, U = W*

-- end example.]

14.5.4.1/1:

• remove the first occurence of "class" in the first sentence
• change the second "class" to "template" in the first sentence

Library active issues list 46

• remove the word "class" in the second sentence
• remove the word "class" in "the use of the class template is ambiguous"

14.5.4.2:

• change section name to "Partial ordering of template specializations"

14.5.4.2/1: (change to):

For two template partial specializations (that specialize the same primary template,) the first is at least as
specialized as the second if, given the following rewrite to two function templates, the first function
template is at least as specialized as the second according to the ordering rules for function templates
(14.5.5.2):

• synthesize a unique class template with the same parameter list as the primary template;
• the first function template has the same template parameters as the first partial specialization and

has a single function parameter whose type is a class template specialization of the synthesized
class template with the template arguments of the first partial specialization;

• the second function template has the same template parameters as the second partial
specialization and has a single function parameter whose type is a class template specialization
of the synthesized class template with the template arguments of the second partial
specialization.

14.5.4.2/2 (change example to):

template<int I, int J, class T> class X { };
template<int I, int J> class X<I, J, int> { }; //
#1
template<int I> class X<I, I, int> { }; //
#2

template<int I, int J, class T> class __unique;

template<int I, int J> void __f(__unique<I, J, int>); //
#A
template<int I> void __f(__unique<I, I, int>); //
#B

14.5.4.2/3 (new paragraph):

[Example:

template<class T, class U, class V> U f (V);
template<class U, class V>8 U f<int, U, V> (V); // #1
template<class T> T f<int, T, T> (T); // #2

template<class T, class U, class V> class __unique;

template<class U, class V> void __f(__unique<int, U, V>); // #A
template<class T> void __f(__unique<int, T, T>); // #B

-- end example.]

Library active issues list 47

[post-Toronto: core is reluctant to add partial specialization of function templates. It is viewed as a large change, and the
proposal presented above leaves some issues unopened. The LWG believes that there is a serious problem, however: there
is no good way for users to force the library to use user specializations of generic standard library functions. Koenig
lookup isn't adequate, since names within the library must be qualified with std (see issue 225), specialization doesn't
work (we don't have partial specialization of function templates), and users aren't permitted to add overloads within
namespace std. Possible solutions discussed by the LWG include:

• Allow users to add overloads within namespace std.
• Allow partial specialization of function templates.
• Define a special set of names, such as swap, which library components must refer to without qualification; all

names not on this list must be qualified by std::. (There are many possible variations on this issue. For
example, we might say that a function f should be unqualified within g if g's description in the standard says that
it calls f.)

]

228. Incorrect specification of "..._byname" facets

Section: 22.2 lib.locale.categories Status: Review Submitter: Dietmar Kühl Date: 20 Apr 00

The sections 22.2.1.2 (lib.locale.ctype.byname), 22.2.1.4 (lib.locale.ctype.byname.special), 22.2.1.6
(lib.locale.codecvt.byname), 22.2.3.2 (lib.locale.numpunct.byname), 22.2.4.2 (lib.locale.collate.byname), 22.2.5.4
(lib.locale.time.put.byname), 22.2.6.4 (lib.locale.moneypunct.byname), and 22.2.7.2 (lib.locale.messages.byname)
overspecify the definitions of the "..._byname" classes by listing a bunch of virtual functions. At the same time, no
semantics of these functions are defined. Real implementations do not define these functions because the functional part of
the facets is actually implemented in the corresponding base classes and the constructor of the "..._byname" version just
provides suitable date used by these implementations. For example, the 'numpunct' methods just return values from a struct.
The base class uses a statically initialized struct while the derived version reads the contents of this struct from a table.
However, no virtual function is defined in 'numpunct_byname'.

For most classes this does not impose a problem but specifically for 'ctype' it does: The specialization for
'ctype_byname<char>' is required because otherwise the semantics would change due to the virtual functions defined in the
general version for 'ctpye_byname': In 'ctype<char>' the method 'do_is()' is not virtual but it is made virtual in both
'ctype<cT>' and 'ctype_byname<cT>'. Thus, a class derived from 'ctype_bymame<char>' can tell whether this class is
specialized or not under the current specification: Without the specialization, 'do_is()' is virtual while with specialization it
is not virtual.

Proposed Resolution:

 Change section 22.2.1.2 (lib.locale.ctype.byname) to become:

 namespace std {
 template <class charT>
 class ctype_byname : public ctype<charT> {
 public:
 typedef ctype<charT>::mask mask;
 explicit ctype_byname(const char*, size_t refs = 0);
 protected:
 ~ctype_byname(); // virtual
 };
 }

 Change section 22.2.1.6 (lib.locale.codecvt.byname) to become:

Library active issues list 48

 namespace std {
 template <class internT, class externT, class stateT>
 class codecvt_byname : public codecvt<internT, externT, stateT> {
 public:
 explicit codecvt_byname(const char*, size_t refs = 0);
 protected:
 ~codecvt_byname(); // virtual
 };
 }

 Change section 22.2.3.2 (lib.locale.numpunct.byname) to become:

 namespace std {
 template <class charT>
 class numpunct_byname : public numpunct<charT> {
 // this class is specialized for char and wchar_t.
 public:
 typedef charT char_type;
 typedef basic_string<charT> string_type;
 explicit numpunct_byname(const char*, size_t refs = 0);
 protected:
 ~numpunct_byname(); // virtual
 };
 }

 Change section 22.2.4.2 (lib.locale.collate.byname) to become:

 namespace std {
 template <class charT>
 class collate_byname : public collate<charT> {
 public:
 typedef basic_string<charT> string_type;
 explicit collate_byname(const char*, size_t refs = 0);
 protected:
 ~collate_byname(); // virtual
 };
 }

 Change section 22.2.5.2 (lib.locale.time.get.byname) to become:

 namespace std {
 template <class charT, class InputIterator = istreambuf_iterator<charT> >
 class time_get_byname : public time_get<charT, InputIterator> {
 public:
 typedef time_base::dateorder dateorder;
 typedef InputIterator iter_type
 explicit time_get_byname(const char*, size_t refs = 0);
 protected:
 ~time_get_byname(); // virtual
 };
 }

 Change section 22.2.5.4 (lib.locale.time.put.byname) to become:

 namespace std {
 template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
 class time_put_byname : public time_put<charT, OutputIterator>

Library active issues list 49

 {
 public:
 typedef charT char_type;
 typedef OutputIterator iter_type;
 explicit time_put_byname(const char*, size_t refs = 0);
 protected:
 ~time_put_byname(); // virtual
 };
 }"

 Change section 22.2.6.4 (lib.locale.moneypunct.byname) to become:

 namespace std {
 template <class charT, bool Intl = false>
 class moneypunct_byname : public moneypunct<charT, Intl> {
 public:
 typedef money_base::pattern pattern;
 typedef basic_string<charT> string_type;
 explicit moneypunct_byname(const char*, size_t refs = 0);
 protected:
 ~moneypunct_byname(); // virtual
 };
 }

 Change section 22.2.7.2 (lib.locale.messages.byname) to become:

 namespace std {
 template <class charT>
 class messages_byname : public messages<charT> {
 public:
 typedef messages_base::catalog catalog;
 typedef basic_string<charT> string_type;
 explicit messages_byname(const char*, size_t refs = 0);
 protected:
 ~messages_byname(); // virtual
 virtual catalog do_open(const basic_string<char>&, const locale&) const;
 virtual string_type do_get(catalog, int set, int msgid,
 const string_type& dfault) const;
 virtual void do_close(catalog) const;
 };
 }

Remove section 22.2.1.4 (lib.locale.ctype.byname.special) completely (because in this case only those members are
defined to be virtual which are defined to be virtual in 'ctype<cT>'.)

[Post-Tokyo: Dietmar Kühl submitted this issue at the request of the LWG to solve the underlying problems raised by issue
138.]

229. Unqualified references of other library entities

Section: 17.4.1.1 lib.contents Status: Open Submitter: Steve Clamage Date: 19 Apr 00

Throughout the library chapters, the descriptions of library entities refer to other library entities without necessarily
qualifying the names.

Library active issues list 50

For example, section 25.2.2 "Swap" describes the effect of swap_ranges in terms of the unqualified name "swap". This
section could reasonably be interpreted to mean that the library must be implemented so as to do a lookup of the
unqualified name "swap", allowing users to override any ::std::swap function when Koenig lookup applies.

Although it would have been best to use explicit qualification with "::std::" throughout, too many lines in the standard
would have to be adjusted to make that change in a Technical Corrigendum.

Issue 182, which addresses qualification of size_t, is a special case of this.

Proposed Resolution:

To section 17.4.1.1 "Library contents" Add the following paragraph:

Whenever a name x defined in the standard library is mentioned, the name x is assumed to be fully
qualified as ::std::x, unless explicitly described otherwise. For example, if the Effects section for library
function F is described as calling library function G, the function ::std::G is meant.

[Post-Tokyo: Steve Clamage submitted this issue at the request of the LWG to solve a problem in the standard itself similar
to the problem within implementations of library identified by issue 225. Any resolution of issue 225 should be coordinated
with the resolution of issue 229.]

[post-Toronto: Howard is undecided about whether it is appropriate for all standard library function names referred to in
other standard library functions to be explicitly qualified by std: it is common advice that users should define global
functions that operate on their class in the same namespace as the class, and this requires argument-dependent lookup if
those functions are intended to be called by library code. Several LWG members are concerned that valarray appears to
require argument-dependent lookup, but that the wording may not be clear enough to fall under "unless explicitly described
otherwise".]

230. Assignable specified without also specifying CopyConstructible

Section: 17 lib.library Status: Review Submitter: Beman Dawes Date: 26 Apr 00

Issue 227 identified an instance (std::swap) where Assignable was specified without also specifying CopyConstructible.
The LWG asked that the standard be searched to determine if the same defect existed elsewhere.

There are a number of places (see proposed resolution below) where Assignable is specified without also specifying
CopyConstructible. There are also several cases where both are specified. For example, 26.4.1 [lib.accumulate].

Proposed Resolution:

In [lib.container.requirements] 23.1 table 65 for value_type: change "T is Assignable" to "T is CopyConstructible and
Assignable"

In [lib.associative.reqmts] 23.1.2 table 69 X::key_type; change "Key is Assignable" to "Key is CopyConstructible and
Assignable"

In [lib.output.iterators] 24.1.2 paragraph 1, change:

A class or a built-in type X satisfies the requirements of an output iterator if X is an Assignable type
(23.1) and also the following expressions are valid, as shown in Table 73:

Library active issues list 51

to:

A class or a built-in type X satisfies the requirements of an output iterator if X is a CopyConstructible (
20.1.3) and Assignable type (23.1) and also the following expressions are valid, as shown in Table 73:

[Post-Tokyo: Beman Dawes submitted this issue at the request of the LWG .

He asks that the [lib.alg.replace] 25.2.4 and [lib.alg.fill] 25.2.5 changes be studied carefully, as it is not clear that
CopyConstructible is really a requirement and may be overspecification.]

[Toronto: The original proposed resolution also included changes to input iterator, fill, and replace. The LWG believes
that those changes are not necessary. The LWG considered some blanket statement, where an Assignable type was also
required to be Copy Constructible, but decided against this because fill and replace really don't require the Copy
Constructible property.]

231. Precision in iostream?

Section: 22.2.2.2.2 lib.facet.num.put.virtuals Status: Open Submitter: James Kanze, Stephen Clamage Date: 25 Apr 00

What is the following program supposed to output?

#include <iostream>

 int
 main()
 {
 std::cout.setf(std::ios::scientific , std::ios::floatfield) ;
 std::cout.precision(0) ;
 std::cout << 1.23 << '\n' ;
 return 0 ;
 }

From my C experience, I would expect "1e+00"; this is what printf("%.0e" , 1.23) ; does. G++ outputs "1.000000e+00".

The only indication I can find in the standard is 22.2.2.2.2/11, where it says "For conversion from a floating-point type, if
(flags & fixed) != 0 or if str.precision() > 0, then str.precision() is specified in the conversion specification." This is an
obvious error, however, fixed is not a mask for a field, but a value that a multi-bit field may take -- the results of and'ing
fmtflags with ios::fixed are not defined, at least not if ios::scientific has been set. G++'s behavior corresponds to what might
happen if you do use (flags & fixed) != 0 with a typical implementation (floatfield == 3 << something, fixed == 1 <<
something, and scientific == 2 << something).

Presumably, the intent is either (flags & floatfield) != 0, or (flags & floatfield) == fixed; the first gives something more or
less like the effect of precision in a printf floating point conversion. Only more or less, of course. In order to implement
printf formatting correctly, you must know whether the precision was explicitly set or not. Say by initializing it to -1,
instead of 6, and stating that for floating point conversions, if precision < -1, 6 will be used, for fixed point, if precision < -
1, 1 will be used, etc. Plus, of course, if precision == 0 and flags & floatfield == 0, 1 should be = used. But it probably isn't
necessary to emulate all of the anomalies of printf:-).

Proposed Resolution:

[Toronto: the committee believes this is a genuine issue. In addition to the issue of fixed being a value rather than a
mask, the standard is not clear what the effects setting precision to 0 ought to be.]

Library active issues list 52

232. "depends" poorly defined in 17.4.3.1

Section: 17.4.3.1 lib.reserved.names Status: Open Submitter: Peter Dimov Date: 18 Apr 00

17.4.3.1/1 uses the term "depends" to limit the set of allowed specializations of standard templates to those that "depend on
a user-defined name of external linkage."

This term, however, is not adequately defined, making it possible to construct a specialization that is, I believe, technically
legal according to 17.4.3.1/1, but that specializes a standard template for a built-in type such as 'int'.

The following code demonstrates the problem:

#include <algorithm>
template<class T> struct X
{
 typedef T type;
};
namespace std
{
 template<> void swap(::X<int>::type& i, ::X<int>::type& j);
}

Proposed Resolution

[Toronto: this may be related to issue 120.]

233. Insertion hints in associative containers

Section: 23.1.2 lib.associative.reqmts Status: Open Submitter: Andrew Koenig Date: 30 Apr 2000

If mm is a multimap and p is an iterator into the multimap, then mm.insert(p, x) inserts x into mm with p as a hint as
to where it should go. Table 69 claims that the execution time is amortized constant if the insert winds up taking place
adjacent to p, but does not say when, if ever, this is guaranteed to happen. All it says it that p is a hint as to where to insert.

The question is whether there is any guarantee about the relationship between p and the insertion point, and, if so, what it
is.

I believe the present state is that there is no guarantee: The user can supply p, and the implementation is allowed to
disregard it entirely.

Proposed Resolution:

OPTION 1:
General Idea: Point out that in insert(p,t), the iterator p will (if possible) be used to insert t just before p or just after p. If
this is not possible, the hint is ignored.

assertion/note/pre/postcondition in table 69
Change:

iterator p is a hint pointing to where the insert should start to search.

Library active issues list 53

To:

if t is inserted, p is used as follows: insert t right before p if possible; otherwise, insert t right after p if
possible; otherwise, p is ignored.

complexity:
Change:

right after p

To:

right before or right after p.

Thus making:
assertion/note/pre/postcondition:

inserts t if and only if there is no element with key equivalent to the key of t in containers with unique
keys; always inserts t in containers with equivalent keys. always returns the iterator pointing to the
element with key equivalent to the key of t. if t is inserted, p is used as follows: insert t right before p if
possible; otherwise, insert t right after p if possible; otherwise, p is ignored.

complexity:

logarithmic in general, but amortized constant if t is inserted right before or right after p.

OPTION 2
General Idea (Andrew Koenig): t is inserted at the point closest to (the point immediately ahead of) p. That would give the
user a way of controlling the order in which elements appear that have equal keys. Doing so would be particularly easy in
two cases that I suspect are common:

 mm.insert(mm.begin(), t); // inserts as first element of set of equal keys
 mm.insert(mm.end(), t); // inserts as last element of set of equal keys

These examples would allow t to be inserted at the beginning and end, respectively, of the set of elements with the same
key as t.

assertion/note/pre/postcondition in table 69
Change:

iterator p is a hint pointing to where the insert should start to search.

To:

if t is inserted, p is used as follows: insert t right before p if possible; otherwise, if p is equal to a.end(), or
if the key value of t is greater than the key value of *p, t is inserted just before a.lowerbound(the key
value of t); otherwise, t is inserted right before a.upperbound(the key value of t).

complexity:
Change:

right after p

Library active issues list 54

To:

right before p

Thus making:
assertion/note/pre/postcondition:

inserts t if and only if there is no element with key equivalent to the key of t in containers with unique
keys; always inserts t in containers with equivalent keys. always returns the iterator pointing to the
element with key equivalent to the key of t. if t is inserted, p is used as follows: insert t right before p if
possible; otherwise, if p is equal to a.end(), or if the key value of t is greater than the key value of *p, t is
inserted just before a.lowerbound(the key value of t); otherwise, t is inserted right before
a.upperbound(the key value of t).
NON-NORMATIVE FOOTNOTE: | This gives the user a way of controlling the order | in which
elements appear that have equal keys. Doing this is | particularly easy in two common cases:

| mm.insert(mm.begin(), t); // inserts as first element of set of
equal keys
| mm.insert(mm.end(), t); // inserts as last element of set of equal
keys

END-FOOTNOTE

complexity:

logarithmic in general, but amortized constant if t is inserted right before p.

[Toronto: there was general agreement that this is a real defect: when inserting an element x into a multiset that already
contains several copies of x, there is no way to know whether the hint will be used. There was some support for an
alternative resolution: we check on both sides of the hint (both before and after, in that order). If either is the correct
location, the hint is used; otherwise it is not. This is different from the original proposed resolution, because in the
proposed resolution the hint will be used even if it is very far from the insertion point. JC van Winkel supplied precise
wording for both options.]

234. Typos in allocator definition

Section: 20.4.1.1 lib.allocator.members Status: Ready Submitter: Dietmar Kühl Date: 24 Apr 2000

In paragraphs 12 and 13 the effects of construct() and destruct() are described as returns but the functions
actually return void.

Proposed Resolution:

Substitute "Returns" by "Effect".

235. No specification of default ctor for reverse_iterator

Library active issues list 55

Section: 24.4.1.1 lib.reverse.iterator Status: Open Submitter: Dietmar Kühl Date: 24 Apr 2000

The declaration of reverse_iterator lists a default constructor. However, no specification is given what this
constructor should do.

Proposed Resolution:

[Toronto: there should be a default constructor, and it should default-initialize the appropriate member variable. Dietmar
will provide wording.]

237. Undefined expression in complexity specification

Section: 23.2.2.1 lib.list.cons Status: Ready Submitter: Dietmar Kühl Date: 24 Apr 2000

The complexity specification in paragraph 6 says that the complexity is linear in first - last. Even if operator-
() is defined on iterators this term is in general undefined because it would have to be last - first.

Proposed Resolution:

Change paragraph 6 from

Linear in first - last.

to become

Linear in distance(first, last).

238. Contradictory results of stringbuf initialization.

Section: 27.7.1.1 lib.stringbuf.cons Status: Review Submitter: Dietmar Kühl Date: 11 May 2000

In 27.7.1.1 paragraph 4 the results of calling the constructor of 'basic_stringbuf' are said to be str() == str. This is
fine that far but consider this code:

 std::basic_stringbuf<char> sbuf("hello, world", std::ios_base::openmode(0));
 std::cout << "'" << sbuf.str() << "'\n";
Paragraph 3 of 27.7.1.1 basically says that in this case neither the output sequence nor the input sequence is initialized and
paragraph 2 of 27.7.1.2 basically says that str() either returns the input or the output sequence. None of them is
initialized, ie. both are empty, in which case the return from str() is defined to be basic_string<cT>().

However, probably only test cases in some testsuites will detect this "problem"...

Proposed Resolution:

Remove 27.7.1.1 paragraph 4.

Rationale:

Library active issues list 56

We could fix 27.7.1.1 paragraph 4, but there would be no point. If we fixed it, it would say just the same thing as text that's
already in the standard.

239. Complexitiy of unique() and/or unique_copy incorrect

Section: 25.2.8 lib.alg.unique Status: Open Submitter: Angelika Langer Date: May 15 2000

The complexity of unique and unique_copy are inconsistent with each other and inconsistent with the implementations.
The standard specifies:

for unique():

-3- Complexity: If the range (last - first) is not empty, exactly (last - first) - 1 applications of the
corresponding predicate, otherwise no applications of the predicate.

for unique_copy():

-7- Complexity: Exactly last - first applications of the corresponding predicate.

The implementations do it the other way round: unique() applies the predicate last-first times and unique_copy() applies it
last-first-1 times.

As both algorithms use the predicate for pair-wise comparison of sequence elements I don't see a justification for
unique_copy() applying the predicate last-first times, especially since it is not specified to which pair in the sequence the
predicate is applied twice.

Proposed Resolution:

Change both complexity sections in 25.2.8 lib.alg.unique to:

Complexity: Exactly last - first - 1 applications of the corresponding predicate.

[Toronto: This is related to issue 202. We can't specify unique's complexity until we decide what unique is supposed to
do.]

240. Complexity of adjacent_find() is meaningless

Section: 25.1.5 lib.alg.adjacent.find Status: Review Submitter: Angelika Langer Date: May 15 2000

The complexity section of adjacent_find is defective.

template<class ForwardIterator, class BinaryPredicate>
 ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last,
 BinaryPredicate pred);

-1- Returns: The first iterator i such that both i and i + 1 are in the range [first, last) for which the
following
corresponding conditions hold: *i == *(i + 1), pred(*i, *(i + 1)) != false. Returns last if no such iterator is
found.
-2- Complexity: Exactly find(first, last, value) - first applications of the corresponding predicate.

Library active issues list 57

In the Complexity section, it is not defined what "value" is supposed to mean. My best guess is that "value" means an object
for which one of the conditions pred(*i,value) or pred(value,*i) is true, where i is the iterator defined in the Returns section.
However, the value type of the input sequence need not be equality-comparable and for this reason the term find(first, last,
value) - first is meaningless.
A term such as find_if(first, last, bind2nd(pred,*i)) - first or find_if(first, last, bind1st(pred,*i)) - first might come closer to
the intended specification. Binders can only be applied to function objects that have the function call operator declared
const, which is not required of predicates because they can have non-const data members. For this reason, a specification
using a binder could only be an "as-if" specification.

Proposed Resolution:

Change the complexity section in 25.1.5 lib.alg.adjacent.find to: "For a nonempty range, at most (last - first) - 1
comparisons."

241. Does unique_copy() require CopyConstructible and Assignable?

Section: 25.2.8 lib.alg.unique Status: Review Submitter: Angelika Langer Date: May 15 2000

Some popular implementations of unique_copy() create temporary copies of values in the input sequence, at least if the
input iterator is a pointer. Such an implementation is built on the assumption that the value type is CopyConstructible and
Assignable.

It is common practice in the standard that algorithms explicitly specify any additional requirements that they impose on any
of the types used by the algorithm. An example of an algorithm that creates temporary copies and correctly specifies the
additional requirements is accumulate() [lib.accumulate].

Since the specifications of unique() and unique_copy() do not require CopyConstructible and Assignable of the
InputIterator's value type the above mentioned implementations are not standard-compliant. I cannot judge whether this is a
defect in the standard or a defect in the implementations.

Proposed Resolution:

In 25.2.8 change:

-4- Requires: The ranges [first, last) and [result, result+(last-first)) shall not overlap.

to:

-4- Requires: The ranges [first, last) and [result, result+(last-first)) shall not overlap. The expression
*result = *first is valid

Rationale:

Creating temporary copies is unavoidable, since the arguments may be input iterators; this implies that the value type must
be copy constructible. However, we don't need to say this explicitly; it's already implied by table 72 in 24.1.1. We don't
precisely want to say that the input iterator's value type T must be assignable, because we never quite use that property. We
assign through the output iterator. The output iterator might have a different value type, or no value type; it might not use
T's assignment operator. If it's an ostream_iterator, for example, then we'll use T's operator<< but not its assignment
operator.

Library active issues list 58

242. Side effects of function objects

Section: 25.2.3 lib.alg.transform and 26.4 lib.numeric.ops Status: Review Submitter: Angelika Langer Date: May 15
2000

The algorithms transform(), accumulate(), inner_product(), partial_sum(), and adjacent_difference() require that the
function object supplied to them shall not have any side effects.

The standard defines a side effect in [intro.execution]as:

-7- Accessing an object designated by a volatile lvalue (basic.lval), modifying an object, calling a library
I/O function, or calling a function that does any of those operations are all side effects, which are changes
in the state of the execution environment.

As a consequence, the function call operator of a function object supplied to any of the algorithms listed above cannot
modify data members, cannot invoke any function that has a side effect, and cannot even create and modify temporary
objects. It is difficult to imagine a function object that is still useful under these severe limitations. For instance, any non-
trivial transformator supplied to transform() might involve creation and modification of temporaries, which is prohibited
according to the current wording of the standard.

On the other hand, popular implementations of these algorithms exhibit uniform and predictable behavior when invoked
with a side-effect-producing function objects. It looks like the strong requirement is not needed for efficient implementation
of these algorithms.

The requirement of side-effect-free function objects could be replaced by a more relaxed basic requirement (which would
hold for all function objects supplied to any algorithm in the standard library):

A function objects supplied to an algorithm shall not invalidate any iterator or sequence that is used by
the algorithm. Invalidation of the sequence includes destruction of the sorting order if the algorithm relies
on the sorting order (see section 25.3 - Sorting and related operations [lib.alg.sorting]).

I can't judge whether it is intended that the function objects supplied to transform(), accumulate(), inner_product(),
partial_sum(), or adjacent_difference() shall not modify sequence elements through dereferenced iterators.

It is debatable whether this issue is a defect or a change request. Since the consequences for user-supplied function objects
are drastic and limit the usefulness of the algorithms significantly I would consider it a defect.

Proposed Resolution:

[Toronto: Dave Abrahams supplied wording.]

Things to notice about these changes:

1. The fully-closed ("[]" as opposed to half-closed "[)" ranges are intentional. we want to prevent side-effects from
invalidating the end iterators.

2. That has the unintentional side-effect of prohibiting modification of the end element as a side-effect. This could
conceivably be significant in some cases.

3. The wording also prevents side-effects from modifying elements of the output sequence. I can't imagine why
anyone would want to do this, but it is arguably a restriction that implementors don't need to place on users.

4. Lifting the restrictions imposed in #2 and #3 above is possible and simple, but would require more verbiage.

Change 25.2.3/2 from:

Library active issues list 59

-2- Requires: op and binary_op shall not have any side effects.

to:

-2- Requires: op and binary_op shall not invalidate iterators or subranges, or modify elements in the
ranges [first1, last1], [first2, first2 + (last1 - first1)], and [result, result + (last1 - first1)].

Change 26.4.1/2 from:

-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable
(lib.container.requirements) types. binary_op shall not cause side effects.

to:

-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable
(lib.container.requirements) types. In the range [first, last], binary_op shall neither modify elements nor
invalidate iterators or subranges.

Change 26.4.2/2 from:

-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable
(lib.container.requirements) types. binary_op1 and binary_op2 shall not cause side effects.

to:

-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable
(lib.container.requirements) types. In the ranges [first, last] and [first2, first2 + (last - first)], binary_op1
and binary_op2 shall neither modify elements nor invalidate iterators or subranges.

Change 26.4.3/4 from:

-4- Requires: binary_op is expected not to have any side effects.

to:

-4- Requires: In the ranges [first, last] and [result, result + (last - first)], binary_op shall neither modify
elements nor invalidate iterators or subranges.

Change 26.4.4/2 from:

-2- Requires: binary_op shall not have any side effects.

to:

-2- Requires: In the ranges [first, last] and [result, result + (last - first)], binary_op shall neither modify
elements nor invalidate iterators or subranges.

243. get and getline when sentry reports failure

Section: 27.6.1.3 lib.istream.unformatted Status: Ready Submitter: Martin Sebor Date: May 15 2000

Library active issues list 60

basic_istream<>::get(), and basic_istream<>::getline(), are unclear with respect to the behavior and side-effects of the
named functions in case of an error.

27.6.1.3, p1 states that "... If the sentry object returns true, when converted to a value of type bool, the function endeavors
to obtain the requested input..." It is not clear from this (or the rest of the paragraph) what precisely the behavior should be
when the sentry ctor exits by throwing an exception or when the sentry object returns false. In particular, what is the
number of characters extracted that gcount() returns supposed to be?

27.6.1.3 p8 and p19 say about the effects of get() and getline(): "... In any case, it then stores a null character (using
charT()) into the next successive location of the array." Is not clear whether this sentence applies if either of the conditions
above holds (i.e., when sentry fails).

Proposed Resolution:

Add to 27.6.1.3, p1 after the sentence

"... If the sentry object returns true, when converted to a value of type bool, the function endeavors to
obtain the requested input."

the following

"Otherwise, if the sentry constructor exits by throwing an exception or if the sentry object returns false,
when converted to a value of type bool, the function returns without attempting to obtain any input. In
either case the number of extracted characters is set to 0; unformatted input functions taking a character
array of non-zero size as an argument shall also store a null character (using charT()) in the first location
of the array."

Rationale:

Although the general philosophy of the input functions is that the argument should not be modified upon failure, getline
historically added a terminating null unconditionally. Most implementations still do that. Earlier versions of the draft
standard had language that made this an unambiguous requirement; those words were moved to a place where their context
made them less clear. See Jerry Schwarz's message c++std-lib-7618.

247. vector, deque::insert complexity

Section: 23.3.4.4 lib.vector.modifiers Status: Open Submitter: Lisa Lippincott Date: 06 June 2000

Paragraph 2 of 23.3.4.3 [lib.vector.modifiers] describes the complexity of vector::insert:

Complexity: If first and last are forward iterators, bidirectional iterators, or random access iterators, the
complexity is linear in the number of elements in the range [first, last) plus the distance to the end of the
vector. If they are input iterators, the complexity is proportional to the number of elements in the range
[first, last) times the distance to the end of the vector.

First, this fails to address the non-iterator forms of insert.

Second, the complexity for input iterators misses an edge case -- it requires that an arbitrary number of elements can be
added at the end of a vector in constant time.

At the risk of strengthening the requirement, I suggest simply

Library active issues list 61

Complexity: The complexity is linear in the number of elements inserted plus the distance to the end of
the vector.

For input iterators, one may achieve this complexity by first inserting at the end of the vector, and then using rotate.

I looked to see if deque had a similar problem, and was surprised to find that deque places no requirement on the
complexity of inserting multiple elements (23.2.1.3 [lib.deque.modifiers], paragraph 3):

Complexity: In the worst case, inserting a single element into a deque takes time linear in the minimum of
the distance from the insertion point to the beginning of the deque and the distance from the insertion
point to the end of the deque. Inserting a single element either at the beginning or end of a deque always
takes constant time and causes a single call to the copy constructor of T.

I suggest:

Complexity: The complexity is linear in the number of elements inserted plus the shorter of the distances
to the beginning and end of the deque. Inserting a single element at either the beginning or the end of a
deque causes a single call to the copy constructor of T.

Proposed Resolution:

[Toronto: It's agreed that there is a defect in complexity of multi-element insert for vector and deque. For vector, the
complexity should probably be something along the lines of c1 * N + c2 * distance(i, end()). However, there
is some concern about whether it is reasonable to amortize away the copies that we get from a reallocation whenever we
exceed the vector's capacity. For deque, the situation is somewhat less clear. Deque is notoriously complicated, and we
may not want to impose complexity requirements that would imply any implementation technique more complicated than a
while loop whose body is a single-element insert.]

248. time_get fails to set eofbit

Section: 22.2.5 lib.category.time Status: Ready Submitter: Martin Sebor Date: 22 June 2000

There is no requirement that any of time_get member functions set ios::eofbit when they reach the end iterator while
parsing their input. Since members of both the num_get and money_get facets are required to do so (22.2.2.1.2, and
22.2.6.1.2, respectively), time_get members should follow the same requirement for consistency.

Proposed Resolution:

Add paragraph 2 to section 22.2.5.1 with the following text:

If the end iterator is reached during parsing by any of the get() member functions, the member sets
ios_base::eofbit in err.

[Toronto: Martin submitted two proposed resolutions. The LWG chose this one because it was more consistent with the
way eof is described for other input facets.]

250. splicing invalidates iterators

Section: 23.2.2.4 lib.list.ops Status: Open Submitter: Brian Parker <brianp@research.canon.com.au> Date: 14 Jul 2000

Library active issues list 62

Section 23.2.2.4 [lib.list.ops] states that

 void splice(iterator position, list<T, Allocator>& x);

invalidates all iterators and references to list x.

This is unnecessary and defeats an important feature of splice. In fact, the SGI STL guarantees that iterators to x remain
valid after splice.

Proposed Resolution:

I think that this clause (and the other splice clauses) should be reworded to- "all iterators and references remain valid,
including iterators that point to elements of x."

[Toronto: the LWG was generally in favor of the idea behind this change. Some members, however, are concerned about
the phrase "remain valid". They aren't sure that validity is sufficiently well defined, or that it means exactly what we mean
to say here. Howard will provide more precise wording.]

251. basic_stringbuf missing allocator_type

Section: 27.7.1 lib.stringbuf Status: Ready Submitter: Martin Sebor Date: 28 Jul 2000

The synopsis for the template class basic_stringbuf doesn't list a typedef for the template parameter Allocator.
This makes it impossible to determine the type of the allocator at compile time. It's also inconsistent with all other template
classes in the library that do provide a typedef for the Allocator parameter.

Proposed Resolution:

Add to the synopses of the class templates basic_stringbuf (27.7.1), basic_istringstream (27.7.2), basic_ostringstream
(27.7.3), and basic_stringstream (27.7.4) the typedef:

 typedef Allocator allocator_type;

252. missing casts/C-style casts used in iostreams

Section: 27.7 lib.string.streams Status: Ready Submitter: Martin Sebor Date: 28 Jul 2000

27.7.2.2, p1 uses a C-style cast rather than the more appropriate const_cast<> in the Returns clause for
basic_istringstream<>::rdbuf(). The same C-style cast is being used in 27.7.3.2, p1, D.7.2.2, p1, and D.7.3.2, p1, and
perhaps elsewhere. 27.7.6, p1 and D.7.2.2, p1 are missing the cast altogether.

C-style casts have not been deprecated, so the first part of this issue is stylistic rather than a matter of correctness.

Proposed Resolution:

In 27.7.2.2, p1 replace

 -1- Returns: (basic_stringbuf<charT,traits,Allocator>*)&sb.

Library active issues list 63

with

 -1- Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(&sb).

In 27.7.3.2, p1 replace

 -1- Returns: (basic_stringbuf<charT,traits,Allocator>*)&sb.
with

 -1- Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(&sb).

In 27.7.6, p1, replace

 -1- Returns: &sb
with

 -1- Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(&sb).

In D.7.2.2, p1 replace

 -2- Returns: &sb.
with

 -2- Returns: const_cast<strstreambuf*>(&sb).

253. valarray helper functions are almost entirely useless

Section: 26.3.2.1 lib.valarray.cons and 26.3.2.2 lib.valarray.assign Status: Open Submitter: Robert Klarer Date: 31 Jul
2000

This discussion is adapted from message c++std-lib-7056 posted November 11, 1999. I don't think that anyone can
reasonably claim that the problem described below is NAD.

These valarray constructors can never be called:

 template <class T>
 valarray<T>::valarray(const slice_array<T> &);
 template <class T>
 valarray<T>::valarray(const gslice_array<T> &);
 template <class T>
 valarray<T>::valarray(const mask_array<T> &);
 template <class T>
 valarray<T>::valarray(const indirect_array<T> &);

Similarly, these valarray assignment operators cannot be called:

 template <class T>
 valarray<T> valarray<T>::operator=(const slice_array<T> &);
 template <class T>

Library active issues list 64

 valarray<T> valarray<T>::operator=(const gslice_array<T> &);
 template <class T>
 valarray<T> valarray<T>::operator=(const mask_array<T> &);
 template <class T>
 valarray<T> valarray<T>::operator=(const indirect_array<T> &);

Please consider the following example:

 #include <valarray>
 using namespace std;

 int main()
 {
 valarray<double> va1(12);
 valarray<double> va2(va1[slice(1,4,3)]); // line 1
 }

Since the valarray va1 is non-const, the result of the sub-expression va1[slice(1,4,3)] at line 1 is an rvalue of type const
std::slice_array<double>. This slice_array rvalue is then used to construct va2. The constructor that is used to construct va2
is declared like this:

 template <class T>
 valarray<T>::valarray(const slice_array<T> &);

Notice the constructor's const reference parameter. When the constructor is called, a slice_array must be bound to this
reference. The rules for binding an rvalue to a const reference are in 8.5.3, paragraph 5 (see also 13.3.3.1.4). Specifically,
paragraph 5 indicates that a second slice_array rvalue is constructed (in this case copy-constructed) from the first one; it is
this second rvalue that is bound to the reference parameter. Paragraph 5 also requires that the constructor that is used for
this purpose be callable, regardless of whether the second rvalue is elided. The copy-constructor in this case is not callable,
however, because it is private. Therefore, the compiler should report an error.

Since slice_arrays are always rvalues, the valarray constructor that has a parameter of type const slice_array<T> & can
never be called. The same reasoning applies to the three other constructors and the four assignment operators that are listed
at the beginning of this post. Furthermore, since these functions cannot be called, the valarray helper classes are almost
entirely useless.

Proposed Resolution:

Adopt section 2 of 00-0023/N1246. Sections 1 and 5 of that paper have already been classified as "Request for Extension".
Sections 3 and 4 are reasonable generalizations of section 2, but they do not resolve an obvious inconsistency in the
standard.

[Toronto: it is agreed that there is a defect. A full discussion, and an attempt at fixing the defect, should wait until we can
hear from valarray experts.]

254. Exception types in clause 19 are constructed from std::string

Section: 19.1 lib.std.exceptions Status: Open Submitter: Dave Abrahams Date: 01 Aug 2000

Many of the standard exception types which implementations are required to throw are constructed with a const
std::string& parameter. For example:

Library active issues list 65

 19.1.5 Class out_of_range [lib.out.of.range]
 namespace std {
 class out_of_range : public logic_error {
 public:
 explicit out_of_range(const string& what_arg);
 };
 }

 1 The class out_of_range defines the type of objects thrown as excep-
 tions to report an argument value not in its expected range.

 out_of_range(const string& what_arg);

 Effects:
 Constructs an object of class out_of_range.
 Postcondition:
 strcmp(what(), what_arg.c_str()) == 0.

There are at least two problems with this:

1. A program which is low on memory may end up throwing std::bad_alloc instead of out_of_range because memory
runs out while constructing the exception object.

2. An obvious implementation which stores a std::string data member may end up invoking terminate() during
exception unwinding because the exception object allocates memory (or rather fails to) as it is being copied.

There may be no cure for (1) other than changing the interface to out_of_range, though one could reasonably argue that (1)
is not a defect. Personally I don't care that much if out-of-memory is reported when I only have 20 bytes left, in the case
when out_of_range would have been reported. People who use exception-specifications might care a lot, though.

There is a cure for (2), but it isn't completely obvious. I think a note for implementors should be made in the standard.
Avoiding possible termination in this case shouldn't be left up to chance. The cure is to use a reference-counted "string"
implementation in the exception object. I am not neccessarily referring to a std::string here; any simple reference-counting
scheme for a NTBS would do.

Further discussion, in email:

...I'm not so concerned about (1). After all, a library implementation can add const char* constructors as an extension, and
users don't need to avail themselves of the standard exceptions, though this is a lame position to be forced into. FWIW,
std::exception and std::bad_alloc don't require a temporary basic_string.

...I don't think the fixed-size buffer is a solution to the problem, strictly speaking, because you can't satisfy the
postcondition
 strcmp(what(), what_arg.c_str()) == 0
For all values of what_arg (i.e. very long values). That means that the only truly conforming solution requires a dynamic
allocation.

Proposed Resolution:

[Toronto: some LWG members thought this was merely a QoI issue, but most believed that it was at least a borderline
defect. There was more support for nonnormative advice to implementors than for a normative change.]

256. typo in 27.4.4.2, p17: copy_event does not exist

Library active issues list 66

Section: 27.4.4.2 lib.basic.ios.members Status: Ready Submitter: Martin Sebor Date: 21 Aug 2000

27.4.4.2, p17 says

-17- Before copying any parts of rhs, calls each registered callback pair (fn,index) as
(*fn)(erase_event,*this,index). After all parts but exceptions() have been replaced, calls each callback
pair that was copied from rhs as (*fn)(copy_event,*this,index).

The name copy_event isn't defined anywhere. The intended name was copyfmt_event.

Proposed Resolution:

Replace copy_event with copyfmt_event in the named paragraph.

257. STL functional object and iterator inheritance.

Section: 20.3.1 lib.base and 24.3.2 lib.iterator.basic Status: NAD Submitter: Robert Dick
<dickrp@venus.ee.Princeton.EDU> Date: 17 Aug 2000

According to the November 1997 Draft Standard, the results of deleting an object of a derived class through a pointer to an
object of its base class are undefined if the base class has a non-virtual destructor. Therefore, it is potentially dangerous to
publicly inherit from such base classes.

Defect:
The STL design encourages users to publicly inherit from a number of classes which do nothing but specify interfaces, and
which contain non-virtual destructors.

Attribution:
Wil Evers and William E. Kempf suggested this modification for functional objects.

Proposed Resolution:

Proposed correction:

When a base class in the standard library is useful only as an interface specifier, i.e., when an object of the class will never
be directly instantiated, specify that the class contains a protected destructor. This will prevent deletion through a pointer to
the base class without performance, or space penalties (on any implementation I'm aware of).

As an example, replace...

 template <class Arg, class Result>
 struct unary_function {
 typedef Arg argument_type;
 typedef Result result_type;
 };

... with...

 template <class Arg, class Result>
 struct unary_function {
 typedef Arg argument_type;

Library active issues list 67

 typedef Result result_type;
 protected:
 ~unary_function() {}
 };

Affected definitions:
 20.3.1 [lib.function.objects] -- unary_function, binary_function
 24.3.2 [lib.iterator.basic] -- iterator

Rationale:

The standard is clear as written; this is a request for change, not a defect in the strict sense. The LWG had several different
objections to the proposed change. One is that it would prevent users from creating objects of type unary_function
and binary_function. Doing so can sometimes be legitimate, if users want to pass temporaries as traits or tag types in
generic code.

258. Missing allocator requirement

Section: 20.1.5 lib.allocator.requirements Status: Open Submitter: Matt Austern Date: 22 Aug 2000

From lib-7752:

I've been assuming (and probably everyone else has been assuming) that allocator instances have a particular property, and
I don't think that property can be deduced from anything in Table 32.

I think we have to assume that allocator type conversion is a homomorphism. That is, if x1 and x2 are of type X, where
X::value_type is T, and if type Y is X::template rebind<U>::other, then Y(x1) == Y(x2) if and only if x1 == x2.

Further discussion: Howard Hinant writes, in lib-7757:

I think I can prove that this is not proveable by Table 32. And I agree it needs to be true except for the "and only if". If x1
!= x2, I see no reason why it can't be true that Y(x1) == Y(x2). Admittedly I can't think of a practical instance where this
would happen, or be valuable. But I also don't see a need to add that extra restriction. I think we only need:

if (x1 == x2) then Y(x1) == Y(x2)

If we decide that == on allocators is transitive, then I think I can prove the above. But I don't think == is necessarily
transitive on allocators. That is:

Given x1 == x2 and x2 == x3, this does not mean x1 == x3.

Example:

x1 can deallocate pointers from: x1, x2, x3
x2 can deallocate pointers from: x1, x2, x4
x3 can deallocate pointers from: x1, x3
x4 can deallocate pointers from: x2, x4

x1 == x2, and x2 == x4, but x1 != x4

Proposed Resolution:

Library active issues list 68

[Toronto: LWG members offered multiple opinions. One opinion is that it should not be required that x1 == x2 implies
Y(x1) == Y(x2), and that it should not even be required that X(x1) == x1. Another opinion is that the second line
from the bottom in table 32 already implies the desired property. This issue should be considered in light of other issues
related to allocator instances.]

259. basic_string::operator[] and const correctness

Section: 21.3.4 lib.string.access Status: Review Submitter: Chris Newton <chrisnewton@btinternet.com> Date:

Paraphrased from a message that Chris Newton posted to comp.std.c++:

The standard's description of basic_string<>::operator[] seems to violate const correctness.

The standard (21.3.4/1) says that "If pos < size(), returns data()[pos]." The types don't work. The return value of
data() is const charT*, but operator[] has a non-const version whose return type is reference.

Proposed Resolution:

In section 21.3.4, paragraph 1, change "data()[pos]" to "*(begin() + pos)".

260. Inconsistent return type of istream_iterator::operator++(int)

Section: 24.5.1.2 lib.istream.iterator.ops Status: Ready Submitter: Martin Sebor Date: 27 Aug 2000

The synopsis of istream_iterator::operator++(int) in 24.5.1 shows it as returning the iterator by value. 24.5.1.2, p5 shows
the same operator as returning the iterator by reference. That's incorrect given the Effects clause below (since a temporary
is returned). The `&' is probably just a typo.

Proposed Resolution:

Change the declaration in 24.5.1.2, p5 from

 istream_iterator<T,charT,traits,Distance>& operator++(int);

to

 istream_iterator<T,charT,traits,Distance> operator++(int);

(that is, remove the `&').

261. Missing description of istream_iterator::operator!=

Section: 24.5.1.2 lib.istream.iterator.ops Status: Ready Submitter: Martin Sebor Date: 27 Aug 2000

24.5.1, p3 lists the synopsis for

Library active issues list 69

 template <class T, class charT, class traits, class Distance>
 bool operator!=(const istream_iterator<T,charT,traits,Distance>& x,
 const istream_iterator<T,charT,traits,Distance>& y);

but there is no description of what the operator does (i.e., no Effects or Returns clause) in 24.5.1.2.

Proposed Resolution:

Add paragraph 7 to the end of section 24.5.1.2 with the following text:

 template <class T, class charT, class traits, class Distance>
 bool operator!=(const istream_iterator<T,charT,traits,Distance>& x,
 const istream_iterator<T,charT,traits,Distance>& y);

-7- Returns: !(x == y).

262. Bitmask operator ~ specified incorrectly

Section: 17.3.2.1.2 lib.bitmask.types Status: Ready Submitter: Beman Dawes Date: 03 Sep 2000

The ~ operation should be applied after the cast to int_type.

Proposed Resolution:

Change 17.3.2.1.2 [lib.bitmask.types] operator~ from:

 bitmask operator~ (bitmask X)
 { return static_cast< bitmask>(static_cast<int_type>(~ X)); }

to:

 bitmask operator~ (bitmask X)
 { return static_cast< bitmask>(~static_cast<int_type>(X)); }

263. Severe restriction on basic_string reference counting

Section: 21.3 lib.basic.string Status: Ready Submitter: Kevlin Henney <kevlin@curbralan.com> Date: 04 Sep 2000

The note in paragraph 6 suggests that the invalidation rules for references, pointers, and iterators in paragraph 5 permit a
reference- counted implementation (actually, according to paragraph 6, they permit a "reference counted implemenation",
but this is a minor editorial fix).

However, the last sub-bullet is so worded as to make a reference-counted implementation unviable. In the following
example none of the conditions for iterator invalidation are satisfied:

 // first example: "*******************" should be printed twice

Library active issues list 70

 string original = "some arbitrary text", copy = original;
 const string & alias = original;

 string::const_iterator i = alias.begin(), e = alias.end();
 for(string::iterator j = original.begin(); j != original.end(); ++j)
 j = '';
 while(i != e)
 cout << *i++;
 cout << endl;
 cout << original << endl;

Similarly, in the following example:

 // second example: "some arbitrary text" should be printed out
 string original = "some arbitrary text", copy = original;
 const string & alias = original;

 string::const_iterator i = alias.begin();
 original.begin();
 while(i != alias.end())
 cout << *i++;

I have tested this on three string implementations, two of which were reference counted. The reference-counted
implementations gave "surprising behaviour" because they invalidated iterators on the first call to non-const begin since
construction. The current wording does not permit such invalidation because it does not take into account the first call since
construction, only the first call since various member and non-member function calls.

Proposed Resolution:

Change the following sentence in 21.3 paragraph 5 from

Subsequent to any of the above uses except the forms of insert() and erase() which return iterators, the
first call to non-const member functions operator[](), at(), begin(), rbegin(), end(), or rend().

to

Following construction or any of the above uses, except the forms of insert() and erase() which return
iterators, the first call to non- const member functions operator[](), at(), begin(), rbegin(), end(), or rend().

264. Associative container insert(i, j) complexity requirements are not feasible.

Section: 23.1.2 lib.associative.reqmts Status: Review Submitter: John Potter Date: 07 Sep 2000

Table 69 requires linear time if [i, j) is sorted. Sorted is necessary but not sufficient. Consider inserting a sorted range of
even integers into a set<int> containing the odd integers in the same range.

Related issue: 102

Proposed Resolution:

Library active issues list 71

In Table 69, in section 23.1.2, change the complexity clause for insertion of a range from "N log(size() + N) (N is the
distance from i to j) in general; linear if [i, j) is sorted according to value_comp()" to "N log(size() + N, where N is the
distance from i to j".

Rationale:

Testing for valid insertions could be less efficient than simply inserting the elements when the range is not both sorted and
between two adjacent existing elements; this could be a QOI issue.

The LWG considered two other options: (a) specifying that the complexity was linear if [i, j) is sorted according to
value_comp() and between two adjacent existing elements; or (b) changing to Klog(size() + N) + (N - K) (N is the distance
from i to j and K is the number of elements which do not insert immediately after the previous element from [i, j) including
the first). The LWG felt that, since we can't guarantee linear time complexity whenever the range to be inserted is sorted,
it's more trouble than it's worth to say that it's linear in some special cases.

265. std::pair::pair() effects overly restrictive

Section: 20.2.2 lib.pairs Status: Ready Submitter: Martin Sebor Date: 11 Sep 2000

I don't see any requirements on the types of the elements of the std::pair container in 20.2.2. From the descriptions of the
member functions it appears that they must at least satisfy the requirements of 20.1.3 [lib.copyconstructible] and 20.1.4
[lib.default.con.req], and in the case of the [in]equality operators also the requirements of 20.1.1 [lib.equalitycomparable]
and 20.1.2 [lib.lessthancomparable].

I believe that the the CopyConstructible requirement is unnecessary in the case of 20.2.2, p2.

Proposed Resolution:

Change the Effects clause in 20.2.2, p2 from

-2- Effects: Initializes its members as if implemented: pair() : first(T1()), second(T2())
{}

to

-2- Effects: Initializes its members as if implemented: pair() : first(), second() {}

Rationale:

The existing specification of pair's constructor appears to be a historical artifact: there was concern that pair's members be
properly zero-initialized when they are built-in types. At one time there was uncertainty about whether they would be zero-
initialized if the default constructor was written the obvious way. The core language was clarified some time ago, however,
and there is no longer any doubt that the straightforward implementation is correct.

266. bad_exception::~bad_exception() missing Effects clause

Section: 18.6.2.1 lib.bad.exception Status: Review Submitter: Martin Sebor Date: 24 Sep 2000

Library active issues list 72

The synopsis for std::bad_exception lists the function ~bad_exception() but there is no description of what the function
does (the Effects clause is missing).

Proposed Resolution:

Remove the destructor from the class synopses of bad_alloc (18.4.2.1 lib.bad.alloc), bad_cast (18.5.2 lib.bad.cast),
bad_typeid (18.5.3 lib.bad.typeid), and bad_exception (18.6.2.1 lib.bad.exception).

Rationale

This is a general problem with the exception classes in clause 18. The proposed resolution is to remove the destructors from
the class synopses, rather than to document the destructors' behavior, becuase removing them is more consistent with how
exception classes are described in clause 19.

267. interaction of strstreambuf::overflow() and seekoff()

Section: D.7.1.3 depr.strstreambuf.virtuals Status: Open Submitter: Martin Sebor Date: 5 Oct 2000

It appears that the interaction of the strstreambuf members overflow() and seekoff() can lead to undefined behavior in cases
where defined behavior could reasonably be expected. The following program demonstrates this behavior:

 #include <strstream>

 int main ()
 {
 std::strstreambuf sb;
 sb.sputc ('c');

 sb.pubseekoff (-1, std::ios::end, std::ios::in);
 return !('c' == sb.sgetc ());
 }

D.7.1.1, p1 initializes strstreambuf with a call to basic_streambuf<>(), which in turn sets all pointers to 0 in 27.5.2.1, p1.

27.5.2.2.5, p1 says that basic_streambuf<>::sputc(c) calls overflow(traits::to_int_type(c)) if a write position isn't available
(it isn't due to the above).

D.7.1.3, p3 says that strstreambuf::overflow(off, ..., ios::in) makes at least one write position available (i.e., it allows the
function to make any positive number of write positions available).

D.7.1.3, p13 computes newoff = seekhigh - eback(). In D.7.1, p4 we see seekhigh = epptr() ? epptr() : egptr(), or seekhigh =
epptr() in this case. newoff is then epptr() - eback().

D.7.1.4, p14 sets gptr() so that gptr() == eback() + newoff + off, or gptr() == epptr() + off holds.

If strstreambuf::overflow() made exactly one write position available then gptr() will be set to just before epptr(), and the
program will return 0. Buf if the function made more than one write position available, epptr() and gptr() will both point
past pptr() and the behavior of the program is undefined.

Proposed Resolution:

Library active issues list 73

[Toronto: Dietmar will provide wording for a fix. The general outline is to describe the seek in terms of the put pointer,
rather than using seekhigh.]

268. Typo in locale synopsis

Section: 22.1.1 lib.locale Status: Ready Submitter: Martin Sebor Date: 5 Oct 2000

The synopsis of the class std::locale in 22.1.1 contains two typos: the semicolons after the declarations of the default ctor
locale::locale() and the copy ctor locale::locale(const locale&) are missing.

Proposed Resolution:

Add the missing semicolons, i.e., change

 // construct/copy/destroy:
 locale() throw()
 locale(const locale& other) throw()
in the synopsis in 22.1.1 to

 // construct/copy/destroy:
 locale() throw();
 locale(const locale& other) throw();

269. cstdarg and unnamed parameters

Section: 18.7 lib.support.runtime Status: NAD Submitter: J. Stephen Adamczyk Date: 10 Oct 2000

One of our customers asks whether this is valid C++:

 #include <cstdarg>

 void bar(const char *, va_list);

 void
 foo(const char *file, const char *, ...)
 {
 va_list ap;
 va_start(ap, file);
 bar(file, ap);
 va_end(ap);
 }

The issue being whether it is valid to use cstdarg when the final parameter before the "..." is unnamed. cstdarg is, as far as I
can tell, inherited verbatim from the C standard. and the definition there (7.8.1.1 in the ISO C89 standard) refers to "the
identifier of the rightmost parameter". What happens when there is no such identifier?

My personal opinion is that this should be allowed, but some tweak might be required in the C++ standard.

Rationale:

Library active issues list 74

Not a defect, the C and C++ standards are clear. It is impossible to use varargs if the parameter immediately before "..." has
no name, because that is the parameter that must be passed to va_start. The example given above is broken, becuase
va_start is being passed the wrong parameter.

There is no support for extending varargs to provide additional functionality beyond what's currently there. For reasons of
C/C++ compatibility, it is especially important not to make gratuitous changes in this part of the C++ standard. The C
committee has already been requested not to touch this part of the C standard unless necessary.

270. Binary search requirements overly strict

Section: 25.3.3 lib.alg.binary.search Status: Open Submitter: Matt Austern Date: 18 Oct 2000

Each of the four binary search algorithms (lower_bound, upper_bound, equal_range, binary_search) has a form that allows
the user to pass a comparison function object. According to 25.3, paragraph 2, that comparison function object has to be a
strict weak ordering.

This requirement is slightly too strict. Suppose we are searching through a sequence containing objects of type X, where X
is some large record with an integer key. We might reasonably want to look up a record by key, in which case we would
want to write something like this:

 struct key_comp {
 bool operator()(const X& x, int n) const {
 return x.key() < n;
 }
 }

 std::lower_bound(first, last, 47, key_comp());

key_comp is not a strict weak ordering, but there is no reason to prohibit its use in lower_bound.

There's no difficulty in implementing lower_bound so that it allows the use of something like key_comp. (It will probably
work unless an implementor takes special pains to forbid it.) What's difficult is formulating language in the standard to
specify what kind of comparison function is acceptable. We need a notion that's slightly more general than that of a strict
weak ordering, one that can encompass a comparison function that involves different types. Expressing that notion may be
complicated.

Here is a first attempt: the comparison function comp must be equivalent to a comparison function of the form C(pi(x), y),
and [first, last) must be sorted in ascending order by the comparison function C(pi(x), pi(y)), where U is a synonym for
iterator_traits<ForwardIterator>::value_type, x is a value of type U, y is a value of type T, C is a strict weak ordering whose
value type is T, and pi is a homomorphism from U to T.

In this notation, the existing language refers to the special case where T and U are the same type and where pi is the identity
function.

Proposed Resolution:

[Toronto: the issue is still open; there were multiple opinions in the LWG, and several new questions were raised.

• Do we really want to specify what ordering the implementor must use when calling the function object? The
standard gives specific expressions when describing these algorithms, but it also says that other expressions (with
different argument order) are equivalent.

Library active issues list 75

• If we are specifying ordering, note that the standard uses both orderings when describing equal_range.
• Are we talking about requiring these algorithms to work properly when passed a binary function object whose two

argument types are not the same, or are we talking about requirements when they are passed a binary function
object with several overloaded versions of operator()?

• The definition of a strict weak ordering does not appear to give any guidance on issues of overloading; it only
discusses expressions, and all of the values in these expressions are of the same type. Some clarification would
seem to be in order.

These issues should be considered together. Andy, Beman, Bill, and Howard are interested.]

271. basic_iostream missing typedefs

Section: 27.6.1.5 lib.iostreamclass Status: New Submitter: Martin Sebor Date: 02 Nov 2000

Class template basic_iostream has no typedefs. The typedefs it inherits from its base classes can't be used, since (for
example) basic_iostream<T>::traits_type is ambiguous.

Proposed Resolution:

Add the following to basic_iostream's class synopsis in 27.6.1.5 lib.iostreamclass, immediately after public:

 // types:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;

272. Missing parentheses around subexpression

Section: 27.4.4.3 lib.iostate.flags Status: New Submitter: Date: Martin Sebor

27.4.4.3, p4 says about the postcondition of the function: If rdbuf()!=0 then state == rdstate(); otherwise
rdstate()==state|ios_base::badbit.

The expression on the right-hand-side of the operator==() needs to be parenthesized in order for the whole expression to
ever evaluate to anything but non-zero.

Proposed Resolution:

Add parentheses like so: rdstate()==(state|ios_base::badbit).

273. Missing ios_base qualification on members of a dependent class

Section: 27 lib.input.output Status: New Submitter: Martin Sebor Date: 02 Nov 2000

Library active issues list 76

27.5.2.4.2, p4, and 27.8.1.6, p2, 27.8.1.7, p3, 27.8.1.9, p2, 27.8.1.10, p3 refer to in and/or out w/o ios_base:: qualification.
That's incorrect since the names are members of a dependent base class (14.6.2 [temp.dep]) and thus not visible.

Proposed Resolution:

Qualify the names with the name of the class of which they are members, i.e., ios_base.

274. a missing/impossible allocator requirement

Section: 20.1.5 lib.allocator.requirements Status: New Submitter: Martin Sebor Date: 02 Nov 2000

I see that table 31 in 20.1.5, p3 allows T in std::allocator<T> to be of any type. But the synopsis in 20.4.1 calls for
allocator<>::address() to be overloaded on reference and const_reference, which is ill-formed for all T = const U. In other
words, this won't work:

template class std::allocator<const int>;

The obvious solution is to disallow specializations of allocators on const types. However, while containers' elements are
required to be assignable (which rules out specializations on const T's), I think that allocators might perhaps be potentially
useful for const values in other contexts. So if allocators are to allow const types a partial specialization of
std::allocator<const T> would probably have to be provided.

Proposed Resolution:

Proposed resolution 1

Add the following definition of a partial specialization immediately below the definition of the primary template in 20.4.1:

 template <class T>
 class allocator<const T> {
 public:
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;
 typedef const T* pointer;
 typedef const T* const_pointer;
 typedef const T& reference;
 typedef const T& const_reference;
 typedef const T value_type;

 template <class U> struct rebind { typedef allocator<U> other; };

 allocator() throw();
 allocator(const allocator&) throw();
 template <class U> allocator(const allocator<U>&) throw();
 ~allocator() throw();

 const_pointer address(const_reference x) const;

 const_pointer allocate(size_type, allocator<void>::const_pointer hint =
0);
 void deallocate(const_pointer p, size_type n);

 size_type max_size() const throw();

Library active issues list 77

 void construct(const_pointer p, const_reference val);
 void destroy(const_pointer p);
 };

Proposed resolution 2

Change the text in row 1, column 2 of table 32 in 20.1.5, p3 from

any type

to

any non-const type

275. Wrong type in num_get::get() overloads

Section: 22.2.2.1.1 lib.facet.num.get.members Status: New Submitter: Matt Austern Date: 02 Nov 2000

In 22.2.2.1.1, we have a list of overloads for num_get<>::get(). There are eight overloads, all of which are identical except
for the last parameter. The overloads are:

• long&
• unsigned short&
• unsigned int&
• unsigned long&
• short&
• double&
• long double&
• void*&

There is a similar list, in 22.2.2.1.2, of overloads for num_get<>::do_get(). In this list, the last parameter has the types:

• long&
• unsigned short&
• unsigned int&
• unsigned long&
• float&
• double&
• long double&
• void*&

These two lists are not identical. They should be, since get is supposed to call do_get with exactly the arguments it was
given.

Proposed Resolution:

In 22.2.2.1.1 lib.facet.num.get.members, change

 iter_type get(iter_type in, iter_type end, ios_base& str,
 ios_base::iostate& err, short& val) const;

Library active issues list 78

to

 iter_type get(iter_type in, iter_type end, ios_base& str,
 ios_base::iostate& err, float& val) const;

276. Assignable requirement for container value type overly strict

Section: 23.1 lib.container.requirements Status: New Submitter: Peter Dimov Date: 07 Nov 2000

23.1/3 states that the objects stored in a container must be Assignable. 23.3.1/2 lib.map states that map satisfies all
requirements for a container, while in the same time defining value_type as pair<const Key, T> - a type that is not
Assignable.

It should be noted that there exists a valid and non-contradictory interpretation of the current text. The wording in 23.1/3
avoids mentioning value_type, referring instead to "objects stored in a container." One might argue that map does not store
objects of type map::value_type, but of map::mapped_type instead, and that the Assignable requirement applies to
map::mapped_type, not map::value_type.

However, this makes map a special case (other containers store objects of type value_type) and the Assignable requirement
is needlessly restrictive in general.

For example, the proposed resolution of active library issue 103 is to make set::iterator a constant iterator; this means that
no set operations can exploit the fact that the stored objects are Assignable.

This is related to, but slightly broader than, closed issue 140.

Proposed Resolution:

Remove the requirement that the objects stored in a container be Assignable from 23.1/3 and reintroduce it on a case by
case basis (for vector and deque.)

Rationale:

list, set, multiset, map, multimap are able to store non-Assignables.

277. Normative encouragement in allocator requirements unclear

Section: 20.1.5 lib.allocator.requirements Status: New Submitter: Matt Austern Date: 07 Nov 2000

In 20.1.5, paragraph 5, the standard says that "Implementors are encouraged to supply libraries that can accept allocators
that encapsulate more general memory models and that support non-equal instances." This is intended as normative
encouragement to standard library implementors. However, it is possible to interpret this sentence as applying to
nonstandard third-party libraries.

Proposed Resolution:

In 20.1.5, paragraph 5, change "Implementors" to "Implementors of the library described in this International Standard".

----- End of document -----

