
C++ Standard Library Closed Issues List (Revision 15)
Reference ISO/IEC IS 14882:1998(E)

Also see:

! Table of Contents including both active and closed issues.
! Index by Section including both active and closed issues.
! Index by Status including both active and closed issues.
! Library Active Issues List
! Library Defect Report List

This document contains only library issues which have been closed by the Library Working Group as duplicates or not
defects. That is, issues which have a status of Dup or NAD. See "C++ Standard Library Active Issues List" for active issues
and more information. See "C++ Standard Library Defect Report List" for issues considered defects. The introductory
material in that document also applies to this document.

Revision History
! R15: pre-Toronto mailing. Formatting changes only; no substantive changes.
! R14: post-Tokyo II mailing; reflects committee actions taken in Tokyo. (00-0020R1/N1243)
! R13: Unchanged from R12.
! R12: Add further rationale to issue 178.

Closed Issues

6. File position not an offset unimplementable

Section: 27.4.3 lib.fpos Status: NAD Submitter: Matt Austern Date: 15 Dec 97

Table 88, in I/O, is too strict; it's unimplementable on systems where a file position isn't just an offset. It also never says just
what fpos<> is really supposed to be. [Here's my summary, which Jerry agrees is more or less accurate. "I think I now know
what the class really is, at this point: it's a magic cookie that encapsulates an mbstate_t and a file position (possibly
represented as an fpos_t), it has syntactic support for pointer-like arithmetic, and implementors are required to have real, not
just syntactic, support for arithmetic." This isn't standardese, of course.]

Rationale:

Not a defect. The LWG believes that the Standard is already clear, and that the above summary is what the Standard in effect
says.

10. Codecvt<>::do unclear

Doc. no. J16/00-0037
WG21 N1260

Date: 07 Sep 2000
Project: Programming Language C++
Reply to: Matt Austern <austern@research.att.com>

Page 1 of 28Library Closed Issues List

Section: 22.2.1.5.2 lib.locale.codecvt.virtuals Status: Dup Submitter: Matt Austern Date: 14 Jan 98

Section 22.2.1.5.2 says that codecvt<>::do_in and do_out should return the value noconv if "no conversion was needed".
However, I don't see anything anywhere that defines what it means for a conversion to be needed or not needed. I can think
of several circumstances where one might plausibly think that a conversion is not "needed", but I don't know which one is
intended here.

Rationale:

Duplicate. See issue19.

12. Way objects hold allocators unclear

Section: 20.1.5 lib.allocator.requirements Status: NAD Submitter: Angelika Langer Date: 23 Feb 98

I couldn't find a statement in the standard saying whether the allocator object held by a container is held as a copy of the
constructor argument or whether a pointer of reference is maintained internal. There is an according statement for compare
objects and how they are maintained by the associative containers, but I couldn't find anything regarding allocators.

Did I overlook it? Is it an open issue or known defect? Or is it deliberately left unspecified?

Rationale:

Not a defect. The LWG believes that the Standard is already clear. See 23.1 paragraph 8 [lib.container.requirements].

43. Locale table correction

Section: 22.2.1.5.2 lib.locale.codecvt.virtuals Status: Dup Submitter: Brendan Kehoe Date: 1 Jun 98

Rationale:

Duplicate. See issue 33.

45. Stringstreams read/write pointers initial position unclear

Section: 27.7.3 lib.ostringstream Status: NAD Submitter: Matthias Mueller Date: 27 May 98

In a a comp.lang.c++.moderated Matthias Mueller wrote:

"We are not sure how to interpret the CD2 (see [lib.iostream.forward], [lib.ostringstream.cons], [lib.stringbuf.cons]) with
respect to the question as to what the correct initial positions of the write and read pointers of a stringstream should be."

"Is it the same to output two strings or to initialize the stringstream with the first and to output the second ?"

PJ Plauger, Bjarne Stroustrup, Randy Smithey, Sean Corfield, and Jerry Schwarz have all offered opinions; see reflector
messages lib-6518, 6519, 6520, 6521, 6523, 6524.

Rationale:

Page 2 of 28Library Closed Issues List

The LWG believes the Standard is correct as written. The behavior of stringstreams is consistent with fstreams, and there is a
constructor which can be used to obtain the desired effect. This behavior is known to be different from strstreams.

58. Extracting a char from a wide-oriented stream

Section: 27.6.1.2.3 lib.istream::extractors Status: NAD Submitter: Matt Austern Date:1 Jul 98

27.6.1.2.3 has member functions for extraction of signed char and unsigned char, both singly and as strings. However, it
doesn't say what it means to extract a char from a basic_streambuf<charT, Traits>.

basic_streambuf, after all, has no members to extract a char, so basic_istream must somehow convert from charT to signed
char or unsigned char. The standard doesn't say how it is to perform that conversion.

Rationale:

The Standard is correct as written. There is no such extractor and this is the intent of the LWG..

65. Underspecification of strstreambuf::seekoff

Section: D.7.1.3 depr.strstreambuf.virtuals Status: NAD Submitter: Matt Austern Date:18 Aug 98

The standard says how this member function affects the current stream position. (gptr or pptr) However, it does not say
how this member function affects the beginning and end of the get/put area.

This is an issue when seekoff is used to position the get pointer beyond the end of the current read area. (Which is legal. This
is implicit in the definition of seekhigh in D.7.1, paragraph 4.)

Rationale:

The LWG agrees that seekoff() is underspecified, but does not wish to invest effort in this deprecated feature.

67. Setw useless for strings

Section: 21.3.7.9 lib.string.io Status: Dup Submitter: Steve Clamage Date: 9 Jul 98

In a comp.std.c++ posting Michel Michaud wrote: What should be output by :

 string text("Hello");
 cout << '[' << setw(10) << right << text << ']';

Shouldn't it be:

 [Hello]

Another person replied: Actually, according to the FDIS, the width of the field should be the minimum of width and the
length of the string, so the output shouldn't have any padding. I think that this is a typo, however, and that what is wanted is
the maximum of the two. (As written, setw is useless for strings. If that had been the intent, one wouldn't expect them to have
mentioned using its value.)

Page 3 of 28Library Closed Issues List

It's worth pointing out that this is a recent correction anyway; IIRC, earlier versions of the draft forgot to mention formatting
parameters what soever.

Rationale:

Duplicate. See issue 25.

72. Do_convert phantom member function

Section: 22.2.1.5 lib.locale.codecvt Status: Dup Submitter: Nathan Myers Date: 24 Aug 98

In 22.2.1.5 par 3 lib.locale.codecvt, and in 22.2.1.5.2 par 8 lib.locale.codecvt.virtuals, a nonexistent member function
"do_convert" is mentioned. This member was replaced with "do_in" and "do_out", the proper referents in the contexts above.

Proposed Resolution:

Duplicate: see issue 24.

73. is_open should be const

Section: 27.8.1 lib.file.streams Status: NAD Submitter: Matt Austern Date: 27 Aug 98

Classes basic_ifstream, basic_ofstream, and basic_fstream all have a member function is_open. It should be a
const member function, since it does nothing but call one of basic_filebuf's const member functions.

Rationale:

Not a defect. This is a deliberate feature; const streams would be meaningless.

77. Valarray operator[] const returning value

Section: 26.3.2.3 [lib.valarray.access] Status: NAD Future Submitter: Levente Farkas Date: 9 Sep 98

valarray:

 T operator[] (size_t) const;

why not

 const T& operator[] (size_t) const;

as in vector ???

One can't copy even from a const valarray eg:

 memcpy(ptr, &v[0], v.size() * sizeof(double));

[I] find this bug in valarray is very difficult.

Page 4 of 28Library Closed Issues List

Rationale:

The LWG believes that the interface was deliberately designed that way. That is what valarray was designed to do; that's
where the "value array" name comes from. LWG members further comment that "we don't want valarray to be a full STL
container." 26.3.2.3 lib.valarray.access specifies properties that indicate "an absence of aliasing" for non-constant arrays;
this allows optimizations, including special hardware optimizations, that are not otherwise possible.

81. Wrong declaration of slice operations

Section: 26.3.5 lib.template.slice.array, 26.3.7 lib.template.gslice.array, 26.3.8, 26.3.9 Status: NAD Submitter: Nico
Josuttis Date: 29 Sep 98

Isn't the definition of copy constructor and assignment operators wrong? Instead of

 slice_array(const slice_array&);
 slice_array& operator=(const slice_array&);

IMHO they have to be

 slice_array(const slice_array<T>&);
 slice_array& operator=(const slice_array<T>&);

Same for gslice_array.

Rationale:

Not a defect. The Standard is correct as written.

82. Missing constant for set elements

Section: 23.1.2 lib.associative.reqmts Status: NAD Submitter: Nico Josuttis Date: 29 Sep 98

Paragraph 5 specifies:

 For set and multiset the value type is the same as the key type. For map and multimap it is equal to pair<const Key, T>.

Strictly speaking, this is not correct because for set and multiset the value type is the same as the constant key type.

Rationale:

Not a defect. The Standard is correct as written; it uses a different mechanism (const &) for set and multiset. See issue
103 for a related issue.

84. Ambiguity with string::insert()

Section: 21.3.5 lib.string.modifiers Status: NAD Future Submitter: Nico Josuttis Date: 29 Sep 98

 If I try

Page 5 of 28Library Closed Issues List

 s.insert(0,1,' ');

 I get an nasty ambiguity. It might be

 s.insert((size_type)0,(size_type)1,(charT)' ');

which inserts 1 space character at position 0, or

 s.insert((char*)0,(size_type)1,(charT)' ')

which inserts 1 space character at iterator/address 0 (bingo!), or

 s.insert((char*)0, (InputIterator)1, (InputIterator)' ')

which normally inserts characters from iterator 1 to iterator ' '. But according to 23.1.1.9 (the "do the right thing" fix) it is
equivalent to the second. However, it is still ambiguous, because of course I mean the first!

Rationale:

Not a defect. The LWG believes this is a "genetic misfortune" inherent in the design of string and thus not a defect in the
Standard as such .

85. String char types

Section: 21 lib.strings Status: NAD Submitter: Nico Josuttis Date: 29 Sep 98

The standard seems not to require that charT is equivalent to traits::char_type. So, what happens if charT is not equivalent to
traits::char_type ?

Rationale:

There is already wording in 21.1 paragraph 3 (lib.char.traits) that requires them to be the same.

87. Error in description of string::compare()

Section: 21.3.6.8 lib.string::compare Status: Dup Submitter: Nico Josuttis Date: 29 Sep 98

The following compare() description is obviously a bug:

 int compare(size_type pos, size_type n1,
 charT *s, size_type n2 = npos) const;

because without passing n2 it should compare up to the end of the string instead of comparing npos characters (which throws
an exception)

Rationale:

Duplicate; see issue 5.

Page 6 of 28Library Closed Issues List

88. Inconsistency between string::insert() and string::append()

Section: 21.3.5.4 lib.string::insert, 21.3.5.2 lib.string::append Status: NAD Future Submitter: Nico Josuttis Date: 29 Sep
98

Why does

 template<class InputIterator>
 basic_string& append(InputIterator first, InputIterator last);

return a string, while

 template<class InputIterator>
 void insert(iterator p, InputIterator first, InputIterator last);

returns nothing ?

Rationale:

The LWG believes this inconsistency is not sufficiently serious to constitute a defect.

89. Missing throw specification for string::insert() and string::replace()

Section: 21.3.5.4 lib.string::insert, 21.3.5.6 lib.string::replace Status: Dup Submitter: Nico Josuttis Date: 29 Sep 1998

All insert() and replace() members for strings with an iterator as first argument lack a throw specification. The throw
specification should probably be: length_error if size exceeds maximum.

Rationale:

Considered a duplicate because it will be solved by the resolution of issue 83.

93. Incomplete Valarray Subset Definitions

Section: 26.3 lib.numarray Status: NAD Future Submitter: Nico Josuttis Date: 29 Sep 1998

You can easily create subsets, but you can't easily combine them with other subsets. Unfortunately, you almost always needs
an explicit type conversion to valarray. This is because the standard does not specify that valarray subsets provide the same
operations as valarrays.

For example, to multiply two subsets and assign the result to a third subset, you can't write the following:

va[slice(0,4,3)] = va[slice(1,4,3)] * va[slice(2,4,3)];

Instead, you have to code as follows:

va[slice(0,4,3)] = static_cast<valarray<double> >(va[slice(1,4,3)]) *
 static_cast<valarray<double> >(va[slice(2,4,3)]);

This is tedious and error-prone. Even worse, it costs performance because each cast creates a temporary objects, which could

Page 7 of 28Library Closed Issues List

be avoided without the cast.

Proposed resolution:

Extend all valarray subset types so that they offer all valarray operations.

Ratinale:

This is not a defect in the Standard; it is a request for an extension.

95. Members added by the implementation

Section: 17.4.4.4 lib.member.functions Status: NAD. Submitter: AFNOR Date: 7 Oct 98

In 17.3.4.4/2 vs 17.3.4.7/0 there is a hole; an implementation could add virtual members a base class and break user derived
classes.

Example:

// implementation code:
struct _Base { // _Base is in the implementer namespace
 virtual void foo ();
};
class vector : _Base // deriving from a class is allowed
{ ... };

// user code:
class vector_checking : public vector
{
 void foo (); // don't want to override _Base::foo () as the
 // user doesn't know about _Base::foo ()
};

Proposed Resolution:

Clarify the wording to make the example illegal.

Rationale:

This is not a defect in the Standard. The example is already illegal. See 17.4.4.4 lib.member.functions paragraph 2.

97. Insert inconsistent definition

Section: 23 lib.containers Status: NAD Future Submitter: AFNOR Date: 7 Oct 98

insert(iterator, const value_type&) is defined both on sequences and on set, with unrelated semantics: insert here
(in sequences), and insert with hint (in associative containers). They should have different names (B.S. says: do not abuse
overloading).

Rationale:

This is not a defect in the Standard. It is a genetic misfortune of the design, for better or for worse.

Page 8 of 28Library Closed Issues List

99. Reverse_iterator comparisons completely wrong

Section: 24.4.1.3.13 lib.reverse.iter.op<, etc. Status: NAD Submitter: AFNOR Date: 7 Oct 98

The <, >, <=, >= comparison operator are wrong: they return the opposite of what they should.

Note: same problem in CD2, these were not even defined in CD1
SGI STL code is correct; this problem is known since the Morristown meeting but there it was too late

Rationale:

This is not a defect in the Standard. A careful reading shows the Standard is correct as written. A review of several
implementations show that they implement exactly what the Standard says.

100. Insert iterators/ostream_iterators overconstrained

Section: 24.4.2 lib.insert.iterators, 24.5.4 lib.ostreambuf.iterator Status: NAD Submitter: AFNOR Date: 7 Oct 98

Overspecified For an insert iterator it, the expression *it is required to return a reference to it. This is a simple possible
implementation, but as the SGI STL documentation says, not the only one, and the user should not assume that this is the
case.

Rationale:

The LWG believes this causes no harm and is not a defect in the standard. The only example anyone could come up with
caused some incorrect code to work, rather than the other way around.

101. No way to free storage for vector and deque

Section: 23.2.4 lib.vector, 23.2.1 lib.deque Status: NAD Submitter: AFNOR Date: 7 Oct 98

Reserve can not free storage, unlike string::reserve

Rationale:

This is not a defect in the Standard. The LWG has considered this issue in the past and sees no need to change the Standard.
Deque has no reserve() member function. For vector, shrink-to-fit can be expressed in a single line of code (where v is
vector<T>):

vector<T>(v).swap(v); // shrink-to-fit v

104. Description of basic_string::operator[] is unclear

Section: 21.3.4 lib.string.access Status: NAD Submitter: AFNOR Date: 7 Oct 98

It is not clear that undefined behavior applies when pos == size () for the non const version.

Page 9 of 28Library Closed Issues List

Proposed Resolution:

Rewrite as: Otherwise, if pos > size () or pos == size () and the non-const version is used, then the behavior is undefined.

Rationale:

The Standard is correct. The proposed resolution already appears in the Standard.

105. fstream ctors argument types desired

Section: 27.8 lib.file.streams Status: NAD Future Submitter: AFNOR Date: 7 Oct 98

fstream ctors take a const char* instead of string.
fstream ctors can't take wchar_t

An extension to add a const wchar_t* to fstream would make the implementation non conforming.

Rationale:

This is not a defect in the Standard. It might be an interesting extension for the next Standard.

107. Valarray constructor is strange

Section: 26.3.2 lib.template.valarray Status: NAD Submitter: AFNOR Date: 7 Oct 98

The order of the arguments is (elem, size) instead of the normal (size, elem) in the rest of the library. Since elem often has an
integral or floating point type, both types are convertible to each other and reversing them leads to a well formed program.

The suggested resolution was:

Inverting the arguments could silently break programs. Introduce the two signatures (const T&, size_t) and
(size_t, const T&), but make the one we do not want private so errors result in a diagnosed access violation.
This technique can also be applied to STL containers.

Rationale:

The LWG believes that while the order of arguments is unfortunate, it does not constitute a defect in the standard. The LWG
believes that the proposed solution will not work for valarray<size_t> and perhaps other cases.

113. Missing/extra iostream sync semantics

Section: 27.6.1.1 lib.istream, 27.6.1.3 lib.istream.unformatted, para 36 Status: NAD Submitter: Steve Clamage Date: 13
Oct 98

In 27.6.1.1, class basic_istream has a member function sync, described in 27.6.1.3, paragraph 36.

Following the chain of definitions, I find that the various sync functions have defined semantics for output streams, but no
semantics for input streams. On the other hand, basic_ostream has no sync function.

Page 10 of 28Library Closed Issues List

The sync function should at minimum be added to basic_ostream, for internal consistency.

A larger question is whether sync should have assigned semantics for input streams.

Classic iostreams said streambuf::sync flushes pending output and attempts to return unread input characters to the source. It
is a protected member function. The filebuf version (which is public) has that behavior (it backs up the read pointer). Class
strstreambuf does not override streambuf::sync, and so sync can't be called on a strstream.

If we can add corresponding semantics to the various sync functions, we should. If not, we should remove sync from
basic_istream.

Rationale:

A sync function is not needed in basic_ostream because the flush function provides the desired functionality.

As for the other points, the LWG finds the standard correct as written.

116. bitset cannot be constructed with a const char*

Section: 23.3.5 lib.template.bitset Status: NAD Future Submitter: Judy Ward Date: 6 Nov 1998

The following code does not compile with the EDG compiler:

#include <bitset>
using namespace std;
bitset<32> b("111111111");

If you cast the ctor argument to a string, i.e.:

bitset<32> b(string("111111111"));

then it will compile. The reason is that bitset has the following templatized constructor:

template <class charT, class traits, class Allocator>
explicit bitset (const basic_string<charT, traits, Allocator>& str, ...);

According to the compiler vendor, Steve Adamcyk at EDG, the user cannot pass this template constructor a const char*
and expect a conversion to basic_string. The reason is "When you have a template constructor, it can get used in contexts
where type deduction can be done. Type deduction basically comes up with exact matches, not ones involving conversions."

I don't think the intention when this constructor became templatized was for construction from a const char* to no longer
work.

Proposed Resolution:

Add to 23.3.5 lib.template.bitset a bitset constructor declaration

explicit bitset(const char*);

and in Section 23.3.5.1 lib.bitset.cons add:

explicit bitset(const char* str);

Page 11 of 28Library Closed Issues List

Effects:
 Calls bitset((string) str, 0, string::npos);

Rationale:

Although the problem is real, the standard is designed that way so it is not a defect. Education is the immediate workaround.
A future standard may wish to consider the Proposed Resolution as an extension.

121. Detailed definition for ctype<wchar_t> specialization missing

Section: 22.1.1.1.1 lib.locale.category Status: NAD Submitter: Judy Ward Date: 15 Dec 1998

Section 22.1.1.1.1 has the following listed in Table 51: ctype<char> , ctype<wchar_t>.

Also Section 22.2.1.1 lib.locale.ctype says:

The instantiations required in Table 51 (22.1.1.1.1) namely ctype<char> and ctype<wchar_t> , implement
character classing appropriate to the implementation's native character set.

However, Section 22.2.1.3 lib.facet.ctype.special only has a detailed description of the ctype<char> specialization, not the
ctype<wchar_t> specialization.

Proposed Resolution:

Add the ctype<wchar_t> detailed class description to Section 22.2.1.3 lib.facet.ctype.special.

Rationale:

Specialization for wchar_t is not needed since the default is acceptable.

128. Need open_mode() function for file stream, string streams, file buffers, and string buffers

Section: 27.7 lib.string.streams and 27.8 lib.file.streams Status: NAD Future Submitter: Angelika Langer Date: 22 Feb
1999

The following question came from Thorsten Herlemann:

You can set a mode when constructing or opening a file-stream or filebuf, e.g. ios::in, ios::out, ios::binary, ...
But how can I get that mode later on, e.g. in my own operator << or operator >> or when I want to check
whether a file-stream or file-buffer object passed as parameter is opened for input or output or binary? Is there
no possibility? Is this a design-error in the standard C++ library?

It is indeed impossible to find out what a stream's or stream buffer's open mode is, and without that knowledge you don't
know how certain operations behave. Just think of the append mode.

Both streams and stream buffers should have a mode() function that returns the current open mode setting.

Proposed Resolution:

For stream buffers, add a function to the base class as a non-virtual function qualified as const to 27.5.2 lib.streambuf

Page 12 of 28Library Closed Issues List

 openmode mode() const;

 Returns the current open mode.

With streams, I'm not sure what to suggest. In principle, the mode could already be returned by ios_base, but the mode is
only initialized for file and string stream objects, unless I'm overlooking anything. For this reason it should be added to the
most derived stream classes. Alternatively, it could be added to basic_ios and would be default initialized in
basic_ios<>::init().

Rationale:

This might be an interesting extension for some future, but it is not a defect in the current standard. The Proposed Resolution
is retained for future reference.

130. Return type of container::erase(iterator) differs for associative containers

Section: 23.1.2 lib.associative.reqmts, 23.1.1 lib.sequence.reqmts Status: NAD Future Submitter: Andrew Koenig Date: 2
Mar 1999

Table 67 (23.1.1) says that container::erase(iterator) returns an iterator. Table 69 (23.1.2) says that in addition to this
requirement, associative containers also say that container::erase(iterator) returns void.

That's not an addition; it's a change to the requirements, which has the effect of making associative containers fail to meet the
requirements for containers.

Rationale:

The LWG believes this was an explicit design decision by Alex Stepanov driven by complexity considerations. It has been
previously discussed and reaffirmed, so this is not a defect in the current standard. A future standard may wish to reconsider
this issue.

131. list::splice throws nothing

Section: 23.2.2.4 lib.list.ops Status: NAD Submitter: Howard Hinnant Date: 6 Mar 99

What happens if a splice operation causes the size() of a list to grow beyond max_size()?

Rationale:

Size() cannot grow beyond max_size().

135. basic_iostream doubly initialized

Section: 27.6.1.5.1 lib.iostream.cons Status: NAD Submitter: Howard Hinnant Date: 6 Mar 99

-1- Effects Constructs an object of class basic_iostream, assigning initial values to the base classes by calling
basic_istream<charT,traits>(sb) (lib.istream) and basic_ostream<charT,traits>(sb) (lib.ostream)

Page 13 of 28Library Closed Issues List

The called for basic_istream and basic_ostream constructors call init(sb). This means that the basic_iostream's virtual base
class is initialized twice.

Proposed Resolution:

Change 27.6.1.5.1, paragraph 1 to:

-1- Effects Constructs an object of class basic_iostream, assigning initial values to the base classes by calling
basic_istream<charT,traits>(sb) (lib.istream).

Rationale:

The LWG agreed that the init() function is called twice, but said that this is harmless and so not a defect in the standard.

138. Class ctype_byname<char> redundant and misleading

Section: 22.2.1.4 lib.locale.ctype.byname.special Status: NAD Future Submitter: Angelika Langer Date: March 18, 1999

Section 22.2.1.4 lib.locale.ctype.byname.special specifies that ctype_byname<char> must be a specialization of the
ctype_byname template.

It is common practice in the standard that specializations of class templates are only mentioned where the interface of the
specialization deviates from the interface of the template that it is a specialization of. Otherwise, the fact whether or not a
required instantiation is an actual instantiation or a specialization is left open as an implementation detail.

Clause 22.2.1.4 deviates from that practice and for that reason is misleading. The fact, that ctype_byname<char> is specified
as a specialization suggests that there must be something "special" about it, but it has the exact same interface as the
ctype_byname template. Clause 22.2.1.4 does not have any explanatory value, is at best redundant, at worst misleading -
unless I am missing anything.

Naturally, an implementation will most likely implement ctype_byname<char> as a specialization, because the base class
ctype<char> is a specialization with an interface different from the ctype template, but that's an implementation detail and
need not be mentioned in the standard.

Rationale:

The standard as written is mildly misleading, but the correct fix is to deal with the underlying problem in the ctype_byname
base class, not in the specialization. See issue 228.

140. map<Key, T>::value_type does not satisfy the assignable requirement

Section: 23.3.1 lib.map Status: NAD Future Submitter: Mark Mitchell Date: 14 Apr 99

[lib.container.requirements]

expression return type pre/post-condition
------------- ----------- -------------------
X::value_type T T is assignable

[lib.map]

Page 14 of 28Library Closed Issues List

A map satisfies all the requirements of a container.

For a map<Key, T> ... the value_type is pair<const Key, T>.

There's a contradiction here. In particular, `pair<const Key, T>' is not assignable; the `const Key' cannot be assigned to. So,
map<Key, T>::value_type does not satisfy the assignable requirement imposed by a container.

[See 103 for the slightly related issue of modification of set keys]

Rationale:

The LWG believes that the standard is inconsistent, but that this is a design problem rather than a strict defect. May wish to
reconsider for the next standard.

143. C .h header wording unclear

Section: D.5 depr.c.headers Status: NAD Submitter: Christophe de Dinechin Date: 4 May 99

[depr.c.headers] paragraph 2 reads:

Each C header, whose name has the form name.h, behaves as if each name placed in the Standard library
namespace by the corresponding cname header is also placed within the namespace scope of the namespace
std and is followed by an explicit using-declaration (_namespace.udecl_)

I think it should mention the global name space somewhere... Currently, it indicates that name placed in std is also placed in
std...

I don't know what is the correct wording. For instance, if struct tm is defined in time.h, ctime declares std::tm. However, the
current wording seems ambiguous regarding which of the following would occur for use of both ctime and time.h:

// version 1:
namespace std {
 struct tm { ... };
}
using std::tm;

// version 2:
struct tm { ... };
namespace std {
 using ::tm;
}

// version 3:
struct tm { ... };
namespace std {
 struct tm { ... };
}

I think version 1 is intended.

[Kona: The LWG agreed that the wording is not clear. It also agreed that version 1 is intended, version 2 is not equivalent to
version 1, and version 3 is clearly not intended. The example below was constructed by Nathan Myers to illustrate why
version 2 is not equivalent to version 1.

Although not equivalent, the LWG is unsure if (2) is enough of a problem to be prohibited. Points discussed in favor of
allowing (2):

Page 15 of 28Library Closed Issues List

! It may be a convenience to implementors.
! The only cases that fail are structs, of which the C library contains only a few.

]

Example:

#include <time.h>
#include <utility>

int main() {
 std::tm * t;
 make_pair(t, t); // okay with version 1 due to Koenig lookup
 // fails with version 2; make_pair not found
 return 0;
}

The suggested resolution was:

Replace D.5 depr.c.headers paragraph 2 with:

Each C header, whose name has the form name.h, behaves as if each name placed in the
Standard library namespace by the corresponding cname header is also placed within the
namespace scope of the namespace std by name.h and is followed by an explicit using-
declaration (_namespace.udecl_) in global scope.

Rationale:

The current wording in the standard is the result of a difficult compromise which averted delay of the standard. Based on
discussions in Tokyo, it is clear that there is no still no consensus on stricter wording, so the issue has been closed. It is
suggested that users not write code that depends on Koenig lookup of C library functions.

145. adjustfield lacks default value

Section: 27.4.4.1 lib.basic.ios.cons Status: NAD Submitter: Angelika Langer Date: 12 May 99

There is no initial value for the adjustfield defined, although many people believe that the default adjustment were right. This
is a common misunderstanding. The standard only defines that, if no adjustment is specified, all the predefined inserters must
add fill characters before the actual value, which is "as if" the right flag were set. The flag itself need not be set.

When you implement a user-defined inserter you cannot rely on right being the default setting for the adjustfield. Instead, you
must be prepared to find none of the flags set and must keep in mind that in this case you should make your inserter behave
"as if" the right flag were set. This is surprising to many people and complicates matters more than necessary.

Unless there is a good reason why the adjustfield should not be initialized I would suggest to give it the default value that
everybody expects anyway.

Rationale:

This is not a defect. It is deliberate that the default is no bits set. Consider Arabic or Hebrew, for example. See 22.2.2.2.2
[lib.facet.num.put.virtuals] paragraph 19, Table 61 - Fill padding.

Page 16 of 28Library Closed Issues List

149. Insert should return iterator to first element inserted

Section: 23.1.1 lib.sequence.reqmts Status: NAD Future Submitter: Andrew Koenig Date: 28 Jun 99

Suppose that c and c1 are sequential containers and i is an iterator that refers to an element of c. Then I can insert a copy of
c1's elements into c ahead of element i by executing

c.insert(i, c1.begin(), c1.end());

If c is a vector, it is fairly easy for me to find out where the newly inserted elements are, even though i is now invalid:

size_t i_loc = i - c.begin();
c.insert(i, c1.begin(), c1.end());

and now the first inserted element is at c.begin()+i_loc and one past the last is at c.begin()+i_loc+c1.size().

But what if c is a list? I can still find the location of one past the last inserted element, because i is still valid. To find the
location of the first inserted element, though, I must execute something like

for (size_t n = c1.size(); n; --n)
 --i;

because i is now no longer a random-access iterator.

Alternatively, I might write something like

bool first = i == c.begin();
list<T>::iterator j = i;
if (!first) --j;
c.insert(i, c1.begin(), c1.end());
if (first)
 j = c.begin();
else
 ++j;

which, although wretched, requires less overhead.

But I think the right solution is to change the definition of insert so that instead of returning void, it returns an iterator that
refers to the first element inserted, if any, and otherwise is a copy of its first argument.

Rationale:

The LWG believes this was an intentional design decision and so is not a defect. It may be worth revisiting for the next
standard.

157. Meaningless error handling for pword() and iword()

Section:: 27.4.2.5 lib.ios.base.storage Status: Dup Submitter: Dietmar Kühl Date: 20 Jul 1999

According to paragraphs 2 and 4 of 27.4.2.5 (lib.ios.base.storage), the functions iword() and pword() "set the badbit
(which might throw an exception)" on failure. ... but what does it mean for ios_base to set the badbit? The state facilities
of the IOStream library are defined in basic_ios, a derived class! It would be possible to attempt a down cast but then it
would be necessary to know the character type used...

Rationale:

Page 17 of 28Library Closed Issues List

Duplicate. See issue 41.

162. Really "formatted input functions"?

Section:: 27.6.1.2.3 lib.istream::extractors Status: Dup Submitter: Dietmar Kühl Date: 20 Jul 1999

It appears to be somewhat nonsensical to consider the functions defined in the paragraphs 1 to 5 to be "Formatted input
function" but since these functions are defined in a section labeled "Formatted input functions" it is unclear to me whether
these operators are considered formatted input functions which have to conform to the "common requirements" from
27.6.1.2.1 (lib.istream.formatted.reqmts): If this is the case, all manipulators, not just ws, would skip whitespace unless
noskipws is set (... but setting noskipws using the manipulator syntax would also skip whitespace :-)

See also below for the same problem is formatted output

Rationale:

Duplicate. See issue 60.

163. Return of gcount() after a call to gcount

Section:: 27.6.1.3 lib.istream.unformatted Status: Dup Submitter: Dietmar Kühl Date: 20 Jul 99

It is not clear which functions are to be considered unformatted input functions. As written, it seems that all functions in
27.6.1.3 (lib.istream.unformatted) are unformatted input functions. However, it does not really make much sense to construct
a sentry object for gcount(), sync(), ... Also it is unclear what happens to the gcount() if eg. gcount(), putback(),
unget(), or sync() is called: These functions don't extract characters, some of them even "unextract" a character. Should
this still be reflected in gcount()? Of course, it could be read as if after a call to gcount() gcount() return 0 (the last
unformatted input function, gcount(), didn't extract any character) and after a call to putback() gcount() returns -1 (the
last unformatted input functon putback() did "extract" back into the stream). Correspondingly for unget(). Is this what is
intended? If so, this should be clarified. Otherwise, a corresponding clarification should be used.

Rationale:

Duplicate. See issue 60.

166. Really "formatted output functions"?

Section:: 27.6.2.5.3 lib.ostream.inserters Status: Dup Submitter: Dietmar Kühl Date: 20 Jul 1999

From 27.6.2.5.1 (lib.ostream.formatted.reqmts) it appears that all the functions defined in 27.6.2.5.3 (lib.ostream.inserters)
have to construct a sentry object. Is this really intended?

This is basically the same problem as the corresponding defect report for formatted input but for output instead of input.

Rationale:

Duplicate. See issue 60.

Page 18 of 28Library Closed Issues List

177. Complex operators cannot be explicitly instantiated

Section: 26.2.6 lib.complex.ops Status: NAD Submitter: Judy Ward Date: 2 Jul 99

A user who tries to explicitly instantiate a complex non-member operator will get compilation errors. Below is a simplified
example of the reason why. The problem is that iterator_traits cannot be instantiated on a non-pointer type like float, yet
when the compiler is trying to decide which operator+ needs to be instantiated it must instantiate the declaration to figure out
the first argument type of a reverse_iterator operator.

namespace std {
template <class Iterator>
struct iterator_traits
{
 typedef typename Iterator::value_type value_type;
};

template <class T> class reverse_iterator;

// reverse_iterator operator+
template <class T>
reverse_iterator<T> operator+
(typename iterator_traits<T>::difference_type, const reverse_iterator<T>&);

template <class T> struct complex {};

// complex operator +
template <class T>
complex<T> operator+ (const T& lhs, const complex<T>& rhs)
{ return complex<T>();}
}

// request for explicit instantiation
template std::complex<float> std::operator+<float>(const float&,
 const std::complex<float>&);

See also c++-stdlib reflector messages: lib-6814, 6815, 6816.

Rationale:

Implementors can make minor changes and the example will work. Users are not affected in any case.

According to John Spicer, It is possible to explicitly instantiate these operators using different syntax: change
"std::operator+<float>" to "std::operator+".

The proposed resolution of issue 120 is that users will not be able to explicitly instantiate standard library templates. If that
resolution is accepted then library implementors will be the only ones that will be affected by this problem, and they must use
the indicated syntax.

178. Should clog and cerr initially be tied to cout?

Section: 27.3.1 lib.narrow.stream.objects Status: NAD Submitter: Judy Ward Date: 2 Jul 99

Section 27.3.1 says "After the object cerr is initialized, cerr.flags() & unitbuf is nonzero. Its state is otherwise the same as
required for ios_base::init (lib.basic.ios.cons). It doesn't say anything about the the state of clog. So this means that calling
cerr.tie() and clog.tie() should return 0 (see Table 89 for ios_base::init effects).

Page 19 of 28Library Closed Issues List

Neither of the popular standard library implementations that I tried does this, they both tie cerr and clog to &cout. I would
think that would be what users expect.

Rationale:

The standard is clear as written.

27.3.1/5 says that "After the object cerr is initialized, cerr.flags() & unitbuf is nonzero. Its state is otherwise the same as
required for ios_base::init (27.4.4.1)." Table 89 in 27.4.4.1, which gives the postconditions of basic_ios::init(), says that tie()
is 0. (Other issues correct ios_base::init to basic_ios::init().)

180. Container member iterator arguments constness has unintended consequences

Section: 23 lib.containers Status: NAD Future Submitter: Dave Abrahams Date: 1 Jul 99

It is the constness of the container which should control whether it can be modified through a member function such as erase
(), not the constness of the iterators. The iterators only serve to give positioning information.

Here's a simple and typical example problem which is currently very difficult or impossible to solve without the change
proposed below.

Wrap a standard container C in a class W which allows clients to find and read (but not modify) a subrange of (C.begin(),
C.end()]. The only modification clients are allowed to make to elements in this subrange is to erase them from C through the
use of a member function of W.

The proposed resolution was:

Change all non-const iterator parameters of standard library container member functions to accept
const_iterator parameters. Note that this change applies to all library clauses, including strings.

For example, in 21.3.5.5 change:

 iterator erase(iterator p);

to:
 iterator erase(const_iterator p);

Rationale:

The issue was discussed at length. It was generally agreed that 1) There is no major technical argument against the change
(although there is a minor argument that some obscure programs may break), and 2) Such a change would not break const
correctness. The concerns about making the change were 1) it is user detectable (although only in boundary cases), 2) it
changes a large number of signatures, and 3) it seems more of a design issue that an out-and-out defect..

The LWG believes that this issue should be considered as part of a general review of const issues for the next revision of the
standard. Also see issue 200.

188. valarray helpers missing augmented assignment operators

Section: 26.3.2.6 lib.valarray.cassign Status: NAD Future Submitter: Gabriel Dos Reis Date: 15 Aug 1999

26.3.2.6 defines augmented assignment operators valarray<T>::op=(const T&), but fails to provide corresponding versions

Page 20 of 28Library Closed Issues List

for the helper classes. Thus making the following illegal:

#include <valarray>

int main()
{
std::valarray<double> v(3.14, 1999);

v[99] *= 2.0; // Ok

std::slice s(0, 50, 2);

v[s] *= 2.0; // ERROR
}

I can't understand the intent of that omission. It makes the valarray library less intuitive and less useful.

Rationale:

Although perhaps an unfortunate design decision, the omission is not a defect in the current standard. A future standard may
wish to add the missing operators.

190. min() and max() functions should be std::binary_functions

Section: 25.3.7 lib.alg.min.max Status: NAD Future Submitter: Mark Rintoul Date: 26 Aug 99

Both std::min and std::max are defined as template functions. This is very different than the definition of std::plus (and
similar structs) which are defined as function objects which inherit std::binary_function.

This lack of inheritance leaves std::min and std::max somewhat useless in standard library algorithms which require a
function object that inherits std::binary_function.

Rationale:

Although perhaps an unfortunate design decision, the omission is not a defect in the current standard. A future standard may
wish to consider additional function objects.

191. Unclear complexity for algorithms such as binary search

Section: 25.3.3 lib.alg.binary.search Status: NAD Submitter: Nico Josuttis Date: 10 Oct 99

The complexity of binary_search() is stated as "At most log(last-first) + 2 comparisons", which seems to say that the
algorithm has logarithmic complexity. However, this algorithms is defined for forward iterators. And for forward iterators,
the need to step element-by-element results into linear complexity. But such a statement is missing in the standard. The same
apllies to lower_bound(), upper_bound(), and equal_range().

However, strictly speaking the standard contains no bug here. So this might considered to be a clarification or improvement.

Rationale:

The complexity is expressed in terms of comparisons, and that complexity can be met even if the number of iterators
accessed is linear. Paragraph 1 already says exactly what happens to iterators.

Page 21 of 28Library Closed Issues List

192. a.insert(p,t) is inefficient and overconstrained

Section: 23.1.2 lib.associative.reqmts Status: NAD Future Submitter: Ed Brey Date: 6 Jun 99

As defined in 23.1.2, paragraph 7 (table 69), a.insert(p,t) suffers from several problems:

1. For a container with unique keys, only logarithmic complexity is guaranteed if no element is inserted, even though
constant complexity is always possible if p points to an element equivalent to t.

2. For a container with equivalent keys, the amortized constant complexity guarantee is only useful if no key equivalent to t
exists in the container. Otherwise, the insertion could occur in one of multiple locations, at least one of which would not be
right after p.

3. By guaranteeing amortized constant complexity only when t is inserted after p, it is impossible to guarantee constant
complexity if t is inserted at the beginning of the container. Such a problem would not exist if amortized constant complexity
was guaranteed if t is inserted before p, since there is always some p immediately before which an insert can take place.

4. For a container with equivalent keys, p does not allow specification of where to insert the element, but rather only acts as a
hint for improving performance. This negates the added functionality that p would provide if it specified where within a
sequence of equivalent keys the insertion should occur. Specifying the insert location provides more control to the user, while
providing no disadvantage to the container implementation.

The resolution proposed was:

In 23.1.2 lib.associative.reqmts paragraph 7, replace the row in table 69 for a.insert(p,t) with the following two
rows:

Rationale:

expression return
type pre/post-condition complexity

a.insert
(p,t)

iterator

inserts t if and only if there is no element with key equivalent to the
key of t in containers with unique keys; always inserts t in
containers with equivalent keys. always returns the iterator pointing
to the element with key equivalent to the key of t . iterator p is a
hint pointing to where the insert should start to search.

logarithmic in general,
but amortized constant
if t is inserted right
after p .

expression return
type pre/post-condition complexity

a_uniq.insert
(p,t)

iterator

inserts t if and only if there is no
element with key equivalent to the
key of t. returns the iterator pointing
to the element with key equivalent to
the key of t.

logarithmic in general, but
amortized constant if t is
inserted right before p or p
points to an element with key
equivalent to t.

a_eq.insert
(p,t)

iterator

inserts t and returns the iterator
pointing to the newly inserted
element. t is inserted right before p if
doing so preserves the container
ordering.

logarithmic in general, but
amortized constant if t is
inserted right before p.

Page 22 of 28Library Closed Issues List

Too big a change. Furthermore, implementors report checking both before p and after p, and don't want to change this
behavior.

194. rdbuf() functions poorly specified

Section: 27.4.4 lib.ios Status: NAD Submitter: Steve Clamage Date: 7 Sep 99

In classic iostreams, base class ios had an rdbuf function that returned a pointer to the associated streambuf. Each derived
class had its own rdbuf function that returned a pointer of a type reflecting the actual type derived from streambuf. Because in
ARM C++, virtual function overrides had to have the same return type, rdbuf could not be virtual.

In standard iostreams, we retain the non-virtual rdbuf function design, and in addition have an overloaded rdbuf function that
sets the buffer pointer. There is no need for the second function to be virtual nor to be implemented in derived classes.

Minor question: Was there a specific reason not to make the original rdbuf function virtual?

Major problem: Friendly compilers warn about functions in derived classes that hide base-class overloads. Any standard
implementation of iostreams will result in such a warning on each of the iostream classes, because of the ill-considered
decision to overload rdbuf only in a base class.

In addition, users of the second rdbuf function must use explicit qualification or a cast to call it from derived classes. An
explicit qualification or cast to basic_ios would prevent access to any later overriding version if there was one.

What I'd like to do in an implementation is add a using- declaration for the second rdbuf function in each derived class. It
would eliminate warnings about hiding functions, and would enable access without using explicit qualification. Such a
change I don't think would change the behavior of any valid program, but would allow invalid programs to compile:

 filebuf mybuf;
 fstream f;
 f.rdbuf(mybuf); // should be an error, no visible rdbuf

I'd like to suggest this problem as a defect, with the proposed resolution to require the equivalent of a using-declaration for
the rdbuf function that is not replaced in a later derived class. We could discuss whether replacing the function should be
allowed.

Rationale:

For historical reasons, the standard is correct as written. There is a subtle difference between the base class rdbuf() and
derived class rdbuf(). The derived class rdbuf() always returns the original streambuf, whereas the base class rdbuf()
will return the "current streambuf" if that has been changed by the variant you mention.

Permission is not required to add such an extension. See 17.4.4.4 [lib.member.functions].

196. Placement new example has alignment problems

Section: 18.4.1.3 lib.new.delete.placement Status: NAD Submitter: Herb Sutter Date: 15 Dec 98

The example in 18.4.1.3 [lib.new.delete.placement] paragraph 4 reads:

[Example: This can be useful for constructing an object at a known address:

Page 23 of 28Library Closed Issues List

 char place[sizeof(Something)];
 Something* p = new (place) Something();

end example]

This example has potential alignment problems.

Rationale:

Duplicate: see issue 114

203. basic_istream::sentry::sentry() is uninstantiable with ctype<user-defined type>

Section: 27.6.1.1.2 lib.istream::sentry Status: NAD Submitter: Matt McClure and Dietmar Kuehl Date: 1 Jan 2000

27.6.1.1.2 Paragraph 4 states:

To decide if the character c is a whitespace character, the constructor performs ''as if'' it executes the following
code fragment:

const ctype<charT>& ctype = use_facet<ctype<charT> >(is.getloc());
if (ctype.is(ctype.space,c)!=0)
// c is a whitespace character.

But Table 51 in 22.1.1.1.1 only requires an implementation to provide specializations for ctype<char> and ctype<wchar_t>.
If sentry's constructor is implemented using ctype, it will be uninstantiable for a user-defined character type charT, unless the
implementation has provided non-working (since it would be impossible to define a correct ctype<charT> specialization for
an arbitrary charT) definitions of ctype's virtual member functions.

It seems the intent the standard is that sentry should behave, in every respect, not just during execution, as if it were
implemented using ctype, with the burden of providing a ctype specialization falling on the user. But as it is written, nothing
requires the translation of sentry's constructor to behave as if it used the above code, and it would seem therefore, that sentry's
constructor should be instantiable for all character types.

Note: If I have misinterpreted the intent of the standard with respect to sentry's constructor's instantiability, then a note should
be added to the following effect:

An implementation is forbidden from using the above code if it renders the constructor uninstantiable for an
otherwise valid character type.

In any event, some clarification is needed.

Rationale:

It is possible but not easy to instantiate on types other than char or wchar_t; many things have to be done first. That is by
intention and is not a defect.

204. distance(first, last) when "last" is before "first"

Section: 24.3.4 lib.iterator.operations Status: NAD Submitter: Rintala Matti Date: 28 Jan 00

Page 24 of 28Library Closed Issues List

Section 24.3.4 describes the function distance(first, last) (where first and last are iterators) which calculates "the number of
increments or decrements needed to get from 'first' to 'last'".

The function should work for forward, bidirectional and random access iterators, and there is a requirement 24.3.4.5 which
states that "'last' must be reachable from 'first'".

With random access iterators the function is easy to implement as "last - first".

With forward iterators it's clear that 'first' must point to a place before 'last', because otherwise 'last' would not be reachable
from 'first'.

But what about bidirectional iterators? There 'last' is reachable from 'first' with the -- operator even if 'last' points to an earlier
position than 'first'. However, I cannot see how the distance() function could be implemented if the implementation does not
know which of the iterators points to an earlier position (you cannot use ++ or -- on either iterator if you don't know which
direction is the "safe way to travel").

The paragraph 24.3.4.1 states that "for ... bidirectional iterators they use ++ to provide linear time implementations".
However, the ++ operator is not mentioned in the reachability requirement. Furthermore 24.3.4.4 explicitly mentions that
distance() returns the number of increments _or decrements_, suggesting that it could return a negative number also for
bidirectional iterators when 'last' points to a position before 'first'.

Is a further requirement is needed to state that for forward and bidirectional iterators "'last' must be reachable from 'first' using
the ++ operator". Maybe this requirement might also apply to random access iterators so that distance() would work the same
way for every iterator category?

Rationale:

"Reachable" is defined in the standard in 24.1 paragraph 6 [lib.iterator.requirements]. The definition is only in terms of
operator++(). The LWG sees no defect in the standard.

205. numeric_limits unclear on how to determine floating point types

Section: 18.2.1.2 lib.numeric.limits.members Status: NAD Submitter: Steve Cleary Date: 28 Jan 00

In several places in 18.2.1.2 [lib.numeric.limits.members], a member is described as "Meaningful for all floating point types."
However, no clear method of determining a floating point type is provided.

In 18.2.1.5 [lib.numeric.special], paragraph 1 states ". . . (for example, epsilon() is only meaningful if is_integer is false). . ."
which suggests that a type is a floating point type if is_specialized is true and is_integer is false; however, this is unclear.

When clarifying this, please keep in mind this need of users: what exactly is the definition of floating point? Would a fixed
point or rational representation be considered one? I guess my statement here is that there could also be types that are neither
integer or (strictly) floating point.

Rationale:

It is up to the implementor of a user define type to decide if it is a floating point type.

206. operator new(size_t, nothrow) may become unlinked to ordinary operator new if ordinary
version replaced

Page 25 of 28Library Closed Issues List

Section: 18.4.1.1 lib.new.delete.single Status: NAD Submitter: Howard Hinnant Date: 29 Aug 99

As specified, the implementation of the nothrow version of operator new does not necessarily call the ordinary operator new,
but may instead simply call the same underlying allocator and return a null pointer instead of throwing an exception in case
of failure.

Such an implementation breaks code that replaces the ordinary version of new, but not the nothrow version. If the ordinary
version of new/delete is replaced, and if the replaced delete is not compatible with pointers returned from the library versions
of new, then when the replaced delete receives a pointer allocated by the library new(nothrow), crash follows.

The fix appears to be that the lib version of new(nothrow) must call the ordinary new. Thus when the ordinary new gets
replaced, the lib version will call the replaced ordinary new and things will continue to work.

An alternative would be to have the ordinary new call new(nothrow). This seems sub-optimal to me as the ordinary version
of new is the version most commonly replaced in practice. So one would still need to replace both ordinary and nothrow
versions if one wanted to replace the ordinary version.

Another alternative is to put in clear text that if one version is replaced, then the other must also be replaced to maintain
compatibility. Then the proposed resolution below would just be a quality of implementation issue. There is already such text
in paragraph 7 (under the new(nothrow) version). But this nuance is easily missed if one reads only the paragraphs relating to
the ordinary new.

Rationale:

Yes, they may become unlinked, and that is by design. If a user replaces one, the other should also be replaced.

213. Math function overloads ambiguous

Section: 26.5 lib.c.math Status: NAD Submitter: Nico Josuttis Date: 26 Feb 00

Due to the additional overloaded versions of numeric functions for float and long double according to Section 26.5, calls such
as int x; std::pow (x, 4) are ambiguous now in a standard conforming implementation. Current implementations solve this
problem very different (overload for all types, don't overload for float and long double, use preprocessor, follow the standard
and get ambiguities).

This behavior should be standardized or at least identified as implementation defined.

Rationale:

These math issues are an understood and accepted consequence of the design. They have been discussed several times in the
past. Users must write casts or write floating point expressions as arguments.

215. Can a map's key_type be const?

Section: 23.1.2 lib.associative.reqmts Status: NAD Submitter: Judy Ward Date: 29 Feb 00

A user noticed that this doesn't compile with the Rogue Wave library because the rb_tree class declares a key_allocator, and
allocator<const int> is not legal, I think:

map < const int, ... > // legal?

Page 26 of 28Library Closed Issues List

which made me wonder whether it is legal for a map's key_type to be const. In email from Matt Austern he said:

I'm not sure whether it's legal to declare a map with a const key type. I hadn't thought about that question until
a couple weeks ago. My intuitive feeling is that it ought not to be allowed, and that the standard ought to say
so. It does turn out to work in SGI's library, though, and someone in the compiler group even used it. Perhaps
this deserves to be written up as an issue too.

Rationale:

The "key is assignable" requirement from table 69 in 23.1.2 [lib.associative.reqmts] already implies the key cannot be const.

218. Algorithms do not use binary predicate objects for default comparisons

Section: 25.3 lib.alg.sorting, 25 lib.algorithms Status: NAD Submitter: Pablo Halpern Date: 6 Mar 00

Many of the algorithms take an argument, pred, of template parameter type BinaryPredicate or an argument comp of template
parameter type Compare. These algorithms usually have an overloaded version that does not take the predicate argument. In
these cases pred is usually replaced by the use of operator== and comp is replaced by the use of operator<.

This use of hard-coded operators is inconsistent with other parts of the library, particularly the containers library, where
equality is established using equal_to<> and ordering is established using less<>. Worse, the use of operator<, would cause
the following innocent-looking code to have undefined behavior:

vector<string*> vec;
sort(vec.begin(), vec.end());

The use of operator< is not defined for pointers to unrelated objects. If std::sort used less<> to compare elements, then the
above code would be well-defined, since less<> is explicitly specialized to produce a total ordering of pointers.

Rationale:

This use of operator== and operator< was a very deliberate, conscious, and explicitly made design decision; these operators
are often more efficient. The predicate forms are available for users who don't want to rely on operator== and operator<.

219. find algorithm missing version that takes a binary predicate argument

Section: 25.1.2 lib.alg.find Status: NAD Future Submitter: Pablo Halpern Date: 6 Mar 00

The find function always searches for a value using operator== to compare the value argument to each element in the input
iterator range. This is inconsistent with other find-related functions such as find_end and find_first_of, which allow the caller
to specify a binary predicate object to be used for determining equality. The fact that this can be accomplished using a
combination of find_if and bind_1st or bind_2nd does not negate the desirability of a consistent, simple, alternative interface
to find.

The resolution proposed by the submitter:

In section 25.1.2 lib.alg.find, add a second prototype for find (between the existing prototype and the
prototype for find_if), as follows:

 template<class InputIterator, class T, class BinaryPredicate>
 InputIterator find(InputIterator first, InputIterator last,
 const T& value, BinaryPredicate bin_pred);

Page 27 of 28Library Closed Issues List

Change the description of the return from:

Returns: The first iterator i in the range [first, last) for which the following corresponding
conditions hold: *i == value, pred(*i) != false. Returns last if no such iterator is found.

 to:

Returns: The first iterator i in the range [first, last) for which the following corresponding
condition holds: *i == value, bin_pred(*i,value) != false, pred(*) != false. Return last if no such
iterator is found.

Rationale:

This is request for a pure extension, so it is not a defect in the current standard. As the submitter pointed out, "this can be
accomplished using a combination of find_if and bind_1st or bind_2nd".

----- End of document -----

Page 28 of 28Library Closed Issues List

	6.
	10.
	12.
	43.
	45.
	58.
	65.
	67.
	72.
	73.
	77.
	81.
	82.
	84.
	85.
	87.
	88.
	89.
	93.
	95.
	97.
	99.
	100.
	101.
	104.
	105.
	107.
	113.
	116.
	121.
	128.
	130.
	131.
	135.
	138.
	140.
	143.
	145.
	149.
	157.
	162.
	163.
	166.
	177.
	178.
	180.
	188.
	190.
	191.
	192.
	194.
	196.
	203.
	204.
	205.
	206.
	213.
	215.
	218.
	219.

