Library active issueslist

Doc. no. J16/00-0046
WG21 N1269
Dae 10 Nov 2000
Project: Programming Language C++
Reply to: Matt Austern <austern@research.att.com>

C++ Standard Library Active lssues List (Revision 16)

Reference ISO/IEC | S 14882:1998(E)

Also see

Table of Contentsfor dl library issues.

Index by Section for all library issues.

Index by Statusfor al library issues.
Library Defect Report List

Library Closed IssuesList
How to prepare and submit an issue.

The purpose of this document is to record the status of issues which have come before the Library Working Group (LWG)
of the ANS (J16) and 1SO (WG21) C++ Standards Committee. |ssues represent potential defectsin the ISO/IEC IS
14882:1998(E) document. Issues are not to be used to request new features or other extensons.

This document contains only library issues which are actively being considered by the Library Working Group. That is,
issueswhich have astatus of New, Open, Review, and Ready. See"C++ Standard Library Defect Report List" for issues
consdered defects and "C++ Standard Library Closed IssuesLigt” for issues consdered closed.

Theissuesin these ligts are not necessarily forma 1SO Defect Reports (DR's). While someissueswill eventudly be
elevated to officia Defect Report satus, other issueswill be disposed of in other ways. Seelssue Status.

This document isin an experimenta format designed for both viewing viaaworld-wide web browser and hard-copy
printing. Itisavalable asan HTML filefor browsing or PDF file for printing.

Prior to Revision 14, library issuesligts existed in two dightly different versions; aCommittee Verson and a Public
Version. Beginning with Revision 14 the two versions were combined into asingle version.

This document includes [bracketed italicized notes] asareminder to the LWG of current progresson issues. Such notes
are drictly unofficial and should be read with caution as they may be incomplete or incorrect. Be aware that LWG support
for aparticular resolution can quickly change if new viewpoaints or killer examples are presented in subsequent discussions.

For the mogt current version of this document see hitp:/mww.dkuug.dk/jtcl/sc22/wg21. Requests for further information
abouit this document should include the document number above, reference | SO/IEC 14882:1998(E), and be submitted to
Information Technology Industry Council (IT1), 1250 Eye Street NW, Washington, DC 20005.

Public information as to how to obtain a copy of the C++ Standard, join the stlandards committee, submit an issue, or

comment on an issue can be found in the C++ FAQ at http://www.research.att.com/~austern/csc/fag.html . Public discusson
of C++ Standard related issues occurs on news.comp.std.c++.

For committee members, files available on the committed's private web site include the HTML version of the Standard

itself. HTML hyperlinks from thisissuesligt to those fileswill only work for committee members who have downloaded
them into the same disk directory astheissueslist files.

Library active issueslist

Revision history

R16: post-Toronto mailing; reflects actions taken in Toronto. Added issues 265-277.

R15: pre-Toronto mailing. Added issues 233-264. Some smal HTML formatting changes so that we pass Weblint
tests.

R14: post-Tokyo || mailing; reflects committee actions taken in Tokyo. Added issues 228 to 232. (00-
0019R1/N1242)

R13: pre-Tokyo Il updated: Added issues 212 to 227.

R12: pre-Tokyo || mailing: Added issues 199 to 211. (00-0003/N1226)

R11: post-Konamailing: Updated to reflect LWG and full committee actionsin Kona (99-0048/N1224). Note
changed resolution of issues 4 and 38. Added issues 196 to 198. Closed issueslist split into "defects' and " closed"
documents.

0033/D1209, 14 Oct 99)

R9: pre-Konamailing. Added issues 140to 189. Issueslist split into separate "active”' and "closed" documents.
(99-0030/N1206, 25 Aug)

R8: post-Dublin mailing. Updated to reflect LWG and full committee actionsin Dublin. (99-0016/N1193, 21 Apr
9)

R6: pre-Dublin mailing. Added issues 127, 128, and 129. (99-0007/N1194, 22 Feb 99)

R5: update issues 103, 112; added issues 114 to 126. Format revisionsto prepare for making list public. (30 Dec
L)

R4: post-Santa Cruz |1 updated: 1ssues 110, 111, 112, 113 added, severd issues corrected. (22 Oct 98)

R3: post-Santa Cruz |1 1ssues 94 to 109 added, many issues updated to reflect LWG consensus (12 Oct 98)

R2: pre-Santa Cruz I1: 1ssues 73 to 93 added, issue 17 updated. (29 Sep 98)

R1: Correction to issue 55 resolution, 60 code format, 64 title. (17 Sep 98)

| ssue Status

New - Theissue has not yet been reviewed by the LWG. Any Proposed Resolution ispurely asuggestion from theissue
submitter, and should not be congtrued asthe view of LWG.

Open - The LWG has discussed the issue but is not yet ready to move theissue forward. There are severd possible reasons
for open dtatus:

Consensus may have not yet have been reached as to how to ded with theissue.

Informa consensus may have been reached, but the LWG awaits exact Proposed Resolution wording for review.
The LWG wishesto consult additiona technical experts before proceeding.

Theissue may require further study.

A Proposed Resolution for an openissueis gtill not be construed as the view of LWG. Comments on the current state of
discussions are often given at the end of open issuesin anitaic font. Such comments are for information only and should
not be given undue importance. They do not appear in the public verson.

Dup - The LWG has reached consensus that the issue is a duplicate of another issue, and will not be further deglt with. A
Rationale identities the duplicated issue's issue number.

NAD - The LWG has reached consensus that theissueis not adefect in the Standard, and the issueis ready to forward to
the full committee as a proposed record of response. A Rational e discusses the LWG's reasoning.

Review- Exact wording of a Proposed Resolution isnow available for review on an issue for which the LWG previoudy
reached informa consensus.

Library active issueslist

Ready - The LWG has reached consensus that the issue is adefect in the Standard, the Proposed Resolution is correct, and
theissueisready to forward to the full committee for further action as a Defect Report (DR).

DR - (Defect Report) - The full J16 committee has voted to forward the issue to the Project Editor to be processed asa
Potential Defect Report. The Project Editor reviewsthe issue, and then forwards it to the WG21 Convenor, who returnsit to
the full committee for fina disposition. Thisissueslist accordsthe status of DR to al these Defect Reports regardless of
wherethey arein that process.

TC - (Technica Corrigenda) - The full WG21 committee has voted to accept the Defect Report's Proposed Resolution asa
Technica Corrigenda. Action on thisissue is thus complete and no further action is possible under 1SO rules.

RR - (Record of Response) - The full WG21 committee has determined thet thisissue is not a defect in the Standard.
Action on thisissue is thus complete and no further action is possible under 1SO rules.

Future - In addition to the regular Satus, the LWG believesthat thisissue should be revisited at the next revision of the
standard. It isusualy paired with NAD.

| ssues are dways given the status of New when they first appear on theissueslist. They may progressto Open or Review
whilethe LWG is actively working on them. When the LWG has reached consensus on the disposition of an issue, the
gatuswill then changeto Dup, NAD, or Reedy as appropriate. Once the full J16 committee votes to forward Ready issues
to the Project Editor, they are given the status of Defect Report (DR). Thesein turn may become the basis for Technica
Corrigenda (T C), or are closed without action other than a Record of Response (RR). Theintent of this LWG processis
that only issueswhich are truly defectsin the Standard move to the formal 1SO DR gatus.

Active | ssues

23. Num_get overflow result

Section: 22.2.2.1.2 libfacet.num.get.virtuals Status: Open Submitter: Nathan Myers Date: 6 Aug 93

The current description of numeric input does not account for the possibility of overflow. Thisisan implicit result of
changing the description to rely on the definition of scanf() (which failsto report overflow), and conflicts with the
documented behavior of traditional and current implementations.

Users expect, when reading a character sequence that resultsin a vaue unrepresentable in the specified type, to have an
error reported. The standard as written does not permit this.

Further commentsfrom Dietmar:

| don't fed comfortable with the proposed resolution to issue 23: 1t kind of simplifiestheissueto much. Hereiswhat is
going on:

Currently, the behavior of numeric overflow israther counter intuitive and hard to trace, so | will describeit briefly:

According to 22.2.2.1.2 (lib.facet.num.get.virtuas) paragraph 11f ai | bi t issetif scanf () would returnan
input error; otherwise avaueis converted totherulesof scanf .

scanf () isdefinedintermsof f scanf () .

f scanf () returnsaninput falureif during converson no character matching the conversion specification could
be extracted before reaching EOF. Thisisthe only reasonfor f scanf () tofail dueto aninput error and clearly
does not gpply to the case of overflow.

Library active issueslist

Thus, the conversion is performed according to therulesof f scanf () which basicaly saysthatst rt od,
strtol (), ec. areto beused for the converson.

Thestrtod(),strtol (), etc. functions consume as many matching characters as there are and on overflow
continue to consume matching characters but aso return avaueidentica to the maximum (or minimum for signed
typesif there was aleading minus) value of the corresponding type and seter r no to ERANGE.

Thus, according to the current wording in the standard, overflows can be detected! All whét isto be doneisto
check er r no after reading an dement and, of course, dlearing er r no beforetrying aconversion. With the

current wording, it can be detected whether the overflow was due to a positive or negative number for Sgned
types.

Now the proposed resultion resultsin not modifying the value passed as last argument if an overflow is encountered but
fail bit isset. Checking er r no for ERANGE till allows for detection of an overflow but not what the Sgn was.

Actualy, my problem is not that much with the sgn but thisis at least making thingsworse... My problem ismorethat it is
till necessary to check er r no for the error discription. Thus, | propose the following resolution:

Change paragraph 11 from

-11- Stage 3: Theresult of stage 2 processing can be one of

A segquence of char shasbeen accumulated in stage 2 thet is converted (according to the rules
of scanf) toavadueof thetypeof val . Thisvdueisstoredinval and
i 0s_base: : goodbi t isstoredinerr.

The sequence of char saccumulated in stage 2 would have caused scanf to report an input
falure.i os_base: : fail bit isassgnedtoerr.

to become
-11- Stage 3: Theresult of stage 2 processing can be one of

A sequenceof char s has been accumulated in stage 2 that is converted (according to the rules

of scanf) toavadueof thetypeof val . Thisvdueissoredinval . If the converson reported
an overflow error for thetypeof val (ie er r no would be set to ERANGE by the used
conversion function) theni os_base: : fai |l bit issorediner r, otherwise

i 0s_base: : goodbi t isstoredinerr.

The sequence of char saccumulated in stage 2 would have caused scanf to report an input
falure i os_base: :fail bit isassgnedtoerr.

With this definition, overflow can be detected eesly by storing avadue different from the maximum vaueinval and
checking whether thisvaluewas modifiedincase f ai | bi t isset: If it was, there was an overflow error, otherwise some
other input error occured (under the conditions for the second bulletval isnot changed).

Proposed Resolution:

In22.2.2.1.2 [libfacet.num.get.virtuas], paragraph 11, second bullet item, change

The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure.

to

Library active issueslist 5

The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure, or the
vaue of the sequence cannot be represented inthetype of _va_.

[post-Toronto: "cannot be represented” is probably wrong: infinity can be represented on an IEC559 platform, but 0.1
cannot be represented exactly. However, the alternate proposal may be wrong aswell. It's not clear whether overflow (and
underflow?) should always be treated as errors. Thisissue requires much more thought.]

44. |ostreams use operator==on int_type values
Section: 27 [lib.input.output] Status: Open Submitter: Nathan Myers Date: 6 Aug 98

Many of the specifications for iostreams specify that character values or their int_type equivaents are compared using
operators == or !=, though in other placestraits::eq() or traits::eq_int_typeis specified to be used throughout. Thisisan
inconsstency; we should change uses of == and != to use the traits members instead.

Proposed Resolution:
[Kona: Nathan to supply proposed wording.

Tokyo: the LWG reaffirmed that thisis a defect, and requires careful review of clause 27 as the changes are context
sensitive.]

49. Under specification of ios_base::sync_with_stdio

Section: 27.4.2.4 libiosmembersdatic Status: Open Submitter: Matt Austern Date: 21 Jun 98

Two problems.

(1) 27.4.2.4 doesn't say what ios_base::sync_with_stdio(f) returns. Doesit return f, or doesit return the previous
synchronization state? My guessis the latter, but the standard doesn't say so.

(2) 27.4.2.4 doesn't say what it meansfor streams to be synchronized with stdio. Again, of course, | can make some
guesses. (And I'm unhappy about the performance implications of those guesses, but that's another matter.)

Proposed Resolution:
Change the following sentenance in 27.4.2.4 lib.iosmembers gatic returns clause from:

t r ue if the Sandard iostream objects (27.3) are synchronized and otherwisereturnsf al se.
to:

t r ue if the previous state of the standard iostream objects (27.3) was synchronized and otherwise returns
fal se.

[The LWG agrees (2) that a definition of synchronizedisrequired. Jerry Schwarz will work by email with Matt Austern
to provide such a definition.

Tokyo: PJP knows approximate wording, and will help Matt formulate final wording.]

Library active issueslist

76. Can acodecvt facet always convert oneinternal character at atime?
Section: 22.2.15]iblocdecodecvt Status: Open Submitter: Matt Austern Date: 25 Sep 98

Thisissue concerns the requirements on classes derived from codec vt , induding user-defined classes. What arethe
restrictions on the conversion from externd characters (eg char) tointernd characters (eg. wehar _t)?0Or,
dternatively, what assumptions aboutcodecvt facets canthel/O library make?

The question iswhether it's possible to convert from interna charactersto external characters oneinternal character at a
time, and whether, given avaid sequence of external characters, it's possible to pick off internal cheractersone at atime.
Or, to put it differently: given asequence of externd characters and the corresponding sequence of interna characters, does
apostionin theinternal sequence correspond to some position in the externa sequence?

To makethis concrete, supposethat[fi rst, | ast) isaseguenceof M externd charectersand that[i fi r st

i | ast) isthe corresponding sequence of N internd characters where N > 1. That is, ny _encodi ng. i n() , appliedto
[first, last),yidds[ifirst, ilast).Now thequesion: doesthere necessarily exist asubsequence of externa
chaacters [first, |ast_1),suchthat the corresponding sequence of interna charactersisthe single character
*ifirst?

(What a"no" answer would meanisthatmy _encodi ng trandates sequences only as blocks. There's a sequence of M

externd charactersthat mapsto asequence of N internd characters, but that external sequence has no subsequence that
mapsto N-1 internd characters.)

Some of the wording in the standard, such asthe description of codecvt : : do_max_| engt h (22.2.1.5.2, paragraph 11)
andbasi c_fil ebuf::underfl ow(27.8.1.4, paragraph 3) suggeststhat it must aways be possibleto pick off internal
characters one at atime from a sequence of external characters. However, thisis never explicitly steted oneway or the

other.

Thisissue seems (and is) quite technicd, but it isimportant if we expect usersto provide their own encoding facets. Thisis
an areawhere the standard library calls user-supplied code, so awell-defined set of requirements for the user-supplied code
iscrucid. Users must be aware of the assumptions that the library makes. This issue affects positioning operations on
basi c_fi | ebuf , unbuffered input, and severd of codecvt 'smember functions.

Proposed Resolution:

[Kona: Matt Austern will attempt wording; it isvery complex.]

91. Description of operator>> and getling() for string<> might cause endless loop
Section: 21.3.7.9]ib.gring.io Status: Open Submitter: Nico Josuttis Date: 29 Sep 1998

Operator >> and getling() for trings read until eof() in the input Stream istrue. However, this might never happen, if the
stream can't read anymore without reaching EOF. So shouldn't it be changed into thet it reads until 'good() ?

Proposed resolution:

In 21.3.7.9 [lib.gring.ig], paragraph 1, last sentence " Characters are extracted and appended until any of the following
occurs....", replace;

Library active issues list 7

- end-of-file occurs on the input sequence;
with:

- an attempt to extract acharacter fails,
In21.3.7.9 [lib.gring.ig], paragraph 5, last sentence, replace:

- end-of-file occurs on the input sequence (in which case, the getline function calsis.setstate(ios_base:eofhit)).
with:

- an attempt to extract a character fails

In 23.3.5.3 [lib.bitset.operators], paragraph 5, last sentence, replace:

- end-of-file occurs on the input sequence;
with;

- an attempt to extract acharacter fails;

[Toronto: Theissuewas clarified. If characters are extracted from the streambuf (e.g. with sgetc or with
streambuf_iterator), then thereisno issue: a streambuf can signal failure only by throwing an exception or by returning
eof. So the question iswhether the string input operations are supposed to obtain each character using the streambuf, or
using an istream member function such as get(). The answer has implications for gcount.

We already have an explicit answer for theinput operations of clause 27: see 27.6.1.1]ib.istream paragraph 2. We also
already have an answer for bitset input, since 23.3.5.3lib.bitset.operators, paragraph 4, saysthat bitset's operator>> isa
formatted input function, and includes a reference to the appropriate definition in 27.6.1.2 lib.istream.for matted.

Itisonly string input, in 21.3.7.9]ib.string.io, that is potentially ambiguous. The LWG believesit was clearly intended that
string's input functions obtain characters from the streambuf, rather than by using something like basic_istream::get().
Howard will provide wording.]

92. Incomplete Algorithm Requirements
Section: 25 lib.dgorithms Status: Open Submitter: Nico Josuttis Date: 29 Sep 98

The standard does not state, how often afunction object is copied, caled, or the order of callsinside an agorithm. This may
lead to suprising/buggy behavior. Consder the following example:

class Nth { /1 function object that returns true for the nth el enent
private:
int nth; /[l elenment to return true for
int count; /'l el enment counter
publi c:
Nth (int n) : nth(n), count(0) {
}
bool operator() (int) {
return ++count == nth;
}

H

Library active issueslist 8

/1 remove third el ement
list<int>::iterator pos;
pos = renove_if(coll.begin(),coll.end(), // range
Nt h(3)), /'l renpove criterion
coll.erase(pos,coll.end());

Thiscdl, in fact removesthe 3rd AND the 6th eement. This happens becausethe usud implementation of the agorithm
copiesthe function object internaly:

tenpl ate <class Forwiter, class Predicate>
Forwmter std::renmove_if(Forwlter beg, Forwiter end, Predicate op)
{
beg = find_i f(beg, end, op);
if (beg == end) {
return beg;

}
el se {

Forwi ter next = beg;

return renove_copy_if(++next, end, beg, op);
}

}

The agorithm usesfind_if() to find the first element that should be removed. However, it then uses a copy of the passed
function object to process the resulting elements (if any). Here, Nth is used again and removes d o the sixth dement. This
behavior compromises the advantage of function objects being able to have agtate. Without any cogt it could be avoided
(justimplement it directly instead of caling find_if()).

Proposed resolution:
In[lib.function.objects] 20.3 Function objects add as new paragraph 6 (or insert after paragraph 1):
Option 1:

Predicates are functions or function objects that fulfill the following requirements:
- They return aBoolean vaue (boal or avaue convertible to boal)

- It doesn't matter for the behavior of a predicate how often it is copied or assigned and how oftenitis
cdled.

Option 2:

- if it'safunction:
- All callswith the same argument val ues yield the same result.
- if it'safunction object:
- In any sequence of calsto operator () without calling any non-constant member function, al calswith
the same argument vaues yidd the same reult.
- After an assgnment or copy both objects return the same result for the same values.

[Santa Cruz: The LWG believes that there may be more to this than meetsthe eye. 1t appliesto all function objects,
particularly predicates. Two questions: (1) must a function object be copyable? (2) how many timesis a function object
called? Thesearein effect questions about state. Function objects appear to require special copy semantics to make state
work, and may fail if calling alters state and calling occurs an unexpected number of times.

Dublin: Pete Becker felt that this may not be a defect, but rather something that programmers need to be educated about.
There was discussion of adding wording to the effect that the number and order of calls to function objects, including
predicates, not affect the behavior of the function object.

Library active issueslist 9

Pre-Kona: Nico comments: It seemsthe problemisthat we don't have a clear statement of "predicate” in the standard.
People including me seemed to think "a function returning a Boolean value and being able to be called by an STL
algorithm or be used as sorting criterion or ... isa predicate”. But a predicate has more requirements: It should never
changeits behavior dueto a call or being copied. IMHO we haveto state thisin the standard. If you like, see section 8.1.4
of my library book for a detailed discussion.

Kona: Nico will provide wording to the effect that " unless otherwise specified, the number of copies of and calls to function
objects by algorithmsis unspecified". Consider placing in 25|ib.algorithms after paragraph 9

Pre-Tokyo: Angelika Langer comments: if the resolution isthat algorithms are free to copy and pass around any function
objects, then it isa valid question whether they are also allowed to change the type information from reference type to
value type.

Tokyo: Nico will discussthisfurther with Matt as there are multiple problems beyond the underlying problem of no
definition of "Predicate".

Post-Tokyo: Nico provided the above proposed resolutions.]

94. May library implementors add template parametersto Standard Library classes?
Section: 17.4.4 |ib.conforming Status: NAD Submitter: Matt Austern Date: 22 Jan 98

Isit apermitted extension for library implementors to add template parameters to standard library classes, provided that
those extra parameters have defaults? For example, indead of definingt enpl at e <class T, class Alloc =
al l ocator<T> > cl ass vector; ddiningitast enpl ate <class T, class Alloc =

all ocator<T>, int N = 1> class vector;

The standard may well dready dlow this (I can't think of any way that this extension could bresk a conforming program,
considering that users are not permitted to forward-declare standard library components), but it ought to be explicitly
permitted or forbidden.

Proposed Resolution:

Add anew subclause [presumably 17.4.4.9] following 17.4.4.8 [lib.res.on.exception.handling:
17.4.4.9 Template Parameters

A specidization of atemplate class described in the C++ Standard Library behavesthe same asif the
implementation declares no additiona template parameters.

Footnote/ Additional template parameters with default vaues are thus permitted.
Add "template parameters' to thelist of subclauses at the end of 17.4.4 paragraph 1 [lib.conforming].

[Kona: The LWG agreed the standard needsclarification. After discussion with John Spicer, it seems added template
parameter s can be detected by a program using template-template parameters. A straw vote - "should implementors be
allowed to add template parameters?" found no consensus ; 5- yes, 7 - no.]

[Post-K ona comment from Steve Cleary viacomp.std.c++:

Library active issues list 10

| disagree [with the proposed resolution] for the following reason: consider user library code with template template
parameters. For example, auser library object may be templated on the type of underlying sequence storageto use
(dequellist/vector), since these classes dl take the same number and type of template parameters; thiswould alow the user
to determine the performance tradeoffs of the user library object. A Smilar exampleis auser library object templated on the
type of underlying set storage (set/multiset) or map storage (map/multimap), which would alow usersto change (within
reason) the semantic meanings of operations on that object.

I think that additiona template parameters should be forbidden in the Standard classes. Library writers don't lose any
expressive power, and can gill offer extensions because additiona template parameters may be provided by anon-Standard
implementation class:

tenplate <class T, class Allocator = allocator<T>, int N= 1>
class __vector

{ ... 1

tenplate <class T, class Allocator = allocator<T> >

class vector: public __vector<T, Allocator>

{ ... b
]
Rationale:

Thereis no ambiguity; the standard is clear aswritten. Library implementors are not permitted to add template parameters
to standard library classes. This does not fall under the "asif" rule, so it would be permitted only if the standard gave
explicit license for implementorsto do this. Thiswould require a changein the standard.

The LWG decided againgt making this change, because it would bregk user code involving template template parameters or
specidizations of standard library class templates.

96. Vector<bool>isnot a container

Section: 23.25lib.vector.bool Status: Open Submitter: AFNOR Date: 7 Oct 98

vect or <bool > isnot acontainer asits reference and pointer types are not references and pointers.
Also it forces everyone to have a Space optimization instead of a speed one.

See also: 99-0008 == N1185 Vector<bool> is Nonconforming, Forces Optimization Choice.
Proposed Resolution:

[In Santa Cruz the LWG felt that this was Not A Defect.]

[In Dublin many present felt that failure to meet Container reguirements was a defect. There was disagreement as to
whether or not the optimization requirements constituted a defect.

The LWG looked at the following resolutionsin some detail:

* Not A Defect.

* Add a note explaining that vector<bool> does not meet Container requirements.
* Remove vector<bool>.

* Add a new category of container requirements which vector<bool> would meet.

Library active issues list 11

* Rename vector<bool>.
No alternative had strong, wide-spread, support and every alternative had at |east one "over my dead body" response.

There was also mention of a transition scheme something like (1) add vector_bool and deprecate vector<bool> in the next
standard. (2) Remove vector<bool> in the following standard.

Modifying container requirementsto permit returning proxies (thus allowing container requirements conforming
vector < bool>) was al so discussed.

It was also noted that thereis a partial but ugly workaround in that vector<bool> maybe further specialized with a
customer allocator.

Kona: Herb Sutter presented his paper J16/99-0035==WG21/N1211, vector<bool>: More Problems, Better Solutions.
Much discussion of a two step approach: a) deprecate, b) provide replacement under a new name. LWG straw vote on
that: 1-favor, 11-could live with, 2-over my dead body. This resolution was mentioned in the LWG report to the full
committee, where several additional committee membersindicated over-my-dead-body positions.

Tokyo: Not discussed by the full LWG; no one claimed new insights and so time was mor e productively spent on other
issues. In private discussionsit was asserted that requirements for any solution include 1) Increasing the full committee's
under standing of the problem, and 2) providing compiler vendors, authors, teachers, and of course users with specific
suggestions as to how to apply the eventual solution.]

98. Input iterator requirementsare badly written
Section: 24.1.1 |ib.input.iterators Status: Open Submitter: AFNOR Date: 7 Oct 98
Table72in24.1.1 (lib.input.iterators) specifies semanticsfor * r ++ of:
{ Ttnp = *r; ++r; return tnp; }
This does not work for pointers and over congtrainsimplementors.
Proposed Resolution:
Add for *r++: “To cal the copy constructor for thetype T is alowed but not required.”
[Dublin: Pete Becker will attempt improved wording.]

[Tokyo: The essence of the issue seems to have escaped. Petewill email Valentin to try to recaptureit.]

102. Bugin insert rangein associative containers

Section: 23.1.2 lib.asociativeregmts Status: Dup Submitter: AFNOR Date: 7 Oct 98

Table 69 of Containers say that ainsert(i,j) islineer if [i, j) is ordered. It seemsimpossible to implement, asit meansthat if
[i,J) =[X], insert in an associative container is O(1)!

Proposed Resolution:

Library active issues list 12

N+log (sz€()) if [i,j) is sorted according to value_comp()
Rationale:

Subsumed by issue 264.

103. set::iterator isrequired to be modifiable, but thisallows modification of keys

Section: 23.1.2 lib.asocidiveregmts Status: Reedy Submitter: AFNOR Date: 7 Oct 98

Sat::iterator is described asimplementation-defined with a reference to the container requirement; the container
requirement says that const_iterator is an iterator pointing to const T and iterator an iterator pointingto T.

23.1.2 paragraph 2 implies that the keys should not be modified to bresk the ordering of elements. But that isnot clearly

specified. Especidly considering that the current standard requires thet iterator for associative containers be different from
cond_iterator. Set, for example, hasthe following:

typedef inplenmentation defined iterator;
/1 See _lib.container.requirenents_

23.1 lib.container.requirements actually requires thet iterator type pointing to T (table 65). Disdllowing user modification of
keysby changing the standard to require an iterator for associaive container to be the same as congt_iterator would be
overkill sincethat will unnecessarily significantly restrict the usage of associative container. A classto be used as dements
of s, for example, can no longer be modified easily without either redesigning the dass (using muteble on fields that have
nothing to do with ordering), or using const_cast, which defeats requiring iterator to be const_iterator. The proposed
solution goesin line with trusting user knowswhat heis doing.

Other Options Evaluated:

Option A. In23.1.2 lib.associativeregmts, paragraph 2, after first sentence, and before"In addition,...", add oneline:

Modification of keys shal not change their strict week ordering.

Option B. Add three new sentencesto 23.1.2 lib.asocigtiveregmits:

At the end of paragraph 5: "Keysin an associative container areimmutable." At the end of paragraph 6:
"For associative containers where the value type is the same asthe key type, bothi t er at or and
const _iterator arecongant iterators. It is unspecified whether or noti t er at or and
const _iterator aethesametype”

Option C. To 23.1.2 lib.associativereqmits, paragraph 3, which currently reads:

The phrase ““equivaence of keys' means the equiva ence relation imposed by the comparison and not the
operator==on keys. That is, two keysk1 and k2 in the same container are considered to be equivaent if
for the comparison object comp, comp(kl, k2) == fdse && comp(k2, k1) ==fdse.

add thefollowing:

For any two keys k1 and k2 in the same container, comp(k1, k2) shal return the same vaue whenever it
isevauated. [Note: If k2 isremoved from the container and later reinserted, comp(k1, k2) must ill
return acongstent value but this value may be different than it wasthefirst time k1 and k2 werein the

Library active issues list 13

same container. Thisisintended to dlow usage like astring key that contains afilename, where comp
comparesfile contents; if k2 isremoved, thefileis changed, and the same k2 (filename) is reinserted,
comp(kl, k2) must again return a consistent value but this value may be different than it was the previous
time k2 wasin the container.]

Proposed Resolution:

Add the following to 23.1.2 |ib.associative.regmits a the indicated location:

At the end of paragrgph 3: "For any two keys k1 and k2 in the same container, caling comp(kl, k2) shall
dwaysreturn the samevaue"

At the end of paragraph 5: "Keysin an associative container areimmutable.”

At the end of paragraph 6. "For associdtive containers where the val ue type is the same as the key type,
bothi t er at or andconst _i t er at or are congant iterators. It is unspecified whether or not
iterator andconst _it er at or arethesametype.”

Rationale:

Severd arguments were advanced for and againg dlowing set dementsto be mutable aslong as the ordering was not
effected. The argument which swayed the LWG was one of safety; if eements were mutable, there would be no compile-
time way to detect of asimple user oversight which caused ordering to be modified. There was areport that this had
actualy happened in practice, and had been painful to diagnose. If users need to modify elements, it is possibleto use
mutable members or const_cast.

Simply requiring that keys be immutable is not sufficient, because the comparison object may indirectly (via pointers)
operate on vaues outside of the keys.

Thetypesi t er at or andconst _i t er at or arepermitted to be different typesto alow for potentia future work in
which some member functions might be overloaded between the two types. No such member functions exist now, and the
LWG bdlievesthat user functionality will not be impaired by permitting the two types to be the same. A function that
operates on both iterator types can be defined for const _i t er at or aone, and can rely on the automatic convertion
fromi t erat or toconst _iterator.

[Tokyo: The LWG crafted the proposed resolution and rationale.]

109. Missing bindersfor non-const sequence elements

Section: 20.3.6 lib.binders Status: Open Submitter: Bjarne Stroustrup Date: 7 Oct 98

There are no versions of binders that apply to non-const eements of a sequence. This makes exampleslikefor_each() usng
bind2nd() on page 521 of "The C++ Programming Language (3rd)" non-conforming. Suitable versions of the binders need
to be added.

[Dublin: Nico volunteered to organize a discussion of thisand related issues. Hereitis:]
What is probably meant here is shown in the following example:

class Elem{
public:
void print (int i) const { }

Library active issues list 14

_~——
5 -

void modify (int i) { }
mai n()

vector<El ent col | (2);

for_each (coll.begin(), coll.end(), bind2nd(mem fun_ref(&El em:print),42));
Il K

for_each (coll.begin(), coll.end(), bind2nd(nmem fun_ref(&El em :nodify), 42));

/'l ERROR

}

The error results from the fact that bind2nd() passesits first argument (the argument of the sequence) as congtant reference.
See the following typical implementation:

tenpl ate <cl ass Operation>
cl ass bi nder 2nd
public unary_function<typenane Operation::first_argunment _type
typenane Operation::result_type> {
prot ected:
Operation op;
typenane Operation::second_argunent _type val ue;
publi c:
bi nder 2nd(const Operati on& o,
const typenane Operation::second_argunent _type& v)
op(o), value(v) {}
typenane COperation::result_type
operator()(const typename Operation::first_argunent_type& x) const {
return op(x, value);
}

H

The solution isto overload operator () of bind2nd for non-constant arguments:

tenpl ate <cl ass Operation>
cl ass bi nder 2nd
public unary_functi on<typenane Operation::first_argunment _type,
typenane Operation::result_type> {
pr ot ect ed:
Oper ati on op;
typenane Operation::second_argunent _type val ue;
public:
bi nder 2nd(const Operati on& o,
const typenane Operation::second_argunent _type& v)
op(o), value(v) {}
typenane Operation::result_type
operator()(const typenanme Operation::first_argunment_type& x) const {
return op(x, value);
}
typenane Operation::result_type
operator()(typenane Operation::first_argunent_type& x) const {
return op(x, value);
}
b

Proposed Resolution:

In 20.3.6.1 [lib.binder.1d] in the declaration of binderlst after:

Library active issueslist

typenane Operation::result_type
operator()(const typenane Operation::second_argunment_type& x) const;

insert:

typenane Operation::result_type
operator () (typenane Operation::second_argunent _type& X) const;

In 20.3.6.3 [lib.binder.2nd] in the declaration of binder2nd &fter:

typenane Operation::result_type
operator()(const typenane Operation::first_argunent _type& x) const;

insert:

typenane Operation::result_type
operator () (typenane Operation::first_argument_type& x) const;

[Kona: The LWG discussed this at some length. It was agreed that thisis a mistake in the design, but there was no
consensus on whether it was a defect in the Standard. Straw vote:

5 NAD
3 AsProposed
6 Leave open

Tokyo: Theissue was not discussed.]

15

111. istreambuf _iterator::equal over specified, inefficient

Section: 24.5.3.5 [lib.igreambuf.iterator::equa] Status: Open Submitter: Nathan Myers Date: 15 Oct 98

The member istreambuf_iterator<>::equd is gpecified to be unnecessarily inefficient. While this does not affect the
efficiency of conforming implementations of iostreams, because they can "reach into” the iterators and bypass this function,
it does affect userswho useistreambuf _iterators.

Theinefficiency results from atoo-scrupulous definition, which requires a"true” result if neither iterator isat eof. In
practice theseiterators can only usefully be compared with the "eof" value, so the extratest implied provides no benefit, but
dows down users code.

The solution isto wesken the requirement on the function to return true only if both iterators are at eof.
Proposed Resolution:

Replace 24.5.3.5 [lib.istreambuf.iterator::equal], paragraph 1,

-1- Returns: trueif and only if both iterators are at end-of-stream, or neither is at end-of-stream,
regardiess of what stresmbuf object they use.

with

Library active issues list 16

-1- Returns: trueif and only if both iterators are at end-of-stream, regardiess of what streambuf object
they use.

[Toronto: most people saw no compelling reason to make this change. There was some argument that the standard already
permitsthis behavior, on the groundsthat it isillegal to have two differenti st r eanbuf _i t er at or sinto the same
stream. A possible counterexample:

i streanmbuf _iterator i(cin);
assert(i ==1i);

The standard currently requires that the assertion succeeds. (Assuming that we haven't reached eof on standard input.)]

117. basi c_ost reamuses honexistent num put member functions

Section: 27.6.2.5.2 lib.osream.insertasarithmetic Status: Open Submitter: Matt Austern Date: 20 Nov 98

The effects clause for numeric inserters saysthat insertion of avaue x, whosetypeiseither bool ,short ,unsi gned
short,int,unsigned int,l ong,unsi gned | ong,fl oat,doubl e,l ong doubl e,orconst voi d*,is
deegatedtonum_put , and that insertion is performed asiif through the following code fragment:

bool failed = use_facet<
num _put <char T, ostreanbuf _iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(), val). failed();

Thisdoesn't work, because num_put <>::put isonly overloaded for thetypesbool ,| ong,unsi gned | ong, doubl e,
| ong doubl e,andconst voi d*. Thatis, the code fragment in the sandard isincorrect (it is diagnosed as ambiguous
a compiletime) for thetypesshor t ,unsi gned short,int,unsi gned int,andfl oat.

We mugt ether add new member functionstonum_put , or dse change the descriptionin ost r eamso that it only calls
functionsthat are actually there. | prefer the latter.

Proposed Resolution:
Replace 27.6.2.5.2, paragraph 1 with the following:

Thecdassesnum _get <> andnum_put <> handlelocdedependent numeric formatting and parsing.
Theseinserter functionsusetheimbued | ocal e vaueto perform numeric formatting. Whenval isof
typebool ,l ong,unsi gned | ong,doubl e,l ong doubl e,orconst voi d*,theformatting
converson occurs asif it performed the following code fragment:

bool failed = use_facet<
num _put <char T, ostreanbuf _iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(), val). failed();

Whenval isof typeshort ori nt theformatting conversion occurs asif it performed the following
code fragment:

bool failed = use_facet<
num _put <char T, ostreanbuf _iterator<charT,traits> >

Library active issues list 17

>(getloc()).put(*this, *this, fill(), static_cast<long>(val)).
failed();

Whenval isof typeunsi gned short orunsi gned i nt theformatting conversion occurs asif it
performed the following code fragment:

bool failed = use_facet<
num _put <char T, ostreanbuf _iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(), static_cast<unsigned
long>(val)). failed();

Whenval isof typef | oat theformatting conversion occurs asif it performed the following code
fragment:

bool failed = use_facet<
num put <char T, ostreanbuf _iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(), static_cast<double>(val)).
failed();

[Dublin: The LWG feelsthisis probably correct, but would like to review it one more time with additional technical
experts. Issue 118 isrelated.

[Toronto: Thisresolution may not be adequate for hex and octal output of signed int and signed short: PJP believes they
should be converted to unsigned int and unsigned short first.]

118. basi c_i st reamuses nonexistent num get member functions

Section: 27.6.1.2.2 lib.igream.formatted.arithmetic Status: Reedy Submitter: Matt Austern Date: 20 Nov 98

Formatted input is defined for thetypesshor t ,unsi gned short,i nt,unsi gned int,l ong,unsi gned | ong,
fl oat,doubl e,l ong doubl e,bool ,andvoi d*. According to section 27.6.1.2.2, formatted input of avadue x is
done asif by the following code fragment:

typedef num get< charT,istreanbuf _iterator<charT,traits> > nunget;
iostate err = 0;

use_facet< nunget >(loc).get(*this, 0, *this, err, val);
setstate(err);

According to section 22.2.2.1.1 |ib.facet.num.get.members, however, num _get <>: : get () isonly overloaded for the
typesbool ,I ong,unsi gned short,unsi gned int,unsi gned | ong,unsi gned | ong,fl oat,doubl e,
| ong doubl e,andvoi d*. Comparing thelists from the two sections, we find that 27.6.1.2.2 is using a nonexistent
function for typesshort andi nt .

Proposed Resolution:

In 27.6.1.2.2 Arithmetic Extractors [lib.istream.formatted.arithmetic], remove the two lines (1st and 3rd) which reed:

oper at or >>(short & val);

operator>>(inté& val);

And add thefollowing at the end of that section (27.6.1.2.2) :

Library active issueslist

oper at or >>(short & val);

The conversion occurs asif performed by the following code fragment (using the same notation asfor the
preceding code fragment):

typedef num get< charT,istreanbuf _iterator<charT,traits> > nunget;
iostate err = 0;
I ong | val
use_facet< nunget >(loc).get(*this, 0, *this, err, lval);
if (err ==
&& (lval < nuneric_limts<short> :mn() ||
numeric_limts<short>::max() < lval))
err = ios_base::failbit;
setstate(err);
operator>>(inté& val);

The converson occurs asif performed by the following code fragment (using the same notation as for the
preceding code fragment):

typedef num.get< charT,istreanbuf_iterator<charT,traits> > nunget;
iostate err = 0;
| ong | val
use_facet< nunget >(loc).get(*this, 0, *this, err, lval);
if (err ==
&& (lval < nuneric_limts<int>:min() ||
nunmeric_limts<int> :max() < lval))
err = ios_base::failbit;
setstate(err);

[Dublin: What about do_get? Aren't two functions need there too? Also, the LWG would like to see full wording for the

Proposed Resolution.

Post-Tokyo: PJP provided the above wording.]

18

120. Can an implementor add specializations?
Section: 17.4.3.1 lib.resarved.names Status: Open Submitter: Judy Ward Date: 15 Dec 1998

Section 17.4.3.1 says.

It isundefined for a C++ program to add declarations or definitions to namespace std or namespaces
within namespace std unless otherwise specified. A program may add template specidizations for any
standard library template to namespace std. Such a specidization (complete or partial) of a standard
library template resultsin undefined behavior unless the declaration depends on a user-defined name of
externa linkage and unless the specidization meets the sandard library requirements for the origina
template...

Thisimpliesthat it is ok for library usersto add specidizations, but not implementors. A user program can actudly detect
this, for example, the following manua ingtantiation will not compileif the implementor has mede ctype<wchar_t>a
specidization:

#i ncl ude <l| ocal e>

Library active issues list 19

#i ncl ude <wchar. h>

tenpl ate class std::ctype<wchar_t>; // can't be specialization
Lib-7047 [Matt Austern] comments.

The status quo is unclear, and probably contradictory. Thisissue applies both to explicit instantiations and to
specidizations, sinceit is not permitted to provide both apeciaization and an explicit instantiation.

The specidization issue is actually more serious than the ingtantiation one. One could argue thet there is a consistent status
quo asfar asindantiations go, but one can't argue that in the case of specidizations. The sandard must either (1) gve
library implementors license to provide explicit specidizations of any library template; or (2) give acompletelist of exactly
which specidizations must be provided, and forbid library implementors from providing any speciaizations not on that list.
At present the standard does neither.

Proposed Resolution:
Append to 17.4.3.1 lib.reserved.names paragraph 1.

A program may manudly ingtantiate any templatesin the standard library only if the declaration depends
on auser-defined name of externd linkage and the ingtantiation meets the standard library requirements
for the origina template.

[Kona: Wording should be added to the effect that userswill not be allowed to manual instantiate any templatesin the
standard library. Judy will work on the proposed wording. Also seeissue 177.

Post-Tokyo: Judy Ward provided the above wording.]

[Toronto: The LWG is concerned about the scope of this proposed resolution: manually instantiating standard library
templatesis a common method for reducing compilation times. One possible alternative is a core change: allow (and
ignore) manual instantiation requests when thereis an explicit specialization. Another possible alternativeisrequiring that
library implementors provide a list of specializations and explicit instantiations as part of their documentation. Judy has
volunteered to provide wording for the latter alternative.]

123. Should valarray helper arraysfill functions be const?

Section: 26.3.5.4 libdicearfill, 26.3.7.4 lib.gdicearayfill, 26.3.8.4 lib.mask.array fill, 26.3.9.4 lib.indirect.array. fill
Status: Open Submitter: Judy Ward Date: 15 Dec 1998

One of the operator= in the vaarray helper arraysis const and one is not. For example, look at dice array. This operator=
in Section 26.3.5.2 lib.dicearr.assign is congt:

voi d operator=(const val array<T>&) const;
but thisonein Section 26.3.5.4 lib.dicear fill, is not:

voi d operator=(const T&);
The description of the semantics for these two functionsis similar.

Proposed Resolution:

Library active issues list 20

Maketheoper at or =(const T&) versonsof dice aray, gdice aray, indirect_array, and mask_array const
member functions.

[Dublin: Pete Becker spoketo Daveed Vandevoorde about this and will work on a proposed resolution.

Tokyo: Discussed together with the AFNOR paper 00-0023/N1246. The current helper slices now violate language rules
due to a core language change (but most compilers don't check, so the violation has previously gone undetected). Major
surgery is being asked for in this and other valarray proposals (see issue 77 Rationale), and a complete designreview is
needed before making piecemeal changes. Robert Klarer will work on formulating the issues.]

136. seekp, seekg setting wrong streams?

Section: 27.6.1.3 lib.istream.unformatted Status: Reedy Submitter: Howard Hinnant Date: 6 Mar 99

I may be misunderstanding the intent, but should not seekg set only the input stream and seskp set only the output stream?
The description seems to say that each should set both input and output streams. If that's redlly the intent, | withdraw this
proposal.

Proposed Resolution:

In section 27.6.1.3 change:

basi c_i streankcharT,traits>& seekg(pos_type pos);

Effects: If fail() != true, executes rdbuf()->pubseekpos(pos).
To:

basi c_i streankcharT,traits>& seekg(pos_type pos);

Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, ios_base::in).
In section 27.6.1.3 change:

basi c_i streanxkcharT,traits>& seekg(off_type& off, ios_base::seekdir dir);
Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir).

To

basi c_i streankcharT,traits>& seekg(off _type& off, ios_base::seekdir dir);
Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::in).

In section 27.6.2.4, paragraph 2 change:

-2- Effects: If fail() !'= true, executes rdbuf()->pubseekpos(pos).
To:

-2- Effects: If fail() !

true, executes rdbuf()->pubseekpos(pos, io0s_base::out).

In section 27.6.2.4, paragraph 4 change

-4- Effects: If fail() !'= true, executes rdbuf()->pubseekoff(off, dir).

Library active issues list 21

To:

-4- Effects: If fail() !'= true, executes rdbuf()->pubseekoff(off, dir,
i 0s_base: :out).

[Dublin: Dietmar Kihl thinksthisis probably correct, but would like the opinion of more iostream experts before taking
action.

Tokyo: Reviewed by the LWG. PJP noted that although his docs are incorrect, hisimplementation already implements the
Proposed Resolution.

Post-Tokyo: Matt Austern comments:
Isit a problemwith basic_istream and basic_ostream, or isit a problemwith basic_stringbuf?

We could resolve my issue either by changing basic_istream and basic_ostream, or by changing basic_stringbuf. | actually
prefer the latter change (or maybe both changes): | don't see any reasonfor the standard to require that std: : stringbuf
s(std::string("foo"), std::ios_base::in); s.pubseekoff(0, std::ios_base::beg); must fail.

Thisrequirement isactually a bit weird. There'sno similar requirement for basic_streambuf<>::seekpos, or for
basic_filebuf<>::seekoff or basic_filebuf<>::seekpos.]

153. Typoin narrow() semantics

Section:: 22.2.1.3.2 lib.facet.ctype.char.members Status: Reedy Submitter: Dietmar Kihl Date: 20 Jul 99

The description of the array version of nar r ow() (in paragraph 11) isflawed: Thereisno member do_nar r ow() which
takes only three arguments becauise in addition to the range a default character is needed.

Proposed resolution:

Change 22.2.1.3.2 |ib.facet.ctype.char.members paragraph 10 and 11 from:

char narrow(char ¢, char /*dfault*/) const;
const char* narrow(const char* |ow, const char* high,

char /*dfault*/, char* to) const;
Returns: do_narrow(low, high, to).

to:

char narrow(char c, char dfault) const;
const char* narrow(const char* |ow, const char* high,
char dfault, char* to) const;
Returns: do_narrow(c, dfault) or
do_narrow(l ow, high, dfault, to), respectively.

[Kona: 1) the problem occursin additional places, 2) a user defined version could be different.

Post-Tokyo: Dietmar provided the above wording at the request of the LWG. He could find no other places the problem
occurred. He asks for clarification of the Kona "a user defined version..." comment above. Perhapsit was a circuitous way
of saying "dfault" needed to be uncommented?]

Library active issueslist

22

165. xsput n(), pubsync() never called by basi c_ost reammember s?
Section:: 27.6.2.1 lib.odream Status: Reedy Submitter: Dietmar Kihl Date; 20 Jul 99

Paragraph 2 explicitly statesthat none of the basi ¢_ost r eamfunctionsfaling into one of the groups "formatted output
functions' and "unformatted output functions' calls any stream buffer function which might call avirtua function other
thanover f | ow() . Badcaly thisisfine but thisimpliesthat sput n() (thisfunction would cdl the virtua function
xsput n()) isnever caled by any of the standard output functions. Isthisredly intended? At minimum it would be
convenientto cal xsput n() for strings... Also, the statement thatover f | ow() isthe only virtua member of

basi c_st reanbuf cdledisinconflict with the definition of f | ush() whichcdlsr dbuf () - >pubsync() ad
thereby thevirtua functionsync() (f1 ush() islisted under "unformatted output functions").

In addition, | guessthat the sentence starting with "They may use other public membersof basi c_ost r eam..." probably
wasintended to start with " They may use other public membersof basi ¢_st r eanuf ..." dthough the problem with the
virtuad members existsin both cases.
| see two obvious resolutions.
1. sateinafootnotethat thismeansthatxsput n() will never be caled by any ostream member and that thisis
intended.

2. rdaxtheredrictionanddlow cdling over f | ow() andxsput n() . Of course, the problemwithf | ush() hes
to be resolved in some way.

Proposed resolution:
Changethe last sentence of 27.6.2.1 (lib.ostream) paragraph 2 from:

They may use other public members of basic_ostream except that they do not invoke any virtua members
of rdbuf() except overflow().

to:

They may use other public members of basic_ostream except that they shal not invoke any virtual
members of rdbuf() except overflow(), xsputn(), and sync().

[Kona: the LWG believesthisisa problem. Wishto ask Jerry or PIP why the standard is written thisway.

Post-Tokyo: Dietmar supplied wording at the request of the LWG. He comments: The rules can be made a little bit more

specific if necessary be explicitly spelling out what virtuals are allowed to be called from what functions and eg to state

specifically that flush() is allowed to call sync() while other functions are not.]

167. Improper useoftraits_type:: | ength()

Section:: 27.6.2.5.4 lib.osream.insarters.character Status: Review Submitter: Dietmar Kihl Date; 20 Jul 99

Paragraph 4 satesthat thelengthisdeterminedusing t rai t s: : | engt h('s) . Unfortunately, this function is not defined
for exampleif the character typeiswchar _t andthetypeof s ischar const *. Smilar problemsexigt if the character
typeischar andthetypeof s iseithersi gned char const* orunsi gned char const*.

Library active issues list 23

Proposed resolution:

Change 27.6.2.5.4 (lib.ostream.inserters.character) paragraph 4 from:

Effects. Behaveslike an formatted inserter (as described in lib.ostream.formatted.regmts) of out. After a
sentry object is constructed it inserts characters. The number of characters starting at sto beinsarted is
traits::length(s). Padding is determined as described in lib.facet.num.put.virtuas. Thetraits::length(s)
characters sarting at s are widened using out.widen (lib.basic.iosmembers). The widened characters and
any required padding are inserted into out. Calswidth(0).

to:

Effects Behaveslike an formatted inserter (as described in lib.ostream.formatted.regmts) of out. After a

sentry object is constructed it inserts characters. The number len of characters starting at sto be inserted
is

- traits::length((const char*)s) if the second argument is of type const charT*
- char_traits<char>::length(s) if the second argument is of type const char*, congt signed char*, or const
unsigned char* and and charT isnot char.

Padding is determined as described in lib.facet.num.put.virtuas. The len characters starting at sare
widened using out.widen (lib.basic.iosmembers). The widened characters and any required padding are
inserted into out. Callswidth(0).

[Kona: Itisclear to the LWG thereis a defect here. Dietmar will supply specific wording.
Post-Tokyo: Dietmar supplied the above wording.]

[Toronto: The original proposed resolution involved char_traits<signed char> and char_traits<unsigned char>. There
was strong opposition to requiring that library implementors provide those specializations of char_traits.

171. Strangeseekpos() semanticsdueto joint position

Section:: 27.8.1.4 libfilebuf.virtuds Status: Reedy Submitter: Dietnar Kihl Date: 20 Jul 99
Overridden virtua functions, seekpos()

In 27.8.1.1 (libfilebuf) paragraph 3, it is stated that ajoint input and output position ismaintained by basi ¢_fi | ebuf .
Stll, thedescription of seekpos () seemsto talk about different file positions. In particular, it isunclear (at least to me)
what is supposed to happen to the output buffer (if thereisone) if only theinput position is changed. The standard seemsto
mandate that the output buffer is kept and processed asif there was no positioning of the output position (by changing the
input position). Of course, this can be exactly what you want if theflag i os_base: : at e isset. However, | think, the
standard should say something like this:

If (whi ch & nmode) == 0 nether read nor write position is changed and the cdl fails. Otherwise, thejoint
read and write position isdtered to correspondto s p.

If thereisan output buffer, the output sequences is updated and any unshift sequence is written before the position
isatered.
If thereisan input buffer, the input sequenceis updated after the position is dtered.

Plus the appropriate error handling, thet is...

Library active issues list 24

Proposed resolution:

Change the unnumbered paragraph in 27.8.1.4 (libfilebuf.virtuals) before paragraph 14 from:

to:

pos_type seekpos(pos_type s, ios_base::openmode =ios base::in |ios_base:out);
Altersthefile position, if possible, to correspond to the position stored in sp (as described below).
- if (which&ios_base::in)!=0, set thefile position to sp, then update the input sequence

- if (which&ios_base::out)!=0, then update the output sequence, write any unshift sequence, and set the
file position to sp.

pos_type seekpos(pos _type s, ios_base::openmode = ios_baser:in | ios_base:out);

Altersthe file position, if possible, to correspond to the position stored in sp (as described below).
Altering thefile pogtion performs asfollows:

1.if (om & ios_base::out)!=0, then update the output sequence and write any unshift sequence;
2. set thefile position to sp;
3.if (om & ios_base::in)!=0, then update the input sequence;

where om is the open mode passed to the last call to open(). The operation failsif is_open() returnsfase.

[Kona: Dietmar isworking on a proposed resolution.]

[Post-Tokyo: Dietmar supplied the above wording.]

179. Comparison of const_iteratorsto iterators doesn't work

Section: 23.1 lib.container.requirements Status: Ready Submitter: Judy Ward Date: 2 Jul 1998

Currently the following will not compile on two well-known standard library implementations:

#i ncl ude <set>
usi ng nanespace std,;

void f(const set<int> &s)

{

set<int>::iterator i;
if (i==s.end()); // s.end() returns a const_iterator

}

The reason this doesn't compile is because operator== was implemented as amember function of the nested classes

setiterator and set::const_iterator, and thereis no conversion from const_iterator to iterator. Surprisingly, (send() ==1)
does work, though, because of the conversion from iterator to const_iterator.

Library active issues list 25

| don't see arequirement anywherein the standard that this must work. Should there be one? If so, | think the requirement
would need to be added to the tablesin section 24.1.1. I'm not sure about the wording. If this requirement existed in the
standard, | would think that implementors would have to make the comparison operators non-member functions.

Thisissues was dso raised on comp.gtd.c++ by Darin Adler. Theexample givenwas:

bool check_equal (std::deque<int>::iterator i,
std::deque<int>::const_iterator ci)

{

return i == ci;

}

[pre-Toronto: John Potter made the following comment:]
In case nobody has noticed, accepting it will break reverse iterator.

Thefix isto make the comparison operators templated on two types.

tenpl ate <class Iteratorl, class Iterator2>
bool operator== (reverse_iterator<lteratorl> consté& X,
reverse_iterator<lterator2> consté& y);

Obvioudy: return x.bas() == y.basx();
Currently, no reverse iterator to const_reverse iterator compares are vaid.

BTW, | think theissueisin support of bad code. Compares should be between two iterators of the same
type. All std::agorithms require the begin and end iterators to be of the same type.

Proposed Resolution:

In section 23.1 (lib.container.requirements) after paragraph 7 add:

Itispossbletomix i t er at or sandconst _i t er at or siniterator comparison operations.
[Kona: The LWG does wish the example to work. Judy will provide wording.]
[Post-Tokyo: Judy supplied the above wording at the request of the LWG.]
[Toronto: The LWG believesit isclear that the above wording applies only to the nested types X: : i t er at or and

X::const _iterator.ThereisnorequirementthatX: : reverse_iterator and
X::const_reverse_iterator canbemixed. If mixing themis considered important, that's a separate issue.]

182. Ambiguousreferencesto size t

Section: 17 liblibrary Status: Review Submitter: Al Stevens Date: 15 Aug 9

Many referencestosi ze_t throughout the document omitthe st d: : namespace qudification.

Library active issueslist

For example, 17.4.3.4 [lib.replacement.functions] paragraph 2:

—operator new(size_t)

—operator new(size_t, const std::nothrow_t&)
—operator new](size_t)

—operator new](size_t, const std::nothrow_t&)

Proposed resolution:
In 17.4.3.4 [lib.replacement.functions] paragraph 2: replace:
- operator new(size_t)
- operator new(size_t, const std::nothrow t&)

- operator new] (size_t)
- operator new](size_t, const std::nothrow_t&)

by:

- operator new(std::size_t)

- operator new(std::size_t, const std::nothrowt&)

- operator new] (std::size_t)

- operator new](std::size_t, const std::nothrow_ t&)

In[lib.alocator.requirements| 20.1.5, paragraph 4: replace:

The typedef members pointer, const_pointer, size type, and difference_typeaerequiredtobe T*, T
congt*, size t, and ptrdiff_t, respectively.

by:

The typedef members pointer, const_pointer, size type, and difference typearerequiredtobe T*, T
const*, std::size t, and std::ptrdiff _t, respectively.

In[lib.dlocator.members) 20.4.1.1, paragraphs 3 and 6: replace:
3 Notes: Uses ::operator new(size t) (18.4.1).

6 Note: the storage is obtained by calling ::operator new(size t), but it is unspecified when or how often
thisfunction is caled. The use of hint is unspecified, but intended as an aid to locdlity if an
implementation so desires.

by:
3 Notes: Uses ::operator new(std::size t) (18.4.1).

6 Note the storage is obtained by calling ::operator new(std::Sze t), but it is unspecified when or how
often thisfunction is caled. The use of hint is unspecified, but intended asan ad to locdlity if an
implementation so desires.

In[lib.char.traitsrequire] 21.1.1, paragraph 1. replace:

In Table 37, X denotes a Traits class defining types and functions for the character container type CharT;
¢ and d denote values of type CharT; p and g denote vaues of type const CharT*; s denotes a val ue of

Library active issues list 27

type CharT*; n, i and j denote values of type size t; eand f denote values of type X::int_type; pos denotes
avalue of type X::pos_type; and state denotes avalue of type X::state type.

by:

In Table 37, X denotes a Traits class defining types and functions for the character container type CharT;
¢ and d denote values of type CharT; p and g denote vaues of type const CharT*; s denotes a val ue of
type CharT*; n, i and j denote values of type std::size t; eand f denote values of type X::int_type; pos
denotes avaue of type X::pos_type; and state denotes avaue of type X::state type.

In[lib.char traitsrequire] 21.1.1, table 37: replace the return type of X::length(p): "size t" by "std::size t".

In[lib.std.iterator.tags] 24.3.3, paragraph 2: replace:
typedef ptrdiff_t difference_type;

by:
typedef std::ptrdiff_t difference type;

In[lib.locale.ctype] 22.2.1.1 put namespace std { ...} around the declaration of template <class charT> class ctype.
In [lib.iterator.traits] 24.3.1, paragraph 2 put namespace std { ...} around the declaration of:

template<class Iterator> struct iterator_traits
template<class T> struct iterator_traits<T*>
template<class T> struct iterator_traits<const T*>

Rationale:

TheLWG bdievescorrecting nameslikesi ze_t andptrdi ff _t tostd: :size_t andstd: :ptrdiff_t tobe
essentidly editorial. Theissueistrested as aDefect Report to make explicit the Project Editor's authority to make this
change:

[Post-Tokyo: Nico Josuttis provided the above wording at the request of the LWG.]

[Toronto: Thisistangentially related to issue 229, but only tangentially: the intent of thisissue isto address use of the
namesi ze_t incontexts outside of namespace std, such asin the description of : : oper at or new. The proposed
changes should be reviewed to make sure they are correct.]

183. 1/0O stream manipulatorsdon't work for wide character streams

Section: 27.6.3 lib.stdmanip Status: Ready Submitter: Andy Sawyer Date: 7 Jul 99
27.6.3 [lib.std.manip] paragraph 3 says (clause numbering added for exposition):

Returns: An object s of ungpecified type such that if [1] out isan (instance of) basic_ostream then the
expression out<<s behaves asif f(s) were cdled, and if [2] inisan (instance of) basic_istream then the
expression in>>s behaves asif f(s) were caled. Wheref can be defined as ios_base& f(ios basek dir,
ios_base::fmtflags mask) { // reset specified flags str.setf(ios_base::fmtflags(0), mask); return str; } [3]

The expression out<<s has type ostream& and vaue out. [4] The expresson in>>s hastypeistream& and
vauein.

Given the definitions[1] and [2] for out and in, surely [3] should reed: "The expression out << shastype basic_ostream&
... and [4] should read: "The expression in >> shastypebasc isream& ..."

Library active issues list 28

If the wording in the andard is correct, | can see no way of implementing any of the manipulators so that they will work
with wide character streams.

e.g. weout << sethase(16);
Must have value ‘weout' (which makes sense) and type 'ostreamé& ' (which doesn't).

The same "cut'n'paste” type aso seemsto occur in Paras 4,5,7 and 8. In addition, Para 6 [stfill] has asimilar error, but
relates only to ostreams.

I'd be happier if there was a better way of saying this, to makeit clear that the value of the expressionis "the same
specidization of basic_ostream asout"&

Proposed resolution:
Replace section 27.6.3 [lib.std.manip] except paragraph 1 with the following:

2- Thetype designated smanip in each of the following function descriptions isimplementation-specified
and may be different for each function.

snmani p resetiosflags(ios_base::fntflags mask);

-3- Returns: An object s of unspecified type such that if out isan instance of basic_ostresm<charT traits>
then the expression out<<s behaves asif f(s, mask) were cdled, or if inisan ingtance of
basic_istream<charT traits> then the expression in>>s behaves asif f(s, mask) were called. The function f
can be defined as*

[Footnote: The expression cin >> resatiosflags(ios_base::skipws) dearsios base::skipwsin the format
flags stored in the basic_istream<char T traits> object cin (the same as cin >> noskipws), and the
expression cout << resdtiosflags(ios_base::showbase) clearsios base::showbase in the format flags stored
inthe basic_ostream<charT traits> object cout (the same as cout << noshowbase). --- end foonote]

i 0s_base& f(ios_base& str, ios_base::fntflags nmask)
{
/'l reset specified flags
str.setf(ios_base::fntflags(0), mask);
return str;

}

The expression out<<s hastype basc_ostresm<charT traits>& and vaue out. The expresson in>>s has
typebasic_isream<charT traits>& and vduein.

smani p setiosflags(ios_base::fnflags nmask);

-4- Returns. An object s of unspecified type such that if out isan instance of basic_ostream<charT traits>
then the expression out<<s behaves asif f(s, mask) were cdled, or if inisan instance of
basic_isream<charT traits> then the expression in>>s behaves asiif f(s, mask) were cdled. The function f
can be defined as

i 0s_base& f(ios_base& str, ios_base::fntflags mask)
{
/1l set specified flags
str.setf(mask);
return str;

}

Library active issueslist

The expression out<<s hastype basic_ostream<charT traits>& and vaue out. The expresson in>>shas
type basic_isream<charT traits>& and vaduein.

smani p setbase(int base);

-5- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT traits>
then the expression out<<s behaves asif f(s, base) were cdled, or if in isan instance of
basic_isream<charT traits> then the expression in>>s behaves asif f(s, base) were cdled. Thefunction

can bedefined as:
i 0s_base& f(ios_base& str, int base)
{
/1 set basefield
str.setf(base == 8 ? ios_base::oct
base == 10 ? ios_base:: dec :
base == 16 ? ios_base:: hex :

i os_base::fmflags(0), ios_base::basefield);
return str;

}

The expression out<<s hastype basic_ostream<charT traits>& and vaue out. The expression in>>s has
type basic_igream<charT traits>& and vauein.

smani p setfill (char_type c);

-6- Returns: An object s of unspecified type such that if out is (or is derived from)
basic_ostream<charT traits> and ¢ has type char'T then the expression out<<s behaves asif f(s, ¢) were
cdled. The function f can be defined as

tenpl at e<class charT, class traits>
basi c_i os<charT,traits>& f(basic_ios<charT,traits>& str, charT c)

{

/Il set fill character
str.fill(c);
return str;

}

The expression out<<s has type basic_ostream<charT traits>& and value out.
smani p setprecision(int n);

-7- Returns: An object s of unspecified type such that if out isan instance of basic_ostream<charT traits>
then the expression out<<s behaves asif (s, n) were cdled, or if inisan ingance of
basic_isream<charT traits> then the expression in>>s behaves asif f(s, n) were cdled. The function f can
be defined as

i 0s_base& f(ios_base& str, int n)

{

/'l set precision
str.precision(n);
return str;

}

The expression out<<s hastype basic_ostream<charT traits>& and vaue out. The expression in>>s has
typebasic_isream<charT traits>& and vauein

smani p setw(int n);

29

Library active issueslist

-8 Returns: An object s of unspecified type such that if out isan ingtance of basic_ostream<charT traits>
then the expression out<<s behaves asif f(s, n) were caled, or if inisan ingtance of
basic_istream<charT traits> then the expression in>>s behaves asif f(s, n) were cdled. Thefunction f can
be defined as

i 0s_base& f(ios_base& str, int n)

{
// set width

str.width(n);
return str;

}

The expression out<<s hastype basic_ostream<charT traits>& and vaue out. The expression in>>s has
type basic_isream<charT traits>& and vaduein.

[Kona: Andy Sawyer and Beman Dawes will work to improve the wording of the proposed resolution.

Tokyo - The LWG noted that issue 216 involves the same paragraphs.

Post-Tokyo: Theissueslist maintainer combined the proposed resol ution of thisissue with the proposed resol ution for

30

issue 216 as they both involved the same paragraphs, and were so intertwined that dealing with them separately appear

fraught with error.

The full text was supplied by Bill Plauger; it was cross checked against changes supplied by Andy Sawyer. It should be

further checked by the LWG.]

184. numeric_limits<bool> wording problems
Section: 18.2.15 lib.numeric.gpecid Status: Ready Submitter: Gabrid Dos ReisDate: 21 Jul 99

bools are defined by the standard to be of integer types, as per 3.9.1/7 [basc.fundamentd]. However "integer types' seems

to have agpecid meaning for the author of 18.2. The net effect is an unclear and confusing specification for
numeric_limits<bool> as evidenced below.

18.2.1.2/7 says numeric_limits<>::digitsis, for built-in integer types, the number of non-sign bitsin the representation.
4.5/4 gatesthat abool promotesto int ; whereas 4.12/1 says any non zero arithmetical vaue convertsto true.

I don't think it makes sense at dl to require numeric_limits<bool>::digits and numeric_limits<bool>::digits10to be
meaningful.

The standard defines what condtitutes a Signed (resp. unsigned) integer types. It doesn't categorize bool as being sgned or
unsigned. And the set of values of boal type has only two e ements.

| don't think it makes sense to require numeric_limits<bool>::is sgned to be meaningful.
18.2.1.2/18 for numeric_limits<integer_type>::radix says.
For integer types, specifies the base of the representation.186)

Thisdispostion isat best mideading and confusing for the standard requires a " pure binary numeration system" for integer
typesasper 3.9.1/7

Library active issueslist

31

The footnote 186) says. "Digtinguishes types with base other than 2 (eg BCD)." This aso erroneous as the standard never
defines any integer types with base representation other than 2.

Furthermore, numeric_limits<bool>::is modulo and numeric_limits<bool>::is sgned have Smilar problems.

Proposed resolution:

Append to the end of 18.2.1.5 [lib.numeric.gpecid]:

The specidization for bool shal be provided asfollows:

nanmespace std {
tenpl at e<> cl ass nuneric_lints<bool > {

public:
stati
stati
stati

stati
stati
stati
stati
stati
stati
stati
stati

stati
stati
stati
stati

stati
stati
stati
stati
stati
stati
stati
stati
stati

stati
stati
stati

stati
stati
stati

Cc
Cc
Cc

OO0 0000O0OO0 OO0 00 OO0 00000

(¢}

C
C
Cc

const
bool
bool

const
const
const
const
const
const
bool

bool

const
const
const
const

const
const
const
const
const
bool
bool
bool
bool

const
const
const

const
const
const

round_t oward_zero

H
}

bool is_specialized = true;
mn() throwm() { return false; }
max() throw() { return true; }

int digits = 1;

int digitsl0 = O;

bool is_signed = fal se;

bool is_integer = true;

bool is_exact = true;

int radix = 2;
epsilon() throw() { return O; }
round_error() throw() { return 0; }

int mn_exponent = O;
int mn_exponentl1l0 = O;
int nmax_exponent = O;
int max_exponent10 = O;

bool has_infinity = fal se;

bool has_qui et _NaN = fal se;

bool has_signaling_NaN = fal se;

fl oat _denorm styl e has_denorm = denorm absent;
bool has_denorm|oss = fal se;
infinity() throw() { return 0; }
quiet _NaN() throw() { return O; }
signaling_NaN() throw() { return 0; }
denormmin() throw() { return O; }

bool is_iecb59 = fal se;
bool is_bounded = true;
bool is_nodulo = fal se;

bool traps = fal se;
bool tinyness_before = false;
float _round_style round_style =

[Tokyo: The LWG desireswording that specifies exact values rather than more general wording in the original proposed

resolution..

Post-Tokyo: At the request of the LWG in Tokyo, Nico Josuttis provided the above wording.]

Library active issues list 32

185. Questionable use of term "inline"

Section: 20.3 lib.function.objects Status: Reedy Submitter: UK Pend Date: 26 Jul 99

Paragraph 4 of 20.3 [lib.function.objects] says:

[Example: To negate every dement of a transform(abegin(), aend(), abegin(), negate<double>()); The
corresponding functions will inline the addition and the negation. end example]

(Note: The"addition" referred to in the aboveisin para 3) we can find no other wording, except this (non-normétive)
example which suggests thet any "inlining" will take placein this case.

Indeed both:

17.4.4.3 Globd Functions [lib.globa .functions] 1 It is ungpecified whether any globa functionsinthe
C++ Standard Library are defined asinline (7.1.2).

17.4.4.4 Member Functions [lib.member.functiong] 1 It is unspecified whether any member functionsin
the C++ Standard Library are defined asinline (7.1.2).

take care to state that this may indeed NOT bethe case.
Thus the example "mandates’ behavior thet is explicitly not required e sawhere.
Proposed resolution:

In 20.3 [lib.function.objects] paragraph 1, remove the sentence:

They areimportant for the effective use of the library.
Remove 20.3 [lib.function.objects] paragraph 2, which reads:

Using function objects together with function templates increases the expressive power of thelibrary as
well as making the resulting code much more efficient.

In 20.3 [lib.function.objects] paragraph 4, remove the sentence:

The corresponding functions will inline the addition and the negation.
[Kona: The LWG agreed there was a defect.

Tokyo: The LWG crafted the proposed resolution.]

186. bitset::set() second parameter should be bool

Section: 23.3.5.2 lib.bitset. nembers Status: Reedy Submitter: Darin Adler Date: 13 Aug 9

Library active issueslist

In section 23.3.5.2 [lib.bitset. members], paragraph 13 defines the bitset::set operation to take a second parameter of type
int. The function tests whether this value is non-zero to determine whether to set the bit to true or false. The type of this
second parameter should be bool. For one thing, the intent is to specify aBoolean vaue. For another, the result type from
test() isbool. In addition, it's possible to dice an integer that'slarger than an int. This can't happen with bool, since
conversion to bool has the semantic of trandating O to fase and any non-zero vaueto true.

Proposed resolution:
In 23.3.5[lib.template.bitset] Para 1 Replace:

bitset<N>& set(size_t pos, int val = true);
With:

bitset <N>& set(size_t pos, bool val = true);

In 23.3.5.2[lib.bitset. members] Para12(.5) Replace:

bitset <N>& set(size_t pos, int val =1);
With:
bitset <N>& set(size_t pos, bool val = true);
[Kona: The LWG agrees with the description. Andy Sawyerswill work on better P/R wording.

Post-Tokyo: Andy provided the above wording.]

33

187. iter_swap under specified
Section: 25.2.2 libadg.swgp Status: Open Submitter: Andrew Koenig Date: 14 Aug 99

The description of iter_swap in 25.2.2 paragraph 7,saysthat it ~“exchanges the vaues' of the objectsto which two iterators
refer.

What it doesn't say iswhether it does so using swap or using the assignment operator and copy constructor.

This question is an important one to answer, because swap is speciaized to work efficiently for standard containers.
For example:

vector<int> vl, v2;
iter_swap(&l, &v2);

Isthiscal toiter_swap equivaent to caling swap(vl, v2)? Orisit equivaent to

{

vector<int> tenp = vi;
vl = v2;

v2 = tenp;

}

Thefirg dternative is O(1); the second is O(n).
A LWG member, Dave Abrahams, comments:

Not an objection necessarily, but | want to point out the cost of that requirement:

Library active issueslist 34

iter_swap(list<T>::iterator, list<T>: :iterator)

can currently be specialized to be more efficient than iter_swap(T*,T*) for many T (by using splicing).
Y our proposa would make that optimization illegd.

[Kona: The LWG notes the original need for iter_swap was proxy iterators which are no longer permitted.]
Proposed resolution:
Change the effect dlause of iter_swapin 25.2.2 paragraph 7 from:
Exchanges the vaues pointed to by thetwo iteratorsa and b.
to
swap(*a, *b).

[post-Toronto: The LWG is concerned about possible over specification: there may be cases, such as Dave Abrahams's
example above, and such as vector<bool>'siterators, where it makes more sense for iter_swap to do something other than
swap. If performanceisa concern, it may be better to have explicit complexity requirements than to say how iter_swap
should be implemented.]

197. max_size() under specified

Section: 20.1.5 |ib.alocator.requirements, 23.1 lib.container.requirements Status: Review Submitter: Andy Sawyer
Date: 21 Oct 99

Mugt the value returned by max_size() be unchanged from cdl to cdl?
Must the value returned from max_size() be meaningful ?
Possible meaningsidentified in lib-6827:

1) Thelargest container the implementation can support given "best case’ conditions - i.e. assumethe run-time platformis
"configured to the max", and no overhead from the program itself. This may possibly be determined at the point the library
iswritten, but certainly no later than compiletime.

2) The largest container the program could creete, given "best case' conditions - i.e. same platform assumptions as (1), but
take into account any overhead for executing the program itsdf. (or, roughly "storage=storage-sizeof (program)™). This does
NOT include any resource dlocated by the program. Thismay (or may not) be determinable a compiletime.

3) Thelargest container the current execution of the program could creete, given knowledge of the actud run-time
platform, but again, not taking into account any currently alocated resource. Thisis probably best determined at program
start-up.

4) The largest container the current execution program could cregte a the point max_sze() is caled (or more correctly at
the point max_size() returns :-), given it's current environment (i.e. taking into account the actud currently available
resources). This, obvioudy, hasto be determined dynamicaly each time max_sz&() iscdled.

Proposed Resolution:

Library active issueslist 35

Change 20.1.5 lib.all ocator.requirements table 32 max_size() wording from:

the largest vaue that can meaningfully be passed to X::dlocate
to:
the vaue of the largest congtant expression (5.19 expr.congt) that could ever meaningfully be passed to X::dlocate

Change 23.1 |ib.container.requirements table 65 max_gze() wording from:

sze() of thelargest possible container.
to:
the vaue of the largest congtant expression (5.19 expr.const) that could ever meaningfully be returned by X::szg().

[Kona: The LWG informally discussed this and asked Andy Sawyer to submit an issue.
Tokyo: The LWG believes (1) aboveis the intended meaning.

Post-Tokyo: Beman Dawes supplied the above resolution at the request of the LWG. 21.3.3 lib.string.capacity was not
changed because it references max_size() in 23.1. Theterm"compile-time" was avoided becauseit is not defined anywhere
in the standard (even though it is used several placesin thelibrary clauses).]

[Toronto: The LWG agrees with the general intent of the proposed resolution, but had some quibbles about the wording.
Andy Sawyer has volunteered to provide revised wording.]

198. Validity of pointersand references unspecified after iterator destruction

Section: 24.1lib.iterator.requirements Status: Review Submitter : Beman Dawes Date: 3 Nov 99

Isapointer or reference obtained from an iterator till vaid after destruction of theiterator?

Isapointer or reference obtained from an iterator il vaid after the value of the iterator changes?

#i ncl ude <i ostreanp
#i ncl ude <vector>
#include <iterator>

int main()

{
typedef std::vector<int> vec_t;
vec_t v;
v. push_back(1);

/[l I's a pointer or reference obtained froman iterator still
/1 valid after destruction of the iterator?

int * p = &v.begin();

std::cout << *p << '"\n'; [/ OK?

/1l I's a pointer or reference obtained froman iterator still
/1 valid after the value of the iterator changes?
vec_t::iterator iter(v.begin());

p = &iter++;
std::cout << *p <<

\n"; /] OK?

Library active issueslist 36

return O;

}

The standard doesn't gppear to directly address these questions. The standard needsto be clarified. At least two red-world
cases have been reported where library implementors wasted considerable effort because of the lack of clarity inthe

standard. The question isimportant because requiring pointers and references to remain vaid has the effect for practica
purposes of prohibiting iterators from pointing to cached rather than actual elements of containers.

The standard itsdlf assumes that pointers and references obtained from an iterator are ill valid after iterator destruction or
change. The definition of reverse iterator::operator* (), 24.4.1.3.3 lib.reverse.iter.op.gar, which returns areference, defines
effects:

Iterator tnmp = current;
return *--tnp;

The definition of reverse iterator::operator->(), 24.4.1.3.4 lib.reverseiter.opref, which returns a pointer, defines effects:

return & operator*());

Because the tandard itsdlf assumes pointers and references remain vaid after iterator destruction or change, the standard

should say so explicitly. Thiswill also reduce the chance of usar code bresking unexpectedly when porting to a different
dandard library implementation.

Proposed Resolution:

Add anew paragraph and footnote to 24.1 lib.iterator.requirements:

Changing the value of or destroying aforward iterator does not invalidate pointers and references
previoudy obtained from that iterator.

footnote: This may have the effect for practical purposes of prohibiting forward iterators from pointing to
cached rather than actua elements of containers.

[Tokyo: The LWG reformulated the question purely in terms of iterators. The answer to the question is "no, pointers and
referencesdon't remain valid after iterator destruction." PJP explained that implementors use considerable care to avoid
such ephemeral pointers and references. Several LWG members said that they thought that the standard did not actually
specify the lifetime of pointers and references obtained fromiterators, except possibly input iterators.

[Post-Tokyo: The issue has been reformulated purely in terms of iterators.]

[Pre-Toronto: Steve Cleary pointed out the no-invalidation assumption by reverse_iterator. The issue and proposed
resolution was reformulated yet again to reflect thisreality.]

[post-Toronto: Thereis more support in the LWG for this proposed resolution than for other alternatives, but thereis still
some uncertainty. Perhaps one problemis that the standard mixes traversal style with access policy.]

200. Forward iterator requirementsdon't allow constant iterators

Section: 24.1.3lib.forward.iterators Status: Open Submitter: Matt Austern Date: 19 Nov 99

Library active issues list 37

In table 74, the return type of the expression * a isgiven as T&, where T isthe iterator's value type. For constant iterators,
however, thisiswrong. ("Vduetype' is never defined very precisely, but it is clear that the vaue type of, say,
std::list<int>::const_iterator issupposedtobei nt,notconst int.)

Proposed Resolution:
Intable 74, changethe return type columnfor * a from"T&" to "T& if Xismutable, otherwise const T&".

[Tokyo: The LWG believesthisisthetip of alarger iceberg; there are multiple const problems with the STL portion of the
library and that these should be addressed as a single package. Note that issue 180 hasalready been declared NAD Future
for that very reason.]

201. Numeric limitsterminology wrong
Section: 18.2.1 lib.limits Status: Open Submitter: Stephen Cleary Date: 21 Dec 1999

In some places in this section, the terms "fundamental types' and "scalar types' are used when the term "arithmetic types’
isintended. The current usageis incorrect because void is afundamenta type and pointers are scdar types, neither of which
should have specidizations of numeric_limits.

Proposed Resolution:
Change 18.2 [lib.support.limits] para 1 from:

The headers <limits>, <climits>, and <cfloat> supply characteristics of implementation-dependent
fundamental types (3.9.1).

to:

The headers <limits>, <climits>, and <cfloat> supply characteristics of implementation-dependent
arithmetic types (3.9.1).

Change 18.2.1 [lib.limits] para 1 from:

The numeric_limits component provides a C++ program with information about various properties of the
implementation's representation of the fundamental types.

to:

The numeric_limits component provides a C++ program with information about various properties of the
implementation's representation of the arithmetic types.

Change 18.2.1 [lib.limits] para2 from:

Specidizations shall be provided for each fundamentd type. . .
to:

Specidizations shdl be provided for each arithmetic type. . .

Change 18.2.1 [lib.limits] para4 from:

Library active issueslist 38

Non-fundamental standard types. . .
to:

Non-arithmetic standard types. . .
Change 18.2.1.1 [lib.numericlimits] para 1 from:

The member is_specidized makesit possible to digtinguish between fundamentd types, which have
specidizations, and non-scalar types, which do not.

to:

The member is_specidized makesit possible to distinguish between arithmetic types, which have
specidizations, and non-arithmetic types, which do not.

[post-Toronto: The opinion of the LWG isthat the wording in the standard, as well as the wording of the proposed
resolution, isflawed. The term "arithmetic types" iswell defined in C and C++, and it isnot clear that thetermisbeing
used correctly. It isalso not clear that the term "implementation dependent” has any useful meaning in this context. The
biggest problemisthat numeric_limits seemsto be intended both for built-in types and for user-defined types, and the
standard doesn't make it clear how numeric_limits appliesto each of those cases. A wholesale review of numeric_limitsis
needed.]

202. unique&() effectsunclear when predicate not an equivalencerelation
Section: 25.2.8 lib.dg.unique Status: Open Submitter: Andrew Koenig Date: 13 Jan 00

What should unique() do if you giveit a predicate that is not an equivalencerelation? There are a least two plausible
answers.

1. You can't, because 25.2.8 saysthat it it "eliminates dl but the first element from every consecutive
group of equal dements..." and it wouldn't make senseto interpret “equa” as meaning anything but an
equivaence rdaion. [It dso doesn't make senseto interpret "equa” as meaning ==, because then there
would never be any sensein giving apredicae asan argument at all]

2. Theword "equa™ should be interpreted to mean whatever the predicate says, eveniif itisnot an
equivaencerdation (and in particular, eveniif it is not trandtive).

The examplethat raised this question isfrom Usenet:

int f[] ={ 1, 3, 7, 1, 2};
int* z = unique(f, f+5, greater<int>());

If one blindly applies the definition using the predicate greater<int>, and ignore the word "equd”, you get:

Eliminates al but the first e ement from every consecutive group of dements referred to by the iterator i
intherange[firg, last) for which*i >*(i - 1).

Thefirg surpriseisthe order of the comparison. If we wanted to alow for the predicate not being an equivaence rdation,

then we should surely compare elements the other way: pred(* (i - 1), *i). If we do that, then the description would seem to
say: "Breek the sequence into subsequences whose eements are in grictly increasing order, and keep only thefirst eement
of each subsequence’. So the result would be 1, 1, 2. If we take the description at itsword, it would seem to call for gtrictly

Library active issueslist 39

DEcreasing order, in which casetheresult should be 1, 3, 7, 2.

In fact, the SGI implementation of unique() does neither: It yields 1, 3, 7.
Proposed Resolution:
Options:
1. Impose an explicit requirement that the predicate be an equivaence relation.

2. Drop theword "equd" from the description to make it clear that the intent isto compare pairs of
adjacent dements.

3. Changethe effectsto:

Effects Eliminates all but the first dement e from every consecutive group of eements
referred to by theiterator i inthe range [firg, last) for which the following
corresponding conditions hold: e ==*i or pred(e*i) !=fdse.

If we adopt (2), we aso need to decide whether pred(*i, *(i - 1)) isredly what we meant, or whether pred(*(i - 1), i) is
more gppropriate.

A LWG member [Nico Josuttis] comments:

Fird, | agree that the current wording is Smply wrong. However, to follow al [known] current implementations | propose
[option 3 above].

[Tokyo: Theissue was discussed at length without reaching consensus.
Straw vote:

Option 1 - preferred by 2 people.

Option 2 - preferred by 0 people.

Option 3 - preferred by 3 people.
Many abstentions.]

207. ctype<char> membersreturn clause incomplete

Section: 22.2.1.3.2 lib.facet.ctype.char.members Status: Open Submitter: Robert Klarer Date: 2 Nov 99

Proposed Resolution:

Changethereturns clausein 22.2.1.3.2 |ib.facet.ctype.char.members paragrgph 10 from:
Returns: do_widen(low, high, to).

to:
Returns: do_widen(c) or do_widen(low, high, to), respectively.

Changethereturns clausein 22.2.1.3.2 |ib.facet.ctype.char.members paragrgph 11 from:

Library active issueslist

Returns: do_narrow(low, high, to).
to:
Returns: do_narrow(c) or do_narrow(low, high, to), respectively.

[Post-Tokyo: This appearsto be a duplicate of issue 153.]

214. set::find() missing const overload
Section: 23.3.323.34lib.set Status: Reedy Submitter: Judy Ward Date: 28 Feb 00

The specification for the associative container requirementsin Table 69 state that the find member function should "return
iterator; congt_iterator for constant &'. The map and multimap container descriptions have two overloaded versions of find,
but set and multiset do not, al they haveis:

iterator find(const key type & x) const;
Proposed Resolution:

Change the prototypes for find(), lower_bound(), upper_bound(), and equal_range() in section 23.3.3 lib.set and section
23.3.4 lib.multiset to each have two overloads:

iterator find(const key_type & X);

const_iterator find(const key_type & x) const;

iterator | ower_bound(const key type & Xx);

const _iterator |ower_bound(const key type & x) const;

iterator upper_bound(const key_ type & X);

const _iterator upper_bound(const key_type & x) const;

pair<iterator, iterator> equal _range(const key_ type & Xx);

pai r<const _iterator, const_iterator> equal range(const key type & Xx)
const;

[Tokyo: At the request of the LWG, Judy Ward provided wording extending the proposed resolution to lower_bound,
upper_bound, and equal_range.]

221. num_get<>::do_get stage 2 processing broken

Section: 22.2.2.1.2 libfacet.num.get.virtuds Status: Reedy Submitter: Matt Austern Date: 14 Mar 00
Stage 2 processing of numeric conversion is broken.

Table55in 22.2.2.1.2 says that when bassfield is O the integral conversion specifier is%i. A %i specifier determinesa
number's base by its prefix (O for octal, Ox for hex), so theintention is clearly that aOx prefix is alowed. Paragraph 8inthe
same section, however, describes very precisaly how characters are processed. (It must be done "asif" by a pecified code
fragment.) That description does not dlow a 0x prefix to be recognized.

Very roughly, stage 2 processing reeds achar_type ct. It converts ct to achar, not by using narrow but by lookingit upina
trandation table thet was created by widening the string literal "0123456789abcdef ABCDEF+-". The character "X" is not
found in that table, so it can't be recognized by stage 2 processing.

Library active issues list 41

Proposed Resolution:

In22.2.2.1.2 paragraph 8, replacetheline:

static const char src[] "0123456789abcdef ABCDEF+-";

with theline

static const char src[] "0123456789abcdef xABCDEFX+- " ;

225. &d:: algorithms use of other unqualified algorithms

Section: 17.4.4.3 lib.globd .functions, 25 lib.agorithms Status: Open Submitter: Dave Abrahams Date: 01 Apr 00

Aredgorithmsin std:: alowed to use other agorithmswithout qudification, so functionsin user namespaces might be
found through Koenig lookup?

For example, apopular tandard library implementation includes thisimplementation of td::unique:

nanespace std {
tenpl ate <class _Forwardlter>

_Forwardlter unique(_Forwardlter _ first, _Forwardliter _ last) {
__first = adjacent _find(__first, _ last);
return unique_copy(__first, _ last, _ first);

}

}

Imagine two users on opposite sides of town, each using unique on his own sequences bounded by my _iterators . Userl
looks at his standard library implementation and says, "I know how to implement amore efficient unique_copy for
my_iterators’, and writes:

nanmespace userl {
class ny_iterator;
/1 faster version for ny_iterator
nmy_iterator unique_copy(my_iterator, my_iterator, my_iterator);

}
userl::unique_copy() is sdected by Koenig lookup, as heintended.
User2 has other needs, and writes.

nanespace user?2 {
class ny_iterator;
/!l Returns true iff *c is a unique copy of *a and *bh.
bool unique_copy(my_iterator a, ny_iterator b, ny_iterator c);

}

User2 is shocked to find later that his fully-qualified use of std::unique(user2::my _iterator, user2::my _iterator,
user2:my_iterator) failsto compile (if he'slucky). Looking in the standard, he sees the following Effects clause for
unique():

Library active issues list 42

Effects: Eliminates dl but the first e ement from every consecutive group of equa eementsreferred to by
theiterator i in the range [firgt, last) for which the following corresponding conditions hold: *i == *(i - 1)
or pred(*i, *(i - 1)) I=fdse

The standard gives user2 absolutely no reason to think he can interfere with std::unique by defining namesin namespace
user2. His standard library has been built with the template export feature, so he is unable to ingpect the implementation.
Userl eventudly compiles his code with another compiler, and his version of unique_copy silently stops being called.
Eventudly, he redizes that he was depending on an implementation detail of hislibrary and had no right to expect his
unique_copy() to be called portably.

On theface of it, and given above scenario, it may seem obvious that the implementation of unique() shown isnon-
conforming becauseit uses unique_copy() rather than ::std::unique_copy(). Most standard library implementations,
however, seem to disagree with this notion.

[Tokyo: Steve Adamczyk from the core working group indicatesthat "std::" is sufficient; leading "::" qualification is not
required because any namespace qualification is sufficient to suppress Koenig lookup.]

Proposed Resolution:
Add aparagraph and anote at the end of 17.4.4.3 lib.global functions:

Unless otherwise specified, no globa or non-member function in the stlandard library shal use afunction
from another namespace which isfound through ar gument-dependent name |ookup
(basic.lookupkoenig).

[Note: the phrase "unless otherwise specified” isintended to alow Koenig lookup in caseslike that of
ogtream _iterators:

Effects:

*out_stream << vaue,
if(ddim = 0) *out_stream << ddim;
return (*this);

--end note]

[Tokyo: The LWG agreesthat thisis a defect in the standard, but is as yet unsure if the proposed resolution is the best
solution. Furthermore, the LWG believes that the same problem of unqualified library names applies to wording in the
standard itself, and has opened issue 229 accordingly. Any resolution of issue 225 should be coordinated with the
resolution of issue 229.]

[post-Toronto: The LWG isnot sureif thisisa defect in the standard. Most LWG members believe that an i mplementation
of st d: : uni que likethe one quoted in thisissueisalready illegal, since, under certain circumstances, its semantics are
not those specified in the standard. The standard's description of uni que does not say that overloading

adj acent _fi nd should have any effect.]

226. User supplied specializationsor overloads of namespace std function templates
Section: 17.4.3.1 libresaved.names Status: Open Submitter: Dave Abrahams Date: 01 Apr 00

Theissuesare:

Library active issueslist

1. How can a 3rd party library implementor (lib1) write aversion of a standard agorithm which is specidized to work with
his own classtemplate?

2. How can another library implementor (lib2) write a generic dgorithm which will take advantage of the specidized
dgorithminlibl?

This gppears to be the only viable answer under current language rules:

namespace |ibl

{
[l arbitrary-precision nunbers using T as a basic unit
tenpl ate <class T>
class big num{ //...
b
/1 defining this in nanespace std is illegal (it would be an
/'l overload), so we hope users will rely on Koenig | ookup
tenpl ate <class T>
voi d swap(big int<T>& big int<T>&);
}

#i ncl ude <al gorithnp
nanmespace |i b2

{

tenpl ate <class T>
voi d generic_sort(T* start, T* end)

{

/1l using-declaration required so we can work on built-in types
usi ng std::swap;
/1l use Koenig | ookup to find specialized algorithmif

avail abl e

swap(*x, *y);
}
}

This answer has some drawbacks. First of dl, it makeswriting lib2 difficult and somewnhat dippery. The implementor
needs to remember to write the using-declaration, or generic_sort will fail to compilewhen T isabuilt-in type. The second
drawback isthet the use of this stylein lib2 effectively "reserves’ namesin any namespace which defines types which may
eventudly be used with lib2. This may seem innocuous ét first when applied to names like swap, but consider more
ambiguous names like unique_copy() ingteed. It is easy to imagine the user wanting to define these names differently in his

own namespace. A definition with semantics incompatible with the standard library could cause serious problems (seeissue
22).

Why, you may ask, can't wejust partidly specidize std::swap()? It's because the language doesn't dlow for partia
specidization of function templates. If you write;

namespace std

{

tenpl ate <class T>

void swap(libl::big int<T>& |ibl::big int<T>&);
}

Y ou have just overloaded std::swap, which isillega under the current language rules. On the other hand, the following full
specidizaionislegd:

namespace std

Library active issueslist 44

tenpl ate <>
void swap(libl::other_type&, |ibl::other_type&);
}

[Thisissue reflects concerns raised by the " Namespace issue with specialized swap" thread on comp.lang.c++.moderated.
A similar set of concernswas earlier raised on the boost.org mailing list and the ACCU-general mailing list Also see
library reflector message c++ std-lib-7354.]

Proposed Resolution:

[Tokyo: Summary, "Thereis no conforming way to extend std:: swap for user defined templates." The LWG agrees that
thereisa problem. Would like more information before proceeding. This may be a core issue. Core issue 229 has been
opened to discuss the core aspects of this problem.

It was also noted that submissions regarding this issue have been received from several sources, but too late to be
integrated into the issues list.

Post-Tokyo: A paper with several proposed resolutions, J16/00-0029==WG21/N1252, " Shades of namespace std functions
" by Alan Griffiths, isin the Post-Tokyo mailing. It should be considered a part of thisissue.]

Dave Abrahams and Peter Dimov <pdimov@mmltd.net> have proposed an dternative resolution that involves core
changes

7.3.3/9:
change the note to refer to partia specidizationsin generd:
"Note: template partial specidizations are found by looking up the primary template and then
consdering al partiad specidizations of that template. If a using-declaration names atemplate,
partial specidizationsintroduced after the using-declaration are effectively visible because the
primary templateisvisible (14.5.4)."

14/2:
remove the sscond sentence
change the note to reed:
"Note: if the declarator-id is atemplate-id, the declaration declares atemplate partia
specidization (14.5.4)."

14/4:
change "classtemplate partid specizdization” to "template partia specidization”

145.4:
change section nameto "Template partia specidizations’

145.4/1:

remove dl occurrences of the word "class'.

1454/4:

Library active issueslist

optiondly provide an example for afunction template partia specidization:

tenpl ate<class T1, class T2, int I>T1 f(T2 (&2) [1]);

tenpl ate<class T, int |> T f<T, ™, 1>(T*
(&) [11);

tenpl ate<class T1, class T2, int |I> T1* f<T1*, T2, [>(T2
(& [11);

tenpl at e<cl ass T> int f<int, T*, 5>(T*
(&) [5]);

tenpl ate<class T1, class T2, int I> Tl f<T1, T2*, |>(T2*
(&) [1]);

1454/5:

remove theword "class’ in the second sentence
14.54/6:

not sure about that one
145.4/7.

remove theword "class' in the third sentence
14.5.4/9:

removetheword "class' in thefirst sentence
14.5.4/11 (new paragraph):

A function template partial specidization specidizesaprimary templateif and only if, after substituting
the template arguments provided in the specidization template argument list into the primary template
declaration, the resulting function signature matches that of the specidization.

[Note: each function template partia specidization specidizes at most one primary template)]

14.5.4/12 (new paragraph):

[Example:

tenpl ate<class T> void f(T Xx); [l primary tenplate #1
tenpl ate<class U> void f (U y); [l primary tenplate #2

s

tenpl ate<class V> void f<v*>(V* z); [/ specialization of #1, T =
tenpl at e<cl ass W void f<W>(W* w); // specialization of #2, U =
-- end example]

1454.2/1:

remove thefirg occurence of "dass' in thefirst sentence
change the second "class’ to "template” in the first sentence

Library active issueslist

removetheword "class' in the second sentence
remove theword "class' in "the use of the class template is ambiguous’

1454.2:
change section nameto "Partid ordering of template specidizations’
145.4.2/1: (changeto):

For two template partia specidizations (that specidize the same primary template,) thefirst isat least as
specidized as the second if, given the following rewrite to two function templates, thefirst function

templateis a least as specidized as the second according to the ordering rules for function templates
(14.5.5.2):

synthesize a unique class template with the same parameter list as the primary template;

thefirst function template has the same template parameters as thefirst partial specidization and
has asingle function parameter whose type is a class template specialization of the synthesized
classtemplate with the template arguments of thefirst partia specidization;

the second function template has the same template parameters as the second partia
specidization and has asingle function parameter whose typeis a class template specidization
of the synthesized class template with the template arguments of the second partia
specidization.

14.5.4.2/2 (change example to):

tenplate<int |, int J, class T> class X { };

tenplate<int |, int J> class X<I, J, int> { }; /1
#1

tenplate<int |> class X<I, I, int> { }; /1
#2

tenplate<int |, int J, class T> class __unique;
tenplate<int |, int J> void __f(__unique<l, J, int>); /1
#A

tenplate<int |> void __f(__unique<l, |, int>); /1
#B

14.5.4.2/3 (new paragraph):

[Example

tenpl ate<class T, class U, class V> U f (V);

tenpl at e<cl ass U, class V>8 U f<int, U V> (V); [#1
tenpl at e<cl ass T> T f<int, T, T> (h; [#2
tenpl ate<class T, class U, class V> class __unique;

tenpl ate<class U, class V> void _ f(__unique<int, U V>); Il #A
tenpl at e<cl ass T> void __f(__unique<int, T, T>); [l #B

-- end example]

Library active issues list 47

[post-Toronto: coreisreluctant to add partial specialization of function templates. It is viewed as a large change, and the
proposal presented above leaves some issues unopened. The LWG believes that there is a serious problem, however: there
isno good way for usersto force the library to use user specializations of generic standard library functions. Koenig
lookup isn't adequate, since names within the library must be qualified with st d (seeissue 225), specialization doesn't
work (we don't have partial specialization of function templates), and users aren't permitted to add overloads within
namespace std. Possible solutions discussed by the LWG include:

Allow usersto add overloads within namespace std.

Allow partial specialization of function templates.

Define a special set of names, such as swap, which library components must refer to without qualification; all
names not on thislist must be qualifiedby st d: : . (There are many possible variations on thisissue. For
example, we might say that a functionf should be unqualified withing if g's description in the standard says that
itcallsf.)

228. Incorrect specification of " ... byname" facets
Section: 22.2 liblocdecategories Status: Review Submitter: Dietmar Kihl Date: 20 Apr 00

The sections 22.2.1.2 (lib.ocde.ctypebyname), 22.2.1.4 (lib.ocade.ctypebyname.specid), 22.2.1.6
(lib.locde.codecvt.byname), 22.2.3.2 (lib.locde.numpunct.byname), 22.2.4.2 (liblocde.callaebyname), 22.2.5.4
(liblocdetime.put.byname), 22.2.6.4 (lib.locae.moneypunct.byname), and 22.2.7.2 (lib. ocale messages byname)
overspecify the definitions of the™..._byname"’ classes by listing a bunch of virtua functions. At the sametime, no
semantics of these functions are defined. Real implementations do not define these functions because the functiond part of
thefacetsis actualy implemented in the corresponding base classes and the congtructor of the"..._byname' version just
provides suitable date used by these implementations. For example, the 'numpunct’ methods just return vaues from astruct.
The base class uses astaticaly initidized struct while the derived version reads the contents of this struct from atable.
However, no virtua function is defined in 'numpunct_byname.

For most classes this does not impose a problem but specifically for 'ctype' it does: The specidization for
'ctype_byname<char>' is required because otherwise the semantics would change dueto the virtua functions defined in the
generd version for 'ctpye_byname': In 'ctype<char>' the method 'do_iS()' isnot virtua but it is made virtud in both
‘ctype<cT>" and 'ctype_byname<cT>". Thus, aclass derived from 'ctype_bymame<char>' can tell whether thisclassis
specidized or not under the current specification: Without the specidization, 'do_iS()' is virtua while with specidization it
isnot virtua.

Proposed Resolution:
Change section 22.2.1.2 (lib.locae.ctype.byname) to become:

namespace std {
tenpl ate <class charT>
class ctype_bynane : public ctype<charT> {
public:
typedef ctype<charT>::nmask nask;
explicit ctype_bynanme(const char*, size_t refs = 0);
prot ected:
~ctype_bynane(); [l virtual
b
}

Change section 22.2.1.6 (lib.locae.codecvt.byname) to become:

Library active issueslist

nanmespace std {
tenpl ate <class internT, class externT, class stateT>
cl ass codecvt _bynane : public codecvt<internT, externT, stateT> {

publi c:
explicit codecvt_bynane(const char*, size_ t refs = 0);
prot ect ed:
~codecvt _bynane(); [l virtual
b
}

Change section 22.2.3.2 (lib.localenumpunct.byname) to become:

namespace std {
tenpl ate <cl ass charT>
cl ass nunmpunct _bynane : public nunmpunct<charT> {
/1l this class is specialized for char and wchar_t.
public:
typedef charT char _type;
typedef basic_string<charT> string_type;
explicit numpunct_bynane(const char*, size_t refs = 0);
pr ot ect ed:
~nunpunct _bynane(); /[l virtual
b
}

Change section 22.2.4.2 (lib.locae.collate.byname) to become:

namespace std {
tenpl ate <cl ass charT>
class col |l ate_bynanme : public collate<charT> {
public:
typedef basic_string<charT> string_type;
explicit coll ate_bynane(const char*, size_t refs = 0);
protected:
~col | at e_byname(); /1 virtual
b
}

Change section 22.2.5.2 (lib.locdetimeget.byname) to become:

nanespace std {

tenpl ate <class charT, class Inputlterator = istreanbuf _iterator<charT> >
class time_get_byname : public tinme_get<charT, Inputlterator> {
public:
typedef tine_base:: dateorder dateorder;
typedef Inputlterator iter_type
explicit tinme_get_byname(const char*, size t refs = 0);
prot ect ed:
~time_get _bynane(); [l virtual
b

}
Change section 22.2.5.4 (lib.locaetimeput.byname) to become:
namespace std {

tenpl ate <class charT, class Qutputlterator = ostreanbuf _iterator<charT> >
class tinme_put_bynane : public time_put<charT, Qutputlterator>

Library active issueslist

{
public:

typedef charT char _type;

typedef Qutputlterator iter_type;

explicit time_put_bynane(const char*, size t refs = 0);
prot ect ed:
~time_put _bynane(); [l virtual
b
3

Change section 22.2.6.4 (lib.locale moneypunct.byname) to become:

namespace std {

tenpl ate <class charT, bool Intl = fal se>
cl ass nmoneypunct _bynane : public noneypunct<charT, Intl> {
public:

typedef noney_base::pattern pattern;

typedef basic_string<charT> string_type;

explicit noneypunct_bynanme(const char*, size_t refs = 0);
pr ot ect ed:
~nmoneypunct _byname() ; /[l virtual

H
}

Change section 22.2.7.2 (lib.local e messages.oyname) to become:

namespace std {
tenpl ate <cl ass charT>
cl ass nmessages_bynanme : public nmessages<charT> {
publi c:
typedef nessages_base:: catal og catal og;
typedef basic_string<charT> string_type;
explicit nmessages_bynane(const char*, size t refs = 0);
protected:
~nmessages_bynane(); [l virtua
virtual catal og do_open(const basic_string<char>& const |ocal e& const;
virtual string_type do_get(catalog, int set, int nsgid,
const string_type& dfault) const;
virtual void do_cl ose(catal og) const;
b
}

Remove section 22.2.1.4 (lib.locae.ctype.byname.specia) completely (becausein this case only those membersare
defined to be virtual which are defined to be virtua in ‘ctype<cT>")

49

[Post-Tokyo: Dietmar Kuhl submitted thisissue at the request of the LWG to solve the underlying problems raised by issue

138]

229. Unqualified references of other library entities
Section: 17.4.1.1]ib.contents Status: Open Submitter: Steve Clamage Date: 19 Apr 00

Throughout the library chapters, the descriptions of library entities refer to other library entities without necessarily
qudifying the names.

Library active issueslist 50

For example, section 25.2.2 "Swap" describes the effect of swap_rangesin terms of the unqudified name "swap”'. This
section could reasonably be interpreted to mean that the library must be implemented so asto do alookup of the
unqudified name "swap", alowing users to override any ::std::swap function when Koenig lookup applies.

Although it would have been best to use explicit quaification with "::std::" throughout, too many linesin the standard
would have to be adjusted to make that change in a Technica Corrigendum.

Issue 182, which addresses qudification of si ze_t , isaspecia case of this.
Proposed Resolution:
Tosection 17.4.1.1 "Library contents' Add the following paragraph:

Whenever anamex defined in the standard library is mentioned, the name x is assumed to be fully
quaified as ::std::x, unless explicitly described otherwise. For example, if the Effects section for library
function Fis described as cdling library function G, the function ::std::G is meant.

[Post-Tokyo: Steve Clamage submitted thisissue at the request of the LWG to solve a problemin the standard itself similar
to the problem within implementations of library identified by issue 225. Any resolution of issue 225 should be coordinated
with the resolution of issue 229.]

[post-Toronto: Howard is undecided about whether it is appropriate for all standard library function namesreferredtoin
other standard library functionsto be explicitly qualified by st d: it is common advice that users should define global
functions that operate on their classin the same namespace as the class, and this requires argument-dependent lookup if
those functions are intended to be called by library code. Several LWG members are concerned that valarray appearsto
require argument-dependent lookup, but that the wording may not be clear enough to fall under "unless explicitly described
otherwise".]

230. Assignable specified without also specifying CopyConstructible
Section: 17 liblibrary Status: Review Submitter: Beman Dawes Date: 26 Apr 00

Issue 227 identified an instance (std::swap) where Assignable was specified without aso specifying CopyConstructible.
The LWG asked that the standard be searched to determine if the same defect existed dsewhere.

Thereare anumber of places (see proposad resolution below) where Assignableis specified without also specifying
CopyCongtructible. There are dso severa cases where both are specified. For example, 26.4.1 [lib.accumulatel.

Proposed Resolution:

In[lib.container.requirements] 23.1 table 65 for vaue _type: change"T is Assignable' to T is CopyConstructible and
Assgnable’

In[lib.associativeregmts] 23.1.2 table 69 X::key _type; change"Key is Assignable” to "Key is CopyConsgtructible and
Assgnable’

In[lib.output.iterators] 24.1.2 paragraph 1, change:

A dassor abuilt-in type X satisfies the requirements of an output iterator if X isan Assignabletype
(23.1) and dso the fallowing expressons are valid, asshown in Table 73:

Library active issues list 51

to:

A dassor ahuilt-in type X satisfies the requirements of an output iterator if X isaCopyConstructible (
20.1.3) and Assignable type (23.1) and d <o the following expressons are valid, as shown in Table 73;

[Post-Tokyo: Beman Dawes submitted thisissue at the request of the LWG .

He asksthat the[lib.alg.replace] 25.2.4 and [lib.alg.fill] 25.2.5 changes be studied carefully, asit is not clear that
CopyConstructible isreally a requirement and may be over specification.]

[Toronto: The original proposed resolution also included changes to input iterator, fill, and replace. The LWG believes
that those changes are not necessary. The LWG considered some blanket statement, where an Assignable type was also
required to be Copy Constructible, but decided against this becausefill and replace really don't require the Copy
Constructible property.]

231. Precison in iostream?

Section: 22.2.2.2.2 lib.facet.num.put.virtuas Status: Open Submitter: James Kanze, Stephen Clamage Date: 25 Apr 00

What isthe following program supposed to output?

#i ncl ude <i ostreanp

i nt
mai n()
{
std::cout.setf(std::ios::scientific , std::ios::floatfield) ;
std::cout.precision(0) ;
std::cout << 1.23 << '\n' ;
return 0 ;
}

From my C experience, | would expect "1e+00"; thisiswhat printf("%.0€" , 1.23) ; does. G++ outputs "1.000000e+00".

Theonly indication | can find in the standard is 22.2.2.2.2/11, where it says "For conversion from afloating-point type, if
(flags & fixed) =0 or if str.precison() > 0, then str.precision() is specified in the conversion specification.” Thisisan
obvious error, however, fixed is not amask for afidd, but avaue that a multi-bit field may take -- the results of anding
fmtflags with ios::fixed are not defined, a least not if ios::scientific has been set. G++'s behavior corresponds to what might
happen if you do use (flags & fixed) != 0 with atypica implementation (floatfield == 3 << something, fixed == 1 <<
something, and scientific == 2 << something).

Presumably, the intent is either (flags & floafidd) != 0, or (flags & floatfidd) == fixed; thefirst gives something more or
lesslike the effect of precision in aprintf floating point conversion. Only more or less, of course. In order to implement
printf formatting correctly, you must know whether the precision was explicitly set or not. Say by initidizing it to -1,
ingtead of 6, and stating that for floating point conversions, if precision < -1, 6 will be used, for fixed point, if precison < -
1, 1 will be used, etc. Plus, of course, if precison == 0 and flags & floatfield == 0, 1 should be = used. But it probably isn't
necessary to emulate dl of the anomdies of printf:-).

Proposed Resolution:

[Toronto: the committee believesthisis a genuineissue. In addition to theissue of f i xed being a value rather than a
mask, the standard is not clear what the effects setting precision to 0 ought to be.]

Library active issueslist

52

232. "depends' poorly defined in 17.4.3.1
Section: 17.4.3.1 libressrved.names Status: Open Submitter: Peter Dimov Date: 18 Apr 00

17.4.3.1/1 usestheterm "depends' to limit the set of allowed specidizations of standard templates to those that "depend on
auser-defined name of extand linkage”

Thisterm, however, is not adequately defined, making it possible to congtruct a specidization that is, | believe, technically
lega according to 17.4.3.1/1, but that specidizes astandard template for abuilt-in type such as'int'.

The following code demongtrates the problem:

#i ncl ude <al gorithnp
tenpl at e<cl ass T> struct X

{
typedef T type;
b

nanmespace std

{

tenpl ate<> void swap(:: X<int> :type& i, ::X<int>: :type& j);
}

Proposed Resolution

[Toronto: thismay be related to issue 120.]

233. Insertion hintsin associative containers

Section: 23.1.2 lib.asociativeregmts Status: Open Submitter: Andrew Koenig Date: 30 Apr 2000

If nmisamultimap and p isaniterator into the multimap, thenmm i nsert (p, X) insertsx into nmwith p asahintas
to whereit should go. Table 69 clamsthat the execution time is amortized congtant if the insert winds up taking place
adjacent to p, but does not say when, if ever, thisis guaranteed to happen. All it saysit that p isahint asto whereto insert.

The question iswhether there is any guarantee about the relationship between p and the insertion point, and, if so, what it
is.

| believe the present state isthat there is no guarantee: The user can supply p, and theimplementation is alowed to
disregard it entirely.

Proposed Resolution:

OPTION 1:
Generd Idea: Point out that in insert(p,t), theiterator p will (if possible) be used to insert t just before p or just after p. If
thisisnot possible, the hint isignored.

assertion/note/pre/postcondition in table 69
Change:

iterator pisahint pointing to where the insert should start to search.

Library active issueslist 53

To:
if tisinserted, pisused asfollows. insart t right before p if possible; otherwise, insert t right after p if
possible; otherwise, pisignored.

complexity:

Chenge:
right after p

To:
right before or right after p.

Thus making:

assartion/note/pre/postcondition:
insertst if and only if thereis no dement with key equivalent to the key of t in containerswith unique
keys, dwaysinsartst in containers with equivalent keys. dways returnsthe iterator pointing to the
dement with key equivalent tothe key of t. if tisinserted, pisused asfollows: insart t right before p if
possible; otherwise, insert t right after p if possible; otherwise, p isignored.

complexity:
logarithmic in genera, but amortized congtant if t isinserted right before or right after p.

OPTION 2

Generd Idea (Andrew Koenig): t isinserted et the point closest to (the point immediately ahead of) p. That would give the

user away of controlling the order in which elements appear that have equa keys. Doing so would be particularly easy in
two casesthat | suspect are common:

mminsert(mmbegin(), t); // inserts as first elenment of set of equal keys
mminsert(mmend(), t); /'l inserts as last elenment of set of equal keys

These exampleswould dlow t to be inserted at the beginning and end, respectively, of the set of elementswith the same
key ast.

assartion/note/pre/postcondition in table 69
Chenge:

iterator p isahint pointing to where the insert should start to search.

To:

if tisinserted, pisused asfollows: insert t right before p if possible; otherwise, if pisequd to aend(), or
if the key vadue of t is greater than the key value of *p, tisinserted just before alowerbound(the key
vaue of t); otherwise, t isinserted right before a.upperbound(the key vaue of t).

complexity:

Change:

right after p

Library active issueslist 54

To:
right before p

Thus meking:

assartion/note/pre/postcondition:
insartst if and only if thereis no element with key equivaent to the key of t in containers with unique
keys, dwaysinsertst in containers with equivalent keys. aways returnsthe iterator pointing to the
eement with key equivaent to thekey of t. if tisinserted, p isused asfollows: insert t right before p if
possible; otherwise, if pisequa to aend(), or if the key vaue of tisgreater than thekey vaue of *p, tis
inserted just before alowerbound(the key value of t); otherwise, tisinserted right before
aupperbound(the key vaue of t).
NON-NORMATIVE FOOTNOTE: | This gives the user away of controlling the order | in which
eements gppear that have equal keys. Doing thisis | particularly easy in two common cases.
| mminsert(mmbegin(), t); // inserts as first elenent of set of
equal keys
| mminsert(mmend(), t); /'l inserts as |last elenent of set of equal
keys
END-FOOTNOTE

complexity:

logarithmic in generd, but amortized congtant if t isinserted right before p.

[Toronto: there was general agreement that thisisareal defect: when inserting an element x into a multiset that already
contains several copies of x, thereis no way to know whether the hint will be used. There was some support for an
alternative resolution: we check on both sides of the hint (both before and after, in that order). If either isthe correct
location, the hint is used; otherwise it isnot. Thisisdifferent fromthe original proposed resolution, becausein the
proposed resolution the hint will be used even if it isvery far fromthe insertion point. JC van Winkel supplied precise
wording for both options.]

234. Typosin allocator definition

Section: 20.4.1.1 lib.dlocator.members Status: Ready Submitter: Dietmar Kihl Date: 24 Apr 2000

In paragraphs 12 and 13 the effectsof const ruct () anddest r uct () aredescribed as returns but the functions
actudly returnvoi d.

Proposed Resolution:

Substitute "Returns’ by "Effect”.

235. No specification of default ctor for reverse iterator

Library active issueslist 55

Section: 24.4.1.1 lib.reverseiterator Status: Open Submitter: Dietmar Kihl Date: 24 Apr 2000

Thedecdlarationof r ever se_i t er at or listsadefault constructor. However, no specification is given whet this
congtructor should do.

Proposed Resolution:

[Toronto: there should be a default constructor, and it should default-initialize the appropriate member variable. Dietmar
will provide wording.]

237. Undefined expression in complexity specification
Section: 23.2.2.1]ib.list.cons Status: Reedy Submitter: Dietmar Kihl Date: 24 Apr 2000

The complexity specification in paragraph 6 saysthat the complexity islinearinf i r st - | ast.Evenif oper at or -
() isdefined oniteratorsthistermisin genera undefined becauseit would havetobel ast - first.

Proposed Resolution:

Change paragraph 6 from

Linear infirst - last.
to become

Linear indistance(first, last).

238. Contradictory results of gringbuf initialization.
Section: 27.7.1.1 lib.gringbuf.cons Status: Review Submitter: Dietmar Kihl Date: 11 May 2000

In 27.7.1.1 paragraph 4 the results of calling the constructor of 'basic_stringbuf* aresadtobestr () == str.Thisis
finethat far but consider this code:

std:: basi c_stringbuf<char> sbuf("hello, world", std::ios_base::opennpde(0));
std::cout << "'" << shuf.str() << "'\n";

Paragraph 3 of 27.7.1.1 basically saysthat in this case neither the output sequence nor the input sequenceisinitialized and
paragraph 2 of 27.7.1.2 basicaly saysthatst r () either returnsthe input or the output sequence. None of themiis
initiized, ie. both are empty, in which casethereturnfrom st r () isdefinedtobebasi c_stri ng<cT>().

However, probably only test casesin some testsuites will detect this "problem”...
Proposed Resolution:
Remove 27.7.1.1 paragraph 4.

Rationale:

Library active issueslist

We could fix 27.7.1.1 paragraph 4, but there would be no paint. If wefixed it, it would say just the same thing astext that's
dready in the standard.

56

239. Complexitiy of unique() and/or unique_copy incorrect

Section: 25.2.8 lib.dg.unique Status: Open Submitter: AngdikaLanger Date: May 15 2000

The complexity of unique and unique_copy are inconsistent with each other and inconsistent with the implementations.
The standard specifies:

for unique():

-3- Complexity: If the range (last - first) is not empty, exactly (last - first) - 1 applications of the
corresponding predicate, otherwise no gpplications of the predicate.

for unique_copy():
-7- Complexity: Exactly lagt - first gpplications of the corresponding predicate.

Theimplementations do it the other way round: unique() applies the predicate lagt-first times and unique_copy() appliesit
last-first-1 times.

As hoth agorithms use the predicate for pair-wise comparison of sequence dements| don't see ajudtification for
unique_copy() applying the predicate last-first times, especidly sinceit is not specified to which pair in the sequence the
predicateis applied twice.

Proposed Resolution:
Change both complexity sectionsin 25.2.8 lib.ag.unique to:

Complexity: Exactly last - first - 1 applications of the corresponding predicate.

[Toronto: Thisisrelated to issue 202. We can't specify uni que's complexity until we decide what uni que is supposed to

do.]

240. Complexity of adjacent_find() is meaningless
Section: 25.1.5 lib.dg.adjacent.find Status: Review Submitter: AngdikalLanger Date: May 15 2000
The complexity section of adjacent_find is defective.

template<class Forwardlterator, class BinaryPredicate>
Forwardlterator adjacent_find(Forwardlterator first, Forwardlterator last,

BinaryPredicate pred);
-1- Returns: Thefird iterator i such that bothi and i + 1 arein therange([firg, last) for which the
fallowing
corresponding conditions hold: *i ==*(i + 1), pred(*i, *(i + 1)) !=fadse. Returnslast if no such iterator is
found.

-2- Complexity: Exactly find(first, last, value) - first applications of the corresponding predicate.

Library active issues list 57

In the Complexity section, it is not defined what "value" is supposed to mean. My best guessisthat "value' means an object
for which one of the conditions pred(*i,value) or pred(vaue,*i) istrue, wherei istheiterator defined in the Returns section.
However, the vaue type of the input sequence need not be equdity-comparable and for this reason the term find(firgt, lagt,
value) - firgt is meaningless.

A term such asfind_if(firdt, last, bind2nd(pred,*i)) - first or find_if(firdt, last, bind1st(pred,*i)) - first might come closer to
the intended specification. Binders can only be gpplied to function objects that have the function call operator declared

congt, which is not required of predicates because they can have non-const data members. For this reason, a specification
using abinder could only be an "as-if" specification.

Proposed Resolution:

Change the complexity section in 25.1.5 lib.alg.adjacent.find to: "For anonempty range, e most (I ast - first) - 1
comparisons.”

241. Doesunique_copy() require CopyConstructible and Assignable?
Section: 25.2.8 lib.dg.unique Status: Review Submitter: AngdikaLanger Date: May 15 2000

Some popular implementations of unique_copy() create temporary copies of valuesin the input sequence, et least if the
input iterator isapointer. Such an implementation is built on the assumption that the value type is CopyConstructible and
Assgnable.

It is common practice in the standard that agorithms explicitly specify any additiond requirements that they impose on any
of the types used by the dgorithm. An example of an algorithm that creates temporary copies and correctly specifiesthe
additiond requirements is accumulae() [lib.accumulad .

Since the specifications of unique() and unique_copy() do not require CopyConstructible and Assignable of the
Inputlterator's val ue type the above mentioned implementations are not standard-compliant. | cannot judge whether thisisa
defect in the standard or adefect in the implementations.

Proposed Resolution:

In 25.2.8 change:

-4- Requires: Theranges(firg, last) and [result, result+(lagt-first)) shall not overlap.

to:
-4- Requires: Theranges|firg, last) and [result, result+(last-first)) shall not overlap. The expression
*result = *firgt isvalid

Rationale:

Creseting temporary copiesis unavoidable, snce the arguments may be input iterators; thisimpliesthat the value type must

be copy congtructible. However, we don't need to say this explicitly; it'saready implied by table 72in 24.1.1. We don't
precisely want to say that the input iterator's value type T must be assignable, because we never quite use that property. We
assign through the output iterator. The output iterator might have a different vaue type, or no value type; it might not use
T'sassgnment operator. If itsanost r eam i t er at or , for example, then well use T's operator<< but not its assgnment
operétor.

Library active issueslist 58

242. Side effects of function objects

Section: 25.2.3lib.dgtransformand 26.4 lib.numeric.opsStatus: Review Submitter: AngdikaLanger Date: May 15
2000

The dgorithms transform(), accumulate), inner_product(), partia_sum(), and adjacent_difference() require that the
function object supplied to them shall not have any side effects.

The standard defines a side effect in [intro.execution]as.

-7- Accessng an object designated by avoldile lvaue (basic.lva), modifying an object, cdling alibrary
1/0O function, or calling afunction that does any of those operations are dl side effects, which are changes
in the ate of the execution environmen.

As aconsequence, the function cal operator of afunction object supplied to any of the agorithms listed above cannot
modify data members, cannot invoke any function that has a side effect, and cannot even creste and modify temporary
objects. Itisdifficult toimagine afunction object that is till ussful under these severe limitations. For instance, any non-
trivid transformator supplied to transform() might involve creation and modification of temporaries, which is prohibited
according to the current wording of the standard.

On the ather hand, popular implementations of these agorithms exhibit uniform and predictable behavior when invoked

with a side-effect-producing function objects. It looks like the strong requirement is not needed for efficient implementation
of these dgorithms.

The requirement of s de-effect-free function objects could be replaced by a more relaxed basic requirement (which would
hold for al function objects supplied to any dgorithm in the standard library):

A function objects supplied to an dgorithm shdl not invalidate any iterator or sequence that is used by
the agorithm. Invaidation of the sequence includes destruction of the sorting order if the dgorithm relies
on the sorting order (see section 25.3 - Sorting and related operations[lib.ag.sorting]).

| can't judge whether it isintended that the function objects supplied to transform(), accumulate(), inner_product(),
partid_sum(), or adjacent_difference() shal not modify sequence dements through dereferenced iterators.

It is debatable whether thisissue is a defect or achange request. Since the consequences for user-supplied function objects
aredragtic and limit the usefulness of the dgorithms sgnificantly | would consider it adefect.

Proposed Resolution:
[Toronto: Dave Abrahams supplied wording.]
Things to notice about these changes:

1. Thefully-closed ("[]" as opposed to half-closed "[)" ranges are intentional. we want to prevent side-effects from
invalidating the end iterators.

2. That hasthe unintentional side-effect of prohibiting modification of the end element as a side-effect. This could
conceivably be significant in some cases.

3. Thewording also prevents side-effects from modifying elements of the output sequence. | can't imagine why
anyone would want to do this, but it is arguably a restriction that implementors don't need to place on users.

4. Lifting therestrictionsimposed in #2 and #3 above is possible and simple, but would require more verbiage.

Change 25.2.3/2 from:

Library active issueslist

-2- Requires. op and binary_op shdl not have any sde effects.

to:
-2- Requires: op and binary_op shdl not invalidate iterators or subranges, or modify elementsin the
ranges [firstd, last]], [first2, first2 + (lastl - first1)], and [result, result + (lastl - firgt1)].

Change 26.4.1/2 from:
-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assgnable
(lib.contai ner.requirements) types. binary_op shal not cause side effects.

to:
-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable
(lib.container.requirements) types. In the range [firg, last], binary_op shdl neither modify dements nor
invaidate iterators or subranges.

Change 26.4.2/2 from:
-2- Requires: T must meet the requirements of CopyCongtructible (lib.copyconstructible) and Assgnable
(lib.container.requirements) types. binary_opl and binary_op2 shall not cause side effects.

to:
-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assgnable
(lib.container.requirements) types. In the ranges [firdt, last] and [first2, first2 + (last - first)], binary_opl
and binary_op2 shdl neither modify elements nor invalidete iterators or subranges.

Change 26.4.3/4 from:
-4- Requires: binary_op is expected not to have any side effects.

to:
-4- Requires: In theranges [firg, last] and [result, result + (last - first)], binary_op shdl neither modify
edements nor invaidate iterators or subranges.

Change 26.4.4/2 from:
-2- Requires: hinary_op shall not have any side effects.

to:

-2- Requires. Inthe ranges [first, last] and [result, result + (last - first)], binary_op shdl neither modify
eements nor invalidate iterators or subranges.

243. get and get | i ne when sentry reportsfailure

Section: 27.6.1.3 lib.istream.unformatted Status: Reedy Submitter: Martin Sebor Date: May 15 2000

Library active issueslist 60

basic_istream<>::get(), and basic_istream<>::getling(), are unclear with repect to the behavior and side-effects of the
named functionsin case of an error.

27.6.1.3, pl gatestha ... If the sentry object returns true, when converted to avaue of type bool, the function endeavors
to obtain the requested input..." 1t isnot clear from this (or the rest of the paragraph) what precisely the behavior should be
when the sentry ctor exits by throwing an exception or when the sentry object returnsfase. In particular, what isthe
number of characters extracted that gcount() returns supposed to be?

27.6.1.3 p8 and p19 say about the effects of get() and getling(): "... Inany casg, it then storesanull character (using

charT()) into the next successive location of the array. Isnot clear whether this sentence gppliesif either of the conditions
above holds (i.e.,, when sentry fails).

Proposed Resolution:

Addto 27.6.1.3, pl after the sentence

"... If the sentry object returns true, when converted to avalue of type bool, the function endeavorsto
obtain the requested input.”

thefollowing

"Otherwise, if the sentry constructor exits by throwing an exception or if the sentry object returnsfalse,
when converted to avaue of type bool, the function returns without attempting to obtain any input. In
either case the number of extracted charactersis set to O; unformatted input functions teking a character
array of non-zero Sze as an argument shall dso storeanull character (using charT()) inthefirst location
of thearray."

Rationale:

Although the genera philosophy of the input functionsisthat the argument should not be modified upon failure, get | i ne
historically added aterminating null unconditionally. Most implementations till do that. Earlier versions of the draft
standard had language that made this an unambiguous requirement; those words were moved to a place where their context
made them less dlear. See Jerry Schwarz's message c++stdHlib-7618.

247. vector, deque: : i nsert complexity
Section: 23.3.4.4 lib.vector.modifiers Status: Open Submitter: LisaLippincott Date: 06 June 2000
Paragraph 2 of 23.3.4.3 [lib.vector.modifiers] describesthe complexity of vect or : @i nsert:

Complexity: If first and last are forward iterators, bidirectiond iterators, or random access iterators, the
complexity islinear in the number of dementsin the range [firg, last) plusthe distanceto the end of the
vector. If they areinput iterators, the complexity is proportiond to the number of elementsin the range
[first, last) times the distance to the end of the vector.

First, thisfailsto address the non-iterator formsof i nsert .

Second, the complexity for input iterators misses an edge case -- it requiresthat an arbitrary number of eements can be
added at theend of avect or incongtant time.

At therisk of strengthening the requirement, | suggest smply

Library active issues list 61

Complexity: The complexity islinear in the number of eementsinserted plus the distance to the end of
the vector.

For input iterators, one may achieve this complexity by first inserting at theend of the vect or , andthenusing r ot at e.

| looked to seeif deque had asimilar problem, and was surprised to find that de que places no requirement on the
complexity of inserting multiple eements (23.2.1.3 [lib.deque.modifiers], paragraph 3):

Complexity: In the worgt case, inserting asingle dement into adeque takes time linear in the minimum of
the distance from the insertion point to the beginning of the deque and the distance from the insertion

point to the end of the deque. Insarting a single dement either at the beginning or end of adegue dways
takes congant time and causes asingle cal to the copy constructor of T.

| suggest:

Complexity: The complexity islinear in the number of dementsinserted plusthe shorter of the distances
to the beginning and end of the deque. Inserting asingle element at either the beginning or the end of a
deque causes asingle cal to the copy congtructor of T.

Proposed Resolution:

[Toronto: It's agreed that there is a defect in complexity of multi-element insert for vector and deque. For vector, the
complexity should probably be something along thelinesofc; * N + ¢, * distance(i, end()).However,there
is some concern about whether it isreasonable to amortize away the copies that we get from a reall ocation whenever we
exceed the vector's capacity. For deque, the situation is somewhat less clear. Deque is notoriously complicated, and we
may not want to impose complexity requirements that would imply any implementation technique more complicated than a
while loop whose body is a single-element insert.]

248. time_get failsto set eofbit

Section: 22.2.5 lib.category time Status: Ready Submitter: Martin Sebor Date: 22 June 2000

Thereisno requirement that any of time_get member functions set ios::eofbit when they reach the end iterator while

parsing their input. Since members of both the num_get and money_get facets are required to do s0 (22.2.2.1.2, and
22.2.6.1.2, respectively), time_get members should follow the same requirement for consistency.

Proposed Resolution:
Add paragraph 2 to section 22.2.5.1 with the following text:

If the end iterator is reached during parsing by any of the get() member functions, the member sets
ios_base:eofbitin err.

[Toronto: Martin submitted two proposed resolutions. The LWG chose this one because it was mor e consistent with the
way eof is described for other input facets.]

250. splicing invalidatesiterators

Section: 23.2.24lib.list.opsStatus: Open Submitter: Brian Parker <brianp@research.canon.com.au> Date: 14 Jul 2000

Library active issues list 62

Section 23.2.2.4 [lib.list.ops] satesthat

void splice(iterator position, list<T, Allocator>& x);
invalidates al iterators and referencesto list X .

Thisis unnecessary and defeats an important feature of splice. In fact, the SGI STL guaranteesthet iteratorsto x reman
vid after spl i ce.

Proposed Resolution:

I think that this clause (and the other splice clauses) should be reworded to- "dl iterators and references remain vaid,
including iterators that point to elements of x."

[Toronto: the LWG was generally in favor of the idea behind this change. Some members, however, are concer ned about
the phrase "remain valid". They aren't sure that validity is sufficiently well defined, or that it means exactly what we mean
to say here. Howard will provide more precise wording.]

251. basic_stringbuf missing allocator _type

Section: 27.7.1 lib.dringbuf Status: Reedy Submitter: Martin Sebor Date: 28 Jul 2000

The synopsisfor thetemplate classbasi ¢_st ri ngbuf doesnt list atypedef for the template parameter Al | ocat or .
Thismakesit impossible to determine the type of the alocator at compile time. It's dso inconsistent with al other template
classesinthelibrary that do provide atypedef for the Al | ocat or parameter.

Proposed Resolution:

Add to the synopses of the classtemplatesbasic_gtringbuf (27.7.1), basic_istringsiream (27.7.2), basic_ostringstream
(27.7.3), and basic_diringstream (27.7.4) the typedef:

typedef Allocator allocator_type;

252. missing casts/C-style casts used in iostreams

Section: 27.7 lib.gring.greams Status: Reedy Submitter: Martin Sebor Date; 28 Jul 2000

27.7.2.2, pl usss aC-tyle cast rather than the more appropriate const_cast<> in the Returns clause for
basic_istringstream<>::rdbuf(). The same C-style castisheing used in 27.7.3.2, p1, D.7.2.2, p1, and D.7.3.2, p1, and
perhaps elsewhere. 27.7.6, pl and D.7.2.2, p1 are missing the cast atogether.

C-style casts have not been deprecated, so thefirgt part of thisissueis stylistic rather than a matter of correctness.
Proposed Resolution:

INn27.7.2.2, pl replace

-1- Returns: (basic_stringbuf<charT,traits, All ocator>*)&sb.

Library active issueslist

with

-1- Returns: const_cast<basic_stringbuf<charT,traits, Allocator>*>(&sb).

In27.7.3.2, plreplace

-1- Returns: (basic_stringbuf<charT,traits, Allocator>*)&sbh.

with

-1- Returns: const_cast<basic_stringbuf<charT,traits, All ocator>*>(&sb).

In27.7.6, p1, replace

-1- Returns: &sb
with

-1- Returns: const_cast<basic_stringbuf<charT,traits, All ocator>*>(&sb).

InD.7.2.2, plreplace

-2- Returns: &sb.
with

-2- Returns: const_cast<strstreanbuf*>(&sh).

253. valarray helper functions are almost entirely useless

Section: 26.3.2.1]ib.vdaray.consand 26.3.2.2 lib.vdaray.assign Status: Open Submitter: Robert Klarer Date: 31 Jul

2000

Thisdiscussion is adapted from message c++stdHib-7056 posted November 11, 1999. | don't think thet anyone can
reasonably claim that the problem described below isNAD.

These vaarray congtructors can never be caled:

tenpl ate <class T>
val array<T>:
tenpl ate <class T>
val array<T>:
tenpl ate <class T>
val array<T>:
tenpl ate <class T>
val array<T>:

:val array(const
:val array(const
:val array(const

:val array(const

slice_array<T> &);
gslice_array<T> &;
mask_array<T> &);

i ndi rect_array<T> &);

Similarly, these vaarray assignment operators cannot be called:

tenpl ate <class T>

val array<T> val array<T>::operator=(const slice_array<T> &);

tenpl ate <class T>

Library active issueslist 64

val array<T> val array<T>:: operator=(const gslice_array<T> &);
tenpl ate <class T>

val array<T> val array<T>:: operat or=(const mask_array<T> &);
tenpl ate <class T>

val array<T> val array<T>:: operator=(const indirect_array<T> &);

Please condder the following example:

#i ncl ude <val array>
usi ng namespace std;

int main()
{

val array<doubl e> val(12);

val array<doubl e> va2(val[slice(1,4,3)]); // line 1
}

Sincethevaarray val is non-const, the result of the sub-expression val[dice(1,4,3)] at line 1 isan rvaue of type const

std::dice_array<double>. Thisdice array rvalueisthen used to construct va2. The congtructor that is used to construct va2
isdeclared likethis

tenpl ate <class T>
val array<T>: :val array(const slice_array<T> &);

Notice the congtructor's const reference parameter. When the constructor is caled, adice array must be bound to this
reference. Therulesfor binding an rvalueto acongt reference arein 8.5.3, paragraph 5 (see dso 13.3.3.1.4). Specifically,
paragraph 5 indicates that a second dice array rvaueis congtructed (in this case copy-constructed) from thefirst one) it is
this second rvaue that is bound to the reference parameter. Paragraph 5 a'so requires that the constructor that is used for

this purpose be cdlable, regardless of whether the second rvaueis dided. The copy-constructor in this caseisnot calable,
however, becauseit is private. Therefore, the compiler should report an error.

Sincedice arraysare dways rvaues, the vaarray constructor that has a parameter of type const dice_array<T> & can
never be caled. The same reasoning gpplies to the three other constructors and the four assignment operatorsthat arelisted
a the beginning of this post. Furthermore, since these functions cannot be called, the valarray helper classes are dmost
entirely usdless.

Proposed Resolution:

Adopt section 2 of 00-0023/N1246. Sections 1 and 5 of that paper have dready been cdlassified as "Request for Extension”.
Sections 3 and 4 are reasonable generdizations of section 2, but they do not resolve an obvious inconsistency in the
standard.

[Toronto: it isagreed that thereis a defect. A full discussion, and an attempt at fixing the defect, should wait until we can
hear fromvalarray experts.]

254. Exception typesin clause 19 are constructed from st d: : string

Section: 19.1 lib.std.exceptions Status: Open Submitter: Dave Abrahams Date: 01 Aug 2000

Many of the standard exception types which implementations are required to throw are constructed with a const
sd::gring& parameter. For example:

Library active issueslist 65

19.1.5 dass out_of _range [lib.out.of.range]
namespace std {
class out_of _range : public logic_error {
public:
explicit out_of range(const string& what_arg);
b
}

1 The class out_of _range defines the type of objects thrown as excep-
tions to report an argunment value not in its expected range.

out _of range(const string& what _arg);

Ef f ects:

Constructs an object of class out_of _range.
Post condi ti on:

strcmp(what (), what_arg.c_str()) ==

There are a least two problems with this:

1. A programwhichislow on memory may end up throwing std::bad_alloc instead of out_of_range because memory
runs out while congtructing the exception object.

2. Anobviousimplementation which stores a std::string data member may end up invoking terminate() during
exception unwinding because the exception object alocates memory (or rather failsto) asit isbeing copied.

Theremay be no curefor (1) other than changing theinterface to out_of_range, though one could reasonably argue thet (1)
isnot adefect. Personaly | don't care that much if out-of-memory isreported when | only have 20 bytes | ft, in the case
when out_of _range would have been reported. People who use exception-specifications might care alat, though.

Thereisacurefor (2), but it isn't completely obvious. | think a note for implementors should be made in the standard.
Avoiding possible termination in this case shouldn't be Ieft up to chance. The cureisto use areference-counted "string*
implementation in the exception object. | am not neccessarily referring to astd::string here; any smple reference-counting
schemefor aNTBSwould do.

Further discussion, in emall:

...I'm not so concerned about (1). After al, alibrary implementation can add congt char* constructors as an extension, and
users don't need to avail themselves of the standard exceptions, though thisis alame position to be forced into. FWIW,
std::exception and std::bad_alloc don't require atemporary basic_string.

...I don't think the fixed-si ze buffer is a solution to the problem, strictly speaking, because you can't satisfy the
postcondition

strcnp(what (), what_arg.c_str()) ==
For dl values of what_arg (i.e. very long vaues). That means that the only truly conforming solution requires adynamic
alocation.

Proposed Resolution:

[Toronto: some LWG members thought this was merely a Qol issue, but most believed that it was at least a borderline
defect. There was more support for nonnor mative advice to implementors than for a normative change.]

256. typoin 27.4.4.2, p17: copy_event does not exist

Library active issueslist

Section: 27.4.4.2 lib.basiciosmembers Status: Ready Submitter: Martin Sebor Date: 21 Aug 2000

274.4.2, p17 says

-17- Before copying any parts of rhs, cdls each registered cdlback pair (fn,index) as
(*fn)(erase_event,*thisindex). After al parts but exceptions() have been replaced, cals each calback
pair that was copied from rhs as (*fn)(copy_event,*thisindex).

The name copy_event isn't defined anywhere. The intended name was copyfmt_event.
Proposed Resolution:

Replace copy_event with copyfmt_event in the named paragraph.

66

257. STL functional object and iterator inheritance.

Section: 20.3.1 lib.baseand 24.3.2 |ib.iterator.basic Status: NAD Submitter: Robert Dick
<dickrp@venus.eePrinceton.EDU> Date: 17 Aug 2000

According to the November 1997 Draft Standard, the results of deleting an object of aderived dlass through a pointer to an
object of its base class are undefined if the base class has anon-virtua destructor. Therefore, it is potentialy dangerousto
publicly inherit from such base classes.

Defect:
The STL design encourages usersto publicly inherit from anumber of classes which do nothing but specify interfaces, and
which contain non-virtual destructors.

Attribution:
Wil Eversand William E. Kempf suggested this modification for functiona objects.

Proposed Resolution:
Proposed correction:

When abase dassin the andard library is useful only as an interface specifier, i.e., when an object of the classwill never
be directly instantiated, specify that the class contains a protected destructor. Thiswill prevent deletion through a pointer to
the base class without performance, or space pendties (on any implementation I'm aware of).

Asan example, replace...

tenpl ate <class Arg, class Result>
struct unary_function {
typedef Arg argument _type;
typedef Result result_type;
b

... with...
tenpl ate <class Arg, class Result>

struct unary_function {
typedef Arg argunment _t ype;

Library active issueslist

typedef Result result_type;
prot ect ed:
~unary_function() {}

}s

Affected definitions:
20.3.1 [lib.function.objects] -- unary_function, binary_function
24.32lib.iterator.basic] -- iterator

Rationale:

The standard is clear as written; thisis arequest for change, not adefect in the strict sense. The LWG had severd different
objections to the proposed change. Oneisthat it would prevent users from cregting objectsof type unary_f uncti on
andbi nary_functi on. Doing so can sometimes be legitimate, if users want to pass temporaries astraits or tag typesin
generic code.

258. Missing allocator requirement

Section: 20.1.5 lib.alocator.requirements Status: Open Submitter: Matt Austern Date: 22 Aug 2000

From lib-7752:

I've been assuming (and probably everyone el se has been assuming) that dlocator instances have a particular property, and
| don't think that property can be deduced from anything in Table 32.

| think we have to assume that alocator type converson isahomomorphism. That is, if x1 and x2 are of type X, where
X:vaue typeisT, and if type Y is X::template rebind<U>::other, then Y (x1) == Y (x2) if and only if x1 == x2.

Further discussion: Howard Hinant writes, in lib-7757:

I think | can provethat thisis not proveable by Table 32. And | agree it needsto be true except for the "and only if". If x1
1=x2, | seeno reason why it can't betruethat Y (x1) == Y (x2). Admittedly | can't think of apractical instance wherethis
would happen, or be valuable. But | dso don't see aneed to add that extraredtriction. | think we only need:

if (xXL==x2) then Y(x1) ==Y (X2

If we decide that == on dlocatorsistrangtive, then | think | can prove the above. But | don't think == is necessarily
trangitive on dlocators. That is:

Given x1 == x2 and x2 == x3, this does not mean x1 == x3.
Example

x1 can dedllocate pointers from: x1, X2, x3
X2 can dedllocate pointers from; x1, X2, x4
x3 can dedllocate pointers from: x1, X3
x4 can dedll ocate pointers from: x2, x4

x1==x2, and X2 == x4, but x1 |=x4

Proposed Resolution:

Library active issueslist 68

[Toronto: LWG members offered multiple opinions. One opinion isthat it should not be required thatx1 == x2 implies
Y(x1) == Y(x2),andthatitshould not even berequiredthat X(x1) == x1.Another opinionisthat the secondline

fromthe bottomin table 32 already implies the desired property. Thisissue should be considered in light of other issues
related to allocator instances.]

259. basic_string::operator[] and const correctness

Section: 21.3.4 lib.gtring.access Status: Review Submitter: Chris Newton <chrisnewton@btinternet.com> Date:
Paraphrased from a message that Chris Newton posted to comp.std.c++:

The standard's description of basi ¢_stri ng<>:: oper at or [] seemsto violate const correctness.

The standard (21.3.4/1) saysthat "If pos < si ze(),returnsdat a() [pos] ." Thetypesdon't work. Thereturn vaue of
dat a() isconst char T*, butoper at or[] hasanon-const version whosereturntypeisr ef er ence.

Proposed Resolution:

In section 21.34, paragraph 1, change"dat a() [pos] "to"* (begi n() + pos)".

260. Inconsistent return typeof i stream iterator:: operator++(int)

Section: 24.5.1.2 lib.istream.iterator.opsStatus: Reedy Submitter: Martin Sebor Date: 27 Aug 2000

The synopsis of istream _iterator::operator++(int) in 24.5.1 shows it as returning the iterator by value. 24.5.1.2, p5 shows
the same operator asreturning the iterator by reference. That'sincorrect given the Effects clause below (since atemporary
isreturned). The &' is probably just atypo.

Proposed Resolution:

Changethe declarationin 24.5.1.2, p5 from

istream.iterator<T,charT,traits, Di stance>& operator++(int);
to
istream.iterator<T,charT,traits, Di stance> operator++(int);

(that is, removethe "&).

261. Missing description of i stream iterator::operator!=

Section: 24.5.1.2 lib.istream.iterator.opsStatus: Reedy Submitter: Martin Sebor Date: 27 Aug 2000

24.5.1, p3 liststhe synopsisfor

Library active issueslist

tenplate <class T, class charT, class traits, class Distance>
bool operator!=(const istreamiterator<T,charT,traits, Di stance>& x,
const istream.iterator<T,charT,traits, Distance>& y);

but there is no description of what the operator does (i.e., no Effects or Returns clause) in 24.5.1.2.
Proposed Resolution:

Add paragraph 7 to the end of section 24.5.1.2 with the following text:

tenplate <class T, class charT, class traits, class Distance>
bool operator!=(const istreamiterator<T,charT,traits, Distance>& X,
const istreamiterator<T,charT,traits, Distance>& y);

-7- Returns: 1(x ==vy).

69

262. Bitmask operator ~ specified incorrectly

Section: 17.3.2.1.2 lib.bitmask.types Status: Reedy Submitter: Beman Dawes Date: 03 Sep 2000
The ~ operation should be gpplied after the cast toint_type.

Proposed Resolution:

Change 17.3.2.1.2 [lib.bitmask.types] operator~ from:

bi t mask operator~ (bitmsk X)
{ return static_cast< bitmask>(static_cast<int_type>(~ X)); }

to:

bi t mask operator~ (bitmask X)
{ return static_cast< bitmask>(~static_cast<int_type>(X)); }

263. Severerestriction on basi c_st ri ng reference counting

Section: 21.3 lib.basc.gring Status: Reedy Submitter: Kevlin Henney <kevlin@curbralan.com> Date: 04 Sep 2000

Thenotein paragraph 6 suggests that the invalidation rules for references, pointers, and iteratorsin paragraph 5 permit a
reference- counted implementation (actualy, according to paragraph 6, they permit a"'reference counted implemenation”,
but thisisaminor editorid fix).

However, the last sub-bullet is so worded as to make a reference-counted implementation unvigble. In the following
example none of the conditionsfor iterator invalidation are stisfied:

[first exanple: "****x*kxkxkxkxkxkxxx" gshould be printed twi ce

Library active issueslist

string original = "sonme arbitrary text", copy = original;
const string & alias = original;

string::const _iterator i = alias.begin(), e = alias.end();

for(string::iterator j = original.begin(); j !'= original.end(); ++j)
o=y

while(i = e)

cout << *j ++;
cout << endl;
cout << original << endl;

Smilarly, in thefollowing example:

/'l second exanple: "some arbitrary text" should be printed out
string original = "sonme arbitrary text", copy = original;
const string & alias = original;

string::const_iterator i = alias.begin();
original.begin();
while(i !'= alias.end())

cout << *j++;

| have tested this on three string implementations, two of which were reference counted. The reference-counted
implementations gave "surprising behaviour" because they invalidated iterators on thefirst cal to non-const beginsince
congtruction. The current wording does not permit such invalidation because it does not take into account thefirgt call since
congtruction, only thefirst call since various member and non-member function cdls.

Proposed Resolution:
Change the following sentencein 21.3 paragraph 5 from

Subsequent to any of the above uses except the forms of insert() and erase() which return iterators, the
firgt call to non-const member functions operator|] (), at(), begin(), rbegin(), end(), or rend().

to

Following congtruction or any of the above uses, except the forms of insert() and erase() which return
iterators, thefirgt cal to non- const member functions operator[](), at(), begin(), rbegin(), end(), or rend().

264. Associativecontainer i nsert (i, j) complexity requirementsare not feasible.

Section: 23.1.2 lib.asociativeregmts Status: Review Submitter: John Potter Date: 07 Sep 2000

Table 69 requireslinear timeif [i,) is sorted. Sorted is necessary but not sufficient. Consider inserting a sorted range of
even integersinto a set<int> containing the odd integersin the same range.

Related issue: 102

Proposed Resolution:

Library active issueslist

In Table 69, in section 23.1.2, change the complexity clause for insertion of arangefrom "N log(sze() + N) (N isthe
distance fromi toj) in generd; lineer if [i, j) is sorted according to value_comp()” to "N log(size() + N, where N isthe
distancefromitoj".

Rationale:

Tedting for valid insertions could be less efficient than simply inserting the dements when the range is not both sorted and
between two adjacent existing dements; this could bea QO issue.

The LWG considered two other options: (a) specifying that the complexity waslineer if [i, j) is sorted according to
vaue_comp() and between two adjacent existing dements; or (b) changing to Klog(size() + N) + (N - K) (N isthe distance
fromi toj and K isthe number of eementswhich do not insart immediately after the previous dement from [i, j) indluding
thefirst). The LWG felt that, Since we can't guarantee linear time complexity whenever the range to beinserted is sorted,
it's more trouble than it'sworth to say that it'slinear in some specia cases.

71

265. std::pair::pair() effectsoverly restrictive
Section: 20.2.2 lib.pairs Status: Ready Submitter: Martin Sebor Date: 11 Sep 2000

| don't see any requirements on the types of the eements of the std::pair container in 20.2.2. From the descriptions of the
member functionsit appearsthat they must at least satisfy the requirements of 20.1.3 [lib.copyconstructible] and 20.1.4
[lib.default.con.reqg], and in the case of the [in]equality operators aso the requirements of 20.1.1 [lib.equalitycomparable]
and 20.1.2 [lib.lessthancomparabl€].

| believe that the the CopyConstructible requirement is unnecessary in the case of 20.2.2, p2.
Proposed Resolution:
Change the Effects dausein 20.2.2, p2 from

-2- Effects: Initidizesitsmembersasif implemented: pai r () : first(T1()), second(T2())
{}

to
-2- Effects: Initidizesitsmembersasif implemented: pai r () : first(), second() {}
Rationale:

The existing specification of pair's congtructor appearsto be a historica artifact: there was concern that pair'smembersbe

properly zero-initiaized when they are built-in types. At one time there was uncertainty about whether they would be zero-

initialized if the default constructor was written the obvious way. The core language was clarified sometime ago, however,
and thereis no longer any doubt that the straightforward implementation is correct.

266. bad_exception::~bad_exception() missing Effects clause

Section: 18.6.2.1 lib.bad.exception Status: Review Submitter: Martin Sebor Date: 24 Sep 2000

Library active issues list 72

The synopsisfor std::bad_exception lists the function ~bad_exception() but there is no description of what the function
does (the Effects dause ismissing).

Proposed Resolution:

Remove the destructor from the class synopsesof bad_al | oc (18.4.2.1]ib.bad.dloc), bad_cast (18.5.2 lib.bad.cast),
bad_t ypei d (185.3lib.bad.typeid), andbad_except i on (18.6.2.1 lib.bad.exception).

Rationale

Thisisagenerd problem with the exception classesin clause 18. The proposed resolution isto remove the destructors from
the class synopses, rather than to document the destructors behavior, becuase removing them is more consistent with how
exception classes are described in dause 19.

267. interaction of strstreambuf::overflow() and seekoff()

Section: D.7.1.3 depr.dratreambuf.virtuals Status: Open Submitter: Martin Sebor Date: 5 Oct 2000

It appearsthat the interaction of the stratreambuf members overflow() and seekoff() can lead to undefined behavior in cases
where defined behavior could reasonably be expected. The following program demonstrates this behavior:

#i ncl ude <strstreanr

int main ()

{
std::strstreanbuf sb;
sh.sputc ('c');
sb. pubseekoff (-1, std::ios::end, std::ios::in);
return ! ('c' == sh.sgetc ());
}

D.7.1.1, plinitidizes strstreambuf with acal to basic_streambuf<>(), which in turn setsdl pointersto 0in 27.5.2.1, p1.

27.5.2.2.5, p1 saysthat basic_streambuf<>::sputc(c) cals overflow(traits::to_int_type(c)) if awrite position isn't available
(itisn't dueto the above).

D.7.1.3, p3 saystha stratreambuf::overflow(off, ..., ios:in) makes at least one write position available (i.e, it dlowsthe
function to make any positive number of write positions available).

D.7.1.3, p13 computes newoff = seekhigh - eback(). In D.7.1, p4 we see seekhigh = epptr() ? epptr() : egptr(), or seekhigh =
epptr() in this case. newoff is then epptr() - eback().

D.7.1.4, p14 sets gptr() so that gptr() == eback() + newoff + off, or gptr() == epptr() + off holds.

If drstreambuf::overflow() made exactly one write position available then gptr() will be st to just before epptr(), and the
program will return O. Buf if the function made more than one write position available, epptr() and gptr() will both point
past pptr() and the behavior of the program is undefined.

Proposed Resolution:

Library active issues list 73

[Toronto: Dietmar will provide wording for a fix. The general outline isto describe the seek in terms of the put pointer,
rather than using seekhigh.]

268. Typoin locale synopsis
Section: 22.1.1liblocde Status. Ready Submitter: Martin Sebor Date: 5 Oct 2000

The synopsis of the class std::locaein 22.1.1 contains two typos. the semicolons after the declarations of the default ctor
locde:locae() and the copy ctor locde:locae(const locde&) are missing.

Proposed Resolution:

Add the missing semicolons, i.e, change

/1 construct/copy/destroy:
| ocal e() throw()
| ocal e(const | ocal e& other) throw()
inthesynopsisin 22.1.1 to

/1l construct/copy/destroy:
| ocal e() throw();
| ocal e(const | ocal e& other) throw();

269. cstdarg and unnamed parameters

Section: 18.7 lib.support.runtime Status. NAD Submitter: J Stephen Adamczyk Date: 10 Oct 2000

One of our customers asks whether thisisvaid C++:

#i ncl ude <cstdarg>
voi d bar(const char *, va_list);

voi d
foo(const char *file, const char *, ...)

{
va_list ap;
va_start(ap, file);
bar(file, ap);
va_end(ap);

}

Theissue being whether it isvdid to use cstdarg when the fina parameter beforethe”..." isunnamed. ctdarg is, asfar as|
can tell, inherited verbatim from the C standard. and the definition there (7.8.1.1 in the |SO C89 standard) refersto "the
identifier of the rightmost parameter”'. What hgppens when there is no such identifier?

My persond opinion isthat this should be alowed, but some tweak might be required in the C++ standard.

Rationale:

Library active issueslist 74

Not adefect, the C and C++ standards are clear. It isimpossible to use varargsiif the parameter immediately before”..." has
no name, because that is the parameter that must be passed to va_gtart. The example given above is broken, becuase
va_dart isbeing passed the wrong parameter.

Thereisno support for extending varargsto provide additiona functionality beyond what's currently there. For reasons of
C/C++ compatibility, it is especidly important not to make gratuitous changesin this part of the C++ standard. The C
committee has aready been requested not to touch this part of the C standard unless necessary.

270. Binary search requirementsoverly strict
Section: 25.3.3lib.dg.binary.search Status. Open Submitter: Matt Austern Date: 18 Oct 2000

Each of the four binary search dgorithms (lower_bound, upper_bound, equa_range, binary_search) has aform that alows
the user to pass a comparison function object. According to 25.3, paragraph 2, that comparison function object hasto bea
strict week ordering.

Thisrequirement is dightly too strict. Suppose we are searching through a sequence containing objects of type X, where X
is some large record with an integer key. We might reasonably want to look up arecord by key, in which case wewould
want to write something like this:

struct key_conp {
bool operator()(const X& x, int n) const {
return x. key() < n;
}
}

std:: |l ower_bound(first, last, 47, key_conmp());
key_compisnot agtrict weak ordering, but there is no reason to prohibit its usein lower_bound.

Theres no difficulty inimplementing lower_bound so that it alows the use of something like key_comp. (It will probably
work unless an implementor takes specid painsto forbid it.) What's difficult is formulating language in the standard to
specify what kind of comparison function is acceptable. We need a notion that's dightly more generd than that of adrict
wesk ordering, one that can encompass a comparison function that involves different types. Expressing that notion may be
complicated.

Hereisafirg attempt: the comparison function comp must be equivaent to a comparison function of the form C(pi(x), y),
and [firg, last) must be sorted in ascending order by the comparison function C(pi(x), pi(y)), where U isasynonym for
iterator_traits<Forwarditerator>::vaue type, x isavaueof typeU, y isavdueof type T, Cisastrict weak ordering whose
vauetypeisT, and pi isahomomorphisnfromU to T.

In this notation, the exigting language refers to the special case where T and U are the same type and where pi is the identity
function.

Proposed Resolution:

[Toronto: theissueisstill open; there were multiple opinionsin the LWG, and several new questions wer e raised.

Do we really want to specify what ordering the implementor must use when calling the function object? The
standard gives specific expressions when describing these algorithms, but it also says that other expressions(with
different argument order) are equivalent.

Library active issues list 75

If we are specifying ordering, note that the standard uses both orderings when describingequal _r ange.

Are we talking about requiring these algorithms to work properly when passed a binary function object whosetwo
argument types are not the same, or are we talking about requirements when they are passed a binary function
object with several overloaded versions of oper at or () ?

The definition of a strict weak ordering does not appear to give any guidance onissues of overloading; it only

discusses expressions, and all of the values in these expressions are of the same type. Some clarification would
seemto bein order.

These issues should be considered together. Andy, Beman, Bill, and Howard areinterested.]

271. basic_iostream missing typedefs
Section: 27.6.1.5 lib.iosreamnclass Status: New Submitter: Martin Sebor Date: 02 Nov 2000

Classtemplate basic_iostream has no typedefs. The typedefsit inherits from its base classes can't be used, since (for
example) basic_iostream<T>::traits typeisambiguous.

Proposed Resolution:

Add the following to basic_iostream’s class synopsisin 27.6.1.5 lib.iostreamclass, immediately after publ i c:

/1 types:

typedef charT char _type;
typedef typenane traits::int_type int_type;
typedef typenane traits::pos_type pos_type;
typedef typenane traits::off_type off_type;
typedef traits traits_type;

272. Missing parentheses around subexpression
Section: 27.4.4.3libiodateflags Status: New Submitter: Date: Martin Sebor

27.4.4.3, p4 says about the postcondition of the function: If rdbuf()!=0 then state == rdstate(); otherwise
rdstate()==dtatejios_base::badbit.

The expression on the right-hand-side of the operator==() needs to be parenthesized in order for the whole expression to
ever evduate to anything but non-zero.

Proposed Resolution:

Add parentheses like so: rdstate()==(datelios_base::badhit).

273. Missingios base qualification on members of a dependent class

Section: 27 lib.input.output Status: New Submitter: Martin Sebor Date: 02 Nov 2000

Library active issueslist

275242, p4,and 27.8.1.6, p2, 27.8.1.7, p3, 27.8.1.9, p2, 27.8.1.10, p3 refer to in and/or out w/o ios base:: qudification.
That'sincorrect since the names are members of a dependent base class (14.6.2 [temp.dep]) and thus not visible,

Proposed Resolution:

Qudify the names with the name of the class of which they are members, i.e,, ios base

274. amissng/impossible allocator requirement

Section: 20.1.5 lib.alocator.requirements Status: New Submitter: Martin Sebor Date: 02 Nov 2000

| seethat table 31in 20.1.5, p3 dlows T in std::allocator<T> to be of any type. But the synopsisin 20.4.1 cdlsfor

dlocator<>::addresy() to be overloaded on reference and const_reference, which isill-formed for al T = const U. In other
words, thiswon't work:

template class std::allocator<const int>;

The obvious solution isto disalow specidizations of dlocators on congt types. However, while containers dementsare
required to be assignable (which rules out speciaizations on const T's), | think that allocators might perhaps be potentially

useful for const valuesin other contexts. So if alocators are to alow const types apartial specialization of
std::allocator<const T> would probably have to be provided.

Proposed Resolution:
Proposed resdution 1

Add the following definition of apartiad specidization immediately below the definition of the primary templatein 20.4.1:

tenpl ate <class T>

class allocator<const T> {

public:
typedef size_t si ze_type;
typedef ptrdiff_t difference_type;
typedef const T* pointer;
typedef const T* const_pointer;
typedef const T& reference;
typedef const T& const_reference;
typedef const T value_type;

tenpl ate <class U> struct rebind { typedef allocator<U> other; };

allocator() throw();

al | ocator(const allocator& throw();

tenpl ate <class U> allocator(const allocator<U>& throw);

~al l ocator() throw();

const _poi nter address(const_reference x) const;

const _pointer allocate(size_type, allocator<void>::const_pointer hint =
0);

voi d deal | ocate(const_pointer p, size_type n);

size_type max_size() const throw();

Library active issueslist

voi d construct(const_pointer p, const_reference val);
voi d destroy(const_pointer p);

b
Proposed resolution 2
Changethetext in row 1, column 2 of table 32 in 20.1.5, p3 from
any type
to

any non-const type

275. Wrong typein num_get::get() overloads

Section: 22.2.2.1.1 libfacet.num.get. nembers Status: New Submitter: Matt Austern Date: 02 Nov 2000

In22.2.2.1.1, we have alist of overloads for num_get<>::get(). There are eight overloads, dl of which areidentical except

for the last parameter. The overloads are;

long&

unsigned short&
unsigned int&
unsigned long&
short&

doublet.

long doubleX
void*&

Thereisasmilar lig, in 22.2.2.1.2, of overloads for num_get<>::do_get(). Inthis lig, the last parameter has the types:.

long&

unsigned short&
unsgned int&
unsigned long&
floa&

double&

long doubleX
void*&

Thesetwo ligtsare not identica. They should be, since get issupposedto cal do__get with exactly the argumentsit was

given.
Proposed Resolution:

In 22.2.2.1.1 lib.facet.num.get. members, change

iter _type get(iter_type in, iter_type end, ios_base& str,
i 0s_base::iostate& err, short& val) const;

Library active issues list 78

to

iter _type get(iter_type in, iter_type end, ios_base& str,
i os_base::iostate& err, float& val) const;

276. Assignablerequirement for container valuetype overly strict

Section: 23.1 lib.contaner.requirements Status: New Submitter: Peter Dimov Date: 07 Nov 2000

23.1/3 states that the objects stored in a container must be Assignable. 23.3.1/2 lib.map states that map satisfiesdll

requirements for a container, while in the same time defining vaue_type as pair<const Key, T> - atype that is not
Assgnable.

It should be noted that there exists a vaid and non-contradictory interpretation of the current text. The wording in 23.1/3
avoids mentioning vaue_type, referring instead to "objects stored in acontainer." One might argue that map does not store
objects of type map::vaue_type, but of map::mapped_typeinstead, and that the Assgnable requirement appliesto
map::mapped_type, not map::value_type.

However, this makes map aspecia case (other containers store objects of type vaue_type) and the Assignable requirement
isneedlesdy redrictivein generd.

For example, the proposed resolution of active library issue 103 isto make set::iterator a constant iterator; this meansthat
no set operations can exploit the fact that the stored objects are Assignable.

Thisisrelated to, but dightly broader than, closed issue 140.
Proposed Resolution:

Remove the requirement that the objects stored in a container be Assignable from 23.1/3 and reintroduce it on a case by
case badis (for vector and deque)

Ratiionde

list, set, multiset, map, multimap are able to store non-Assignables.

277. Normative encouragement in allocator requirementsunclear

Section: 20.1.5 lib.dlocator.requirements Status: New Submitter: Matt Austern Date: 07 Nov 2000

In 20.1.5, paragraph 5, the standard says that "I mplementors are encouraged to supply libraries that can accept alocators
that encapsulate more genera memory models and thet support non-equa ingtances™ Thisisintended as normetive
encouragement to standard library implementors. However, it is possible to interpret this sentence as applying to
nonstandard third-party libraries.

Proposed Resolution:

In 20.1.5, paragraph 5, change"Implementors’ to "Implementors of the library described in this Internationa Standard”.

