
Document Number: P2506R0
Date: 2022-02-02
Audience: Library Evolution Working Group
Author: Casey Carter <Casey@Carter.net>

std::lazy: a coroutine for deferred execution

Abstract
This paper proposes adding a new type, std::lazy<T>, to the standard library to enable creation and
composition of coroutines representing asynchronous computation.
[Note 1 : SG1 wants to reserve the name std::task for another use. SG1 requested a different name, and LEWG
chose lazy. —end note]

1 Design
1.1 Motivation
The Coroutines TS introduced a language capability that allows functions to be suspended and later resumed.
One of the key applications for this new feature is to make it easier to write asynchronous code. However,
the TS did not include any concrete coroutine types to do so.
We believe it was a mistake to not include such a type in C++20, and it would be an even greater mistake
not to include one in C++23. We further believe that the simple type presented here - which astute readers
will notice has changed very little since P1056R1 [2]) - is not ideal, but is the minimal useful type we can
provide without presuming support for executors.
As such, we do not provide any of the features desired for a lazy coroutine type to integrate with P2300’s
design for executors [4], despite having a list of requirements available. We think it best for WG21 to commit
to having at least this minimal coroutine “task” support library in C++23, regardless of whether an executor
proposal makes the C++23 train. There are coroutine users today who would benefit from a standardized
coroutine task wrapper which they could incorporate into non-standard execution contexts even if WG21
doesn’t ship executor support in C++23.
We plan to write a followup paper with design changes to integrate lazy with P2300 (in collaboration with
the authors of P2300) so that C++23 has some type to represent coroutine tasks in any event, but the best
type to represent coroutine tasks if we also get P2300 std::execution.

1.1.1 Acknowledgements
The authors would like to thank Lewis Baker and Gor Nishanov, whose proposal P1056R1 “Add lazy coroutine
(coroutine task) type” [2] was looted shamelessly for this proposal. This paper is presented as a new revision
of P1056 for continuity of design.

1.1.2 Example code
#include <lazy>
#include <string>

struct record {
int id;
std::string name;
std::string description;

};

std::lazy<record> load_record(int id);
std::lazy<> save_record(record r);

1

std::lazy<void> modify_record() {
record r = co_await load_record(123);
r.description = "Look, ma, no blocking!";
co_await save_record(std::move(r));

}

1.2 Proposal
The interface of lazy is intentionally minimal and designed for efficiency. In fact, the only operation you can
do with the lazy is to await on it:

template<class T, class Allocator = void>
class [[nodiscard]] lazy {
public:

lazy(lazy&& that) noexcept;

~lazy();

unspecified operator co_await();

T sync_await();
};

While such a small interface may seem unusual at first, subsequent sections will clarify the rationale for this
design.

1.2.1 Why not use futures with future.then?
The std::future type is inherently inefficient and cannot be used for efficient composition of asynchronous
operations. The unavoidable overhead of futures is due to:
— allocation/deallocation of the shared state object,
— atomic increment/decrement for managing the lifetime of the shared state object,
— synchronization between setting of the result and getting the result, and
— (with .then) scheduling overhead of starting execution of subscribers to .then.

Consider the following example:
lazy<int> coro() {

int result = 0;
while (int v = co_await async_read())

result += v;
co_return result;

}

where async_read() is some asynchronous operation that takes, say, 4ns to perform. We would like to factor
out the logic into two coroutines:

lazy<int> subtask() {
co_return co_await async_read();

}

lazy<int> coro_refactored() {
int result = 0;
while (int v = co_await subtask())

result += v;
co_return result;

}

Breaking a single co_await into its own function may seem silly, but it allows us to measure the overhead of
composition of tasks. With the proposed lazy, our per-operation cost grew from 4ns to 6ns and did not
incur any heap allocations. Moreover, this overhead of 2ns is not inherent to lazy and we anticipate that
with improved coroutine optimization technology we will be able to drive the overhead close to zero. To
estimate the cost of composition with std::future, we used the following code:

int fut_test() {
int count = 1'000'000;
int result = 0;

2

while (count > 0) {
promise p;
auto fut = p.get_future();
p.set_value(count--);
result += fut.get();

}
return result;

}

As measured on the same system (Linux, clang 6.0, libc++), we get 133ns per operation! Here is the visual
illustration.

op cost: **
lazy overhead: *

future overhead: ***
Being able to break apart bigger functions into a set of smaller ones and being able to compose software by
putting together small pieces is fundamental requirement for a good software engineering since the 60s. The
overhead of std::future and types similar in behavior makes them unsuitable as coroutine types.

1.2.1.1 Removing future overhead: Memory Allocation
Consider the only operation that is available on a lazy, namely, awaiting on it.

lazy<X> g();
lazy<Y> f() {

// ...
X x = co_await g();
// ...

}

The caller coroutine f owns the lazy object for g that is created and destroyed at the end of the full expression
containing co_await. This allows the compiler to determine the lifetime of the coroutine and apply Heap
Allocation eLision Optimization [9], which allocates a coroutine’s state as if it were a local variable in its
caller.

1.2.1.2 Removing future overhead: Reference counting
The coroutine state is not shared. The lazy type only allows moving pointer to a coroutine from one lazy
object to another. Lifetime of a coroutine is linked to its lazy object, and the lazy object’s destructor
destroys the coroutine, thus, no reference counting is required.
In a later section about cancellation we will cover the implications of this design decision.

1.2.1.3 Removing future overhead: Set/Get synchronization
The lazy coroutine always starts suspended. This allows not only to avoid synchronization when attaching a
continuation, but also enables solving via composition how and where coroutine needs to get executed and
allows to implement advanced execution strategies like continuation stealing.

1.2.1.4 Removing future overhead: Scheduling overhead
Consider the following code fragment:

int result = 0;
while (int v = co_await async_read())

result += v;

Let’s say that async_read returns a future. That future cannot resume directly the coroutine that is
awaiting on it as it will, in effect, transform the loop into unbounded recursion.
On the other hand, coroutines have built-in support for symmetric coroutine transfer [7]. Since lazy object
can only be created by a coroutine and the only way to get the result from a coroutine is by awaiting on it
from another coroutine, the transfer of control from completing coroutine to awaiting coroutine is done in
symmetric fashion, thus eliminating the need for extra scheduling interactions.

1.3 Destruction and cancellation
lazy destroys any associated coroutine in its destructor. It is safe to do, only if the coroutine has finished
execution (at the final suspend point) or it is in a suspended state (waiting for some operation to complete),
but, somehow, we know that the coroutine will never be resumed by the entity which was supposed to

3

resume the coroutine on behalf of the operation that coroutine is awaiting upon. That is only possible if the
underlying asynchronous facility support cancellation.
We strongly believe that support for cancellation is a required facility for writing asynchronous code and
we struggled for awhile trying to decide what is the source of the cancellation, whether it is the lazy that
must initiate cancellation - and therefore every await in every coroutine needs to understand how to cancel a
particular operation it is being awaited upon - or every async operation is tied to a particular lifetime and
cancellation domain and operations are cancelled in bulk by cancellation of the entire cancellation domain [6].
We experimented with both approaches and reached the conclusion that not performing cancellation from
the lazy, but, pushing it to the cancellation domain leads to more efficient implementation and is a simpler
model for users.

1.4 Why no move assignment?
This is rather unorthodox decision and even authors of the paper did not completely agree on this topic.
However, going with more restrictive model initially allows us to discover if the insight that lead to this
decision was wrong. Initial design of the lazy, included move assignment, default constructor and swap. We
removed them for two reasons.
First, when observing how lazy was used, we noticed that whenever, a variable-size container of tasks was
created, we later realized that it was a suboptimal choice and a better solution did not require a container of
tasks.
Second: move-assignment of a lazy is a ticking bomb. To make it safe, we would need to introduce per lazy
cancellation of associated coroutines and it is a very heavy-weight solution.
At the moment we do not offer a move assignment, default constructor and swap. If good use cases, for which
there are no better ways to solve the same problem are discovered, we can add them.

1.5 Interaction with allocators
lazy incorporates the work on coroutine allocators from P1681R0 [8]. Described simply:
lazy’s second template parameter Allocator can be used to statically declare an allocator type, or can
be set to void, the default, to indicate that the allocator type is erased. An allocator may or may not be
provided to the initial corouroutine call.
If the coroutine has a first parameter of type std::allocator_arg_t, the second argument a passed to the
original call is:
— used to allocate the coroutine state, if the statically declared allocator type is void,
— converted to the statically-declared allocator type, which is used to allocate the coroutine state,

otherwise.
If the provided allocator is not convertible to a statically-declared non-void allocator type, the program is
ill-formed.
If the coroutine has no first parameter, or a first parameter with type other than std::allocator_arg_t,
the coroutine state is allocated with either a default-constructed allocator of the statically-declared allocator
type, if it is not void, or a default-constructed std::allocator<byte> otherwise. If the selected allocator
type is not default-constructible, the program is ill-formed.
The actual allocator used is stored type-erased within the coroutine state if it is not both default constructible
and stateless, as indicated by allocator_traits::is_always_equal. A pointer to a deallocation function
which can recover the erased allocator type is stored as well when the statically-declared allocator type is
void.
Deallocation of the coroutine state can then recover an allocator equivalent to the allocator used to allocate
the coroutine state.

1.6 But how do we use it?
As we mentioned in the beginning, the only operation that one can do on a lazy is to await on it.Using an
await-expression in a function turns it into a coroutine. But, this cannot go on forever, at some point, we
have to interact with coroutine from a function that is not a coroutine itself, main, for example. What to do?
We provide a simple function to bridge the gap between synchronous and asynchronous worlds, lazy::sync_-
await. Calling sync_await starts the lazy execution in the current thread, and, if it gets suspended, blocks

4

until the result is available. (This functionality could be extended to generically handle arbitrary awaitables;
P2300 provides just such an implementation for generic senders, and machinery for adapting awaitables into
senders. The future proposal integrating lazy with P2300 will undoubtedly remove this limited special-case
function.)

1.6.1 Implementation experience
A version of proposed type has been used in shipping software that runs on hundreds of million devices in
consumer hands. Also, a similar type has been implemented in most extensive coroutine abstraction library
CppCoro [1]. This proposed type is minimal and efficient and can be used to build higher level abstraction
by composition.
We’ve also made a Compiler Explorer implementation available for experimentation that works with the
three major Standard Library implementations [3].

2 Wording
The technical specifications that follow take the form of excerpts from the working draft N4901 [5] with
change markings:
— Text to be struck is in red with strikethough, and
— text to be added is “green” with underline.

17.3.2 Header <version> synopsis [version.syn]
[Editor’s note: Add a new feature-test macro to the <version> synopsis, in the appropriate order, replacing
20XXYYL with the year-and-month of merge:]

#define __cpp_lib_lazy 20XXYYL // also in <lazy>

[Editor’s note: Add definitions to the <coroutine> synopsis:]

17.12.2 Header <coroutine> synopsis [coroutine.syn]
#include <compare> // see [compare.syn]

namespace std {
[...]

// [coroutine.trivial.awaitables], trivial awaitables
struct suspend_never;
struct suspend_always;

// 17.12.7, awaitable concepts
template<class T, class Promise = void>
concept simple_awaitable = see below;

template<class T, class Promise = void>
concept awaitable = see below;

}

[Editor’s note: Insert new subclauses at the end of [support.coroutine]:]

17.12.7 Awaitable concepts [coroutine.awaitable]
1 The awaitable and simple_awaitable concepts specify the requirements on a type that is usable in an

await-expression ([expr.await]).

template<class T>
concept suspend-result = see below; // exposition only

template<class T, class Promise = void>
concept simple_awaitable = requires(T& t, const coroutine_handle<Promise>& h) {

{ t.await_ready() } -> convertible_to<bool>; // not required to be equality-preserving
{ t.await_suspend(h) } -> suspend-result; // not required to be equality-preserving

5

http://eel.is/c++draft/compare.syn
http://eel.is/c++draft/coroutine.trivial.awaitables
http://eel.is/c++draft/support.coroutine
http://eel.is/c++draft/expr.await

t.await_resume(); // not required to be equality-preserving
};

template<class T, class Promise = void>
concept has-member-co_await = // exposition only

requires(T&& t) {
{ std::forward<T>(t).operator co_await() }

-> simple_awaitable<Promise>; // not required to be equality-preserving
};

template<class T, class Promise = void>
concept has-ADL-co_await = // exposition only

requires(T&& t) {
{ operator co_await(std::forward<T>(t)) }

-> simple_awaitable<Promise>; // not required to be equality-preserving
};

template<class T, class Promise = void>
concept awaitable = has-member-co_await <T, Promise> ||

has-ADL-co_await <T, Promise> || simple_awaitable<T, Promise>;
2 For a type T, suspend-result <T> is satisfied if T denotes void or bool, or if T is a specialization of

coroutine_handle.
3 For an expression E, if decltype((E)) satisfies the awaitable<P> concept for some promise type P,

then a simple awaitable of E is an object satisfying the simple_awaitable<P> concept that is either
the result of evaluation of E itself or the result of an application (if available) of operator co_await
to E.

17.12.8 Coroutine tasks [coroutine.lazy]
17.12.8.1 Overview [coroutine.lazy.overview]

1 This subclause describes components that a program can use to create coroutines representing asynchronous
computations.

17.12.8.2 Header <lazy> synopsis [lazy.syn]
namespace std {

template<class T = void, class Allocator = void>
class lazy;

}

17.12.8.3 Class template lazy [coroutine.lazy.type]
1 The class template lazy defines a type for a coroutine lazy object that can be associated with a coroutine

whose return type is lazy<T> for some type T. This subclause refers to such a coroutine as a lazy coroutine
and to type T as the eventual type of the lazy coroutine.

template<class T = void, class Allocator = void>
class [[nodiscard]] lazy {
public:

lazy(lazy&& that) noexcept;

~lazy();

unspecified operator co_await();

T sync_await();
};

2 Mandates: T denotes void, a reference type, or a move_constructible object type.
3 Preconditions: Allocator denotes void or meets the Cpp17Allocator requirements ([allocator.requirements.general]).
4 The library provides specializations of coroutine_traits and implements lazy’s member operator co_-

await as necessary to provide the following behaviors.
5 If, in the definition of a lazy coroutine, the first parameter has type allocator_arg_t, then the coroutine

shall have at least two parameters and the type of the second shall meet the Cpp17Allocator requirements. If

6

http://eel.is/c++draft/allocator.requirements.general

dynamic allocation is required to store the coroutine state ([dcl.fct.def.coroutine]), the implementation uses
the second argument either directly, if Allocator denotes void, or indirectly, via conversion to Allocator
if Allocator is non-void, to allocate and deallocate the coroutine state. The program is ill-formed if a
provided allocator is not convertible as required. If no allocator is provided via arguments to the lazy
coroutine, it uses a default-constructed Allocator, if non-void, or allocator<byte> otherwise. In any case,
the implementation ensures that deallocation is performed with an allocator equivalent to the allocator used
for allocation.

6 If a yield-expression ([expr.yield]) occurs in the suspension context of a lazy coroutine, the program is ill-formed.
7 A call to a lazy coroutine f returns a lazy object t associated with that coroutine. The coroutine is suspended

at the initial suspend point ([dcl.fct.def.coroutine]). Such a lazy object is considered to be in the armed state.
8 The type of a lazy object models the awaitable concept. Awaiting on a lazy object in the armed state as

if by co_await t ([expr.await]) registers the awaiting coroutine a with the lazy object t and resume the
associated coroutine f. At this point t is considered to no longer be in the armed state. Awaiting on a lazy
object that is not in the armed state has undefined behavior.

9 Let sa be a simple awaitable of t (17.12.7). If the compound-statement of the function-body of the coroutine
f completes with an unhandled exception, the awaiting coroutine a is resumed and evaluation of sa.await_-
resume() rethrows that exception.

10 If the eventual type of a coroutine f is void and the coroutine completes due to execution of a coroutine
return statement ([stmt.return.coroutine]), or flowing off the end of a coroutine, the awaiting coroutine a is
resumed and evaluation of sa.await_resume() shall yield void.

11 If the eventual type of a coroutine f is not void and the coroutine completes due to execution of a coroutine
return statement ([stmt.return.coroutine]), the operand of the coroutine return statement is stored in the
coroutine state, the awaiting coroutine a is resumed, and evaluation of sa.await_resume() shall yield the
stored value.
[Note 1 : If the stored value is a glvalue, users should take care to ensure the lifetime of the denoted object is sufficient
to guarantee validity of the glvalue yielded from sa.await_resume(). —end note]

17.12.8.4 Members [coroutine.lazy.mem]

lazy(lazy&& that) noexcept;
1 Postconditions: *this is associated with the coroutine originally associated with that, if any, and that

is associated with no coroutine.

~lazy();
2 Preconditions: The coroutine associated with *this, if any, is suspended.
3 Effects: Destroys the coroutine associated with *this, if any.

unspecified operator co_await();
4 Preconditions: *this is associated with a coroutine suspended at its initial suspend point.

Returns: An object whose type models simple_awaitable associated with the same coroutine as
*this.

T sync_await();
5 Preconditions: *this is associated with a coroutine suspended at its initial suspend point.

Effects: Evaluates operator co_await() to obtain the yielded simple_awaitable object. If that object
indicates via await_ready that the coroutine result is not yet ready, runs the coroutine to completion
by calling await_suspend). Finally returns the coroutine result by evaluation of await_resume.

Bibliography
[1] Lewis Baker. CppCoro: A library of c++ coroutine abstractions for the coroutines ts. https://github.

com/lewisbaker/cppcoro. Accessed: 2021-12-09.

[2] Lewis Baker and Gor Nishanov. P1056R1: Add lazy coroutine (coroutine task) type. https://wg21.
link/p1056r1, 10 2018.

7

http://eel.is/c++draft/dcl.fct.def.coroutine
http://eel.is/c++draft/expr.yield
http://eel.is/c++draft/dcl.fct.def.coroutine
http://eel.is/c++draft/expr.await
http://eel.is/c++draft/stmt.return.coroutine
http://eel.is/c++draft/stmt.return.coroutine
https://github.com/lewisbaker/cppcoro
https://github.com/lewisbaker/cppcoro
https://wg21.link/p1056r1
https://wg21.link/p1056r1

[3] Casey Carter. Implementation of std::lazy. https://godbolt.org/z/dxxavazPa, 2021.

[4] Michaominiak, Lewis Baker, Lee Howes, Kirk Shoop, Michael Garland, Eric Niebler, and Bryce Adelstein
Lelbach. P2300R3: std::execution. https://wg21.link/p2300r3, 12 2021.

[5] Thomas Köppe. N4901: Working draft, standard for programming language c++. https://wg21.link/
n4901, 10 2021.

[6] Gor Nishanov. P0399R0: Networking TS & threadpools. https://wg21.link/p0399r0, 10 2017.

[7] Gor Nishanov. P0913R1: Add symmetric coroutine control transfer. https://wg21.link/p0913r1, 3
2018.

[8] Gor Nishanov. P1681R0: Revisiting allocator model for coroutine lazy/task/generator. https://wg21.
link/p1681r0, 6 2019.

[9] Richard Smith and Gor Nishanov. P0981R0: Halo: coroutine heap allocation elision optimization: the
joint response. https://wg21.link/p0981r0, 3 2018.

8

https://godbolt.org/z/dxxavazPa
https://wg21.link/p2300r3
https://wg21.link/n4901
https://wg21.link/n4901
https://wg21.link/p0399r0
https://wg21.link/p0913r1
https://wg21.link/p1681r0
https://wg21.link/p1681r0
https://wg21.link/p0981r0

	1 Design
	1.1 Motivation
	1.2 Proposal
	1.3 Destruction and cancellation
	1.4 Why no move assignment?
	1.5 Interaction with allocators
	1.6 But how do we use it?

	2 Wording
	Bibliography

