
Josuttis, Sutter, Williams: jthread P0660R5

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P0660R5
Date: 2018-10-06
Reply to: Nicolai Josuttis (nico@josuttis.de), Herb Sutter (hsutter@microsoft.com),

Anthony Williams (anthony@justsoftwaresolutions.co.uk)
Audience: SG1, LEWG, LWG
Prev. Version: www.wg21.link/P0660R4

A Cooperatively Interruptible Joining Thread, Rev 5
New in R5
As requested at the SG1 meeting in Seattle 2018:

— Removed exception class std::interrupted and the throw_if_interrupted() API.
— Removed all TLS extensions and extensions to std::this_thread.
— Added support to let jhread call a callable that either takes the interrupt token as additional first

argument or doesn’t get it (taking just all passed arguments).

New in R4

— Removed interruptible CV waiting members that don’t take a predicate.
— Removed adding a new cv_status value interrupted.
— Added CV members for interruptible timed waits.
— Renamed CV members that wait interruptible.
— Several minor fixes (e.g. on noexcept) and full proposed wording.

Purpose
This is the proposed wording for a cooperatively interruptible joining thread.
For a full discussion fo the motivation, see www.wg21.link/p0660r0 and www.wg21.link/p0660r1.
A default implementation exists at: http://github.com/josuttis/jthread. Note that the proposed
functionality can be fully implemented on top of the existing C++ standard library without special OS
support.

Basis examples

— A jthread automatically signals an interrupt at the end of its lifetime to the started thread (if still
joinable) and joins:

void testJThreadWithToken()
{

std::jthread t([] (std::interrupt_token itoken) {
while (!itoken.is_interrupted()) {

//...
}

});
//...

} // jthread destructor signals interrupt and therefore ends the started thread and joins

The interrupt could also be explicitly signaled with t.interrupt().
— If the started thread doesn’t take an interrupt token, the destructor still has the benefit of calling

join() (if still joinable):
void testJThreadJoining()
{

std::jthread t([] {
//...

});
//...

} // jthread destructor calls join()

This is a significant improvement over std::thread where you had to program the following to get the
same behavior (which is common in many scenarios):

1

www.wg21.link/P0660R4
http://wiki.edg.com/bin/view/ExecSeattle2018/MinutesDay2
www.wg21.link/p0660r0
www.wg21.link/p0660r1
http://github.com/josuttis/jthread

Josuttis, Sutter, Williams: jthread P0660R5

void compareWithStdThreadJoining()
{

std::thread t([] {
//...

});
try {

//...
}
catch (...) {

j.join();
throw; // rethrow

}
t.join();

}

— An extended CV API enables to interrupt CV waits using the passed interrupt token (i.e. interrupting
the CV wait without polling):

void testInterruptibleCVWait()
{

bool ready = false;
std::mutex readyMutex;
std::condition_variable readyCV;
std::jthread t([&ready, &readyMutex, &readyCV] (std::interrupt_token it) {

while (...) {
...
{

std::unique_lock lg{readyMutex};
readyCV.wait_until(lg,

[&ready] {
return ready;

},
it); // also ends wait if it interrupted

}
...

}
});

...
} // jthread destructor signals interrupt and therefore unblocks the CV wait and ends the started thread

Feature Test Macro
This is a new feature so that it shall have the following feature macro:

__cpp_lib_jthread

Acknowledgements
Thanks to all who incredibly helped me to prepare this paper, such as all people in the C++ concurrency
and library working group. Especially, we want to thank: Lewis Baker, Hans Boehm, Olivier Giroux, Pablo
Halpern, Howard Hinnant, Alisdair Meredith, Gor Nishanov, Ville Voutilainen, and Jonathan Wakely.

Proposed Wording
All against N4762.
[Editorial note: This proposal uses the LaTeX macros of the draft standard. To adopt it please ask for the
LaTeX source code of the proposed wording.]

2

Josuttis, Sutter, Williams: jthread P0660R5

30 Thread support library [thread]
30.1 General [jthread.general]

1 The following subclauses describe components to create and manage threads (??), perform mutual exclusion,
and communicate conditions and values between threads, as summarized in Table 1.

Table 1 — Thread support library summary

Subclause Header(s)
30.2 Requirements
30.3 Threads <thread>
30.4 Interrupt Tokens <interrupt_token>
30.5 Joining Threads <jthread>
30.6 Mutual exclusion <mutex>

<shared_mutex>
30.7 Condition variables <condition_variable>
30.8 Futures <future>

30.2 Requirements [thread.req]
...

30.3 Threads [thread.threads]
...

§ 30.3 3

Josuttis, Sutter, Williams: jthread P0660R5

30.4 Interrupt Tokens [thread.interrupt_token]
1 30.4 describes components that can be used to asynchonously signal an interrupt. The interrupt can only be

signaled once.

30.4.1 Header <interrupt_token> synopsis [thread.interrupt_token.syn]
namespace std {

// 30.4.2 class interrupt_token
class interrupt_token;

}

30.4.2 Class interrupt_token [interrupt_token]
1 The class interrupt_token implements semantics of shared ownership of an interrupt state (an atomic token

to signal an interrupt). An interrupt can only be signaled once. All owners can signal an interrupt, provided
the token is valid. All owners can check whether an interrupt was signaled. The last remaining owner of the
interrupt state automatically releases the resources associated with the interrupt state.

namespace std {
class interrupt_token {
public:

// 30.4.2.1 create, copy, destroy:
explicit interrupt_token() noexcept;
explicit interrupt_token(bool initial_state);

interrupt_token(const interrupt_token&) noexcept;
interrupt_token(interrupt_token&&) noexcept;
interrupt_token& operator=(const interrupt_token&) noexcept;
interrupt_token& operator=(interrupt_token&&) noexcept;
~interrupt_token();
void swap(interrupt_token&) noexcept;

// 30.4.2.5 interrupt handling:
bool valid() const noexcept;
bool is_interrupted() const noexcept;
bool interrupt();

}
}

bool operator== (const interrupt_token& lhs, const interrupt_token& rhs);
bool operator!= (const interrupt_token& lhs, const interrupt_token& rhs);

Calls to interrupt() and is_interrupted() are atomic operations (6.8.2.1p3 ??) on the interrupt state
contained in the interrupt_token object. Hence concurrent calls to these functions do not introduce
data races. A call to interrupt() synchronizes with any call to interrupt() and is_interrupted() that
observes the interrupt.
[Note: The implementation of the managed interrupt state shall ensure that future extensions to interrupt
tokens are possible without breaking binary compatibility (i.e. make the shared interrupt state a polymorphic
type) —end note]

30.4.2.1 interrupt_token constructors [interrupt_token.constr]

interrupt_token() noexcept;

1 Effects: Constructs a new interrupt_token object that can’t be used to signal interrupts. [Note:
Therefore, no resources have to be associated for the state. —end note]

2 Ensures: valid() == false.

interrupt_token(bool initial_state) noexcept;

3 Effects: Constructs a new interrupt_token object that can signal interrupts via an atomic associated
interrupt state.

4 Ensures: valid() == true and is_interrupted() == initial_state.

§ 30.4.2.1 4

Josuttis, Sutter, Williams: jthread P0660R5

interrupt_token(const interrupt_token& rhs) noexcept;

5 Effects: If rhs is not valid, constructs an interrupt_token object that is not valid; otherwise, constructs
an interrupt_token that shares the ownership of the interrupt state with rhs.

6 Ensures: valid() == rhs.valid() and is_interrupted() == rhs.is_interrupted() and *this
== rhs.

interrupt_token(interrupt_token&& rhs) noexcept;

7 Effects: Move constructs an object of type interrupt_token from rhs.
8 Ensures: *this shall contain the old value of rhs and rhs.valid() == false.

30.4.2.2 interrupt_token destructor [interrupt_token.destr]

~interrupt_token();

1 Effects: If valid() and *this is the last owner of the interrupt state, releases the resources associated
with the interrupt state.

30.4.2.3 interrupt_token assignment [interrupt_token.assign]

interrupt_token& operator=(const interrupt_token& rhs) noexcept;

1 Effects: Equivalent to: interrupt_token(rhs).swap(*this);
2 Returns: *this.

interrupt_token& operator=(interrupt_token&& rhs) noexcept;

3 Effects: Equivalent to: interrupt_token(std::move(rhs)).swap(*this);
4 Returns: *this.

30.4.2.4 interrupt_token swap [interrupt_token.swap]

void swap(interrupt_token& rhs) noexcept;

1 Effects: Swaps the state of *this and rhs.

30.4.2.5 interrupt_token members [interrupt_token.mem]

bool valid() const noexcept;

1 Returns: true if the interrupt token can be used to signal interrupts.

bool is_interrupted() const noexcept;

2 Returns: true if initialized with true or initialized with false and interrupt() was called by one of
the owners.

bool interrupt();

3 Effects: If !valid() or is_interrupted() the call has no effect. Otherwise, signals an interrupt so that
is_interrupted() == true. [Note: Signaling an interrupt includes notifying all condition_variables
temporarily registered via a an interruptable wait (30.7.1.2) —end note]

4 Ensures: !valid() || is_interrupted()
5 Returns: The value of is_interrupted() prior to the call.

30.4.2.6 interrupt_token comparisons [interrupt_token.cmp]

bool operator== (const interrupt_token& lhs, const interrupt_token& rhs);

1 Returns: !lhs.valid() && !rhs.valid() or whether lhs and rhs refer to the same interrupt state
(copied or moved from the same initial interrupt_token object).

bool operator!= (const interrupt_token& lhs, const interrupt_token& rhs);

2 Returns: !(lhs==rhs).

§ 30.4.2.6 5

Josuttis, Sutter, Williams: jthread P0660R5

30.5 Joining Threads [thread.jthreads]
1 30.5 describes components that can be used to create and manage threads with the ability to signal interrupts

to cooperatively cancel the running thread.

30.5.1 Header <jthread> synopsis [thread.jthread.syn]
#include <interrupt_token>

namespace std {
// 30.5.2 class jthread
class jthread;

void swap(jthread& x, jthread& y) noexcept;
}

30.5.2 Class jthread [thread.jthread.class]
1 The class jthread provides a mechanism to create a new thread of execution. The functionality is the same

as for class thread (??) with the additional ability to signal an interrupt and to automatically join() the
started thread.
[Editorial note: This color signals differences to class std::thread.]

namespace std {
class jthread {
public:

// types
using id = thread::id;
using native_handle_type = thread::native_handle_type;

// construct/copy/destroy
jthread() noexcept;
template<class F, class... Args> explicit jthread(F&& f, Args&&... args);
~jthread();
jthread(const jthread&) = delete;
jthread(jthread&&) noexcept;
jthread& operator=(const jthread&) = delete;
jthread& operator=(jthread&&) noexcept;

// members
void swap(jthread&) noexcept;
bool joinable() const noexcept;
void join();
void detach();
id get_id() const noexcept;
native_handle_type native_handle(); // see ??
// interrupt token handling
interrupt_token get_original_interrupt_token() const noexcept;
bool interrupt() noexcept;

// static members
static unsigned int hardware_concurrency() noexcept;

private:
interrupt_token itoken; // exposition only

};

}

30.5.2.1 jthread constructors [thread.jthread.constr]

jthread() noexcept;

1 Effects: Constructs a jthread object that does not represent a thread of execution.
2 Ensures: get_id() == id() and itoken.valid() == false.

§ 30.5.2.1 6

Josuttis, Sutter, Williams: jthread P0660R5

template<class F, class... Args> explicit jthread(F&& f, Args&&... args);

3 Requires: F and each Ti in Args shall satisfy the Cpp17MoveConstructible requirements. INVOKE(
DECAY_COPY(std::forward<F>(f)), itoken, DECAY_COPY(std::forward<Args>(args))...) or
INVOKE(DECAY_COPY(std::forward<F>(f)), DECAY_COPY(std::forward<Args>(args))...) (??) shall
be a valid expression.

4 Remarks: This constructor shall not participate in overload resolution if remove_cvref_t<F> is the
same type as std::jthread.

5 Effects: Initializes itoken with false and constructs an object of type jthread. The new thread of exe-
cution executes INVOKE(DECAY_COPY(std::forward<F>(f)), itoken,DECAY_COPY(std::forward<Args>(
args))...) if that expression is well-formed, otherwise INVOKE(DECAY_COPY(std::forward<F>(f)),
DECAY_COPY(std::forward<Args>(args))...) with the calls to DECAY_COPY being evaluated in the
constructing thread. Any return value from this invocation is ignored. [Note: This implies that any
exceptions not thrown from the invocation of the copy of f will be thrown in the constructing thread,
not the new thread. —end note] If the invocation with INVOKE() terminates with an uncaught
exception, terminate() shall be called.

6 Synchronization: The completion of the invocation of the constructor synchronizes with the beginning
of the invocation of the copy of f.

7 Ensures: get_id() != id(). itoken.valid() == true. *this represents the newly started thread.
[Note: Note that the calling thread can signal an interrupt only once, because it can’t replace this
interrupt token. —end note]

8 Throws: system_error if unable to start the new thread.
9 Error conditions:

—(9.1) resource_unavailable_try_again — the system lacked the necessary resources to create another
thread, or the system-imposed limit on the number of threads in a process would be exceeded.

jthread(jthread&& x) noexcept;

10 Effects: Constructs an object of type jthread from x, and sets x to a default constructed state.
11 Ensures: x.get_id() == id() and get_id() returns the value of x.get_id() prior to the start of con-

struction. itoken yields the value of x.itoken prior to the start of construction and x.itoken.valid()
== false.

30.5.2.2 jthread destructor [thread.jthread.destr]

~jthread();

1 If joinable(), calls interrupt() and join(). Otherwise, has no effects. [Note: Operations on *this
are not synchronized. —end note]

30.5.2.3 jthread assignment [thread.jthread.assign]

jthread& operator=(jthread&& x) noexcept;

1 Effects: If joinable(), calls interrupt() and join(). Assigns the state of x to *this and sets x to
a default constructed state.

2 Ensures: x.get_id() == id() and get_id() returns the value of x.get_id() prior to the assignment.
itoken yields the value of x.itoken prior to the assignment and x.itoken.valid() == false.

3 Returns: *this.

30.5.2.4 jthread interrupt members [thread.jthread.interrupt]

interrupt_token get_original_interrupt_token() const noexcept

1 Effects: Equivalent to: return itoken;

bool interrupt() noexcept;

2 Effects: Equivalent to: return itoken.interrupt();

§ 30.5.2.4 7

Josuttis, Sutter, Williams: jthread P0660R5

30.6 Mutual exclusion [thread.mutex]
...

30.7 Condition variables [thread.condition]
30.7.1 Class condition_variable [thread.condition.condvar]

namespace std {
class condition_variable {
public:

condition_variable();
~condition_variable();

condition_variable(const condition_variable&) = delete;
condition_variable& operator=(const condition_variable&) = delete;

void notify_one() noexcept;
void notify_all() noexcept;

// 30.7.1.1 noninterruptable waits:
void wait(unique_lock<mutex>& lock);
template<class Predicate>

void wait(unique_lock<mutex>& lock, Predicate pred);

template<class Clock, class Duration>
cv_status wait_until(unique_lock<mutex>& lock,

const chrono::time_point<Clock, Duration>& abs_time);
template<class Clock, class Duration, class Predicate>

bool wait_until(unique_lock<mutex>& lock,
const chrono::time_point<Clock, Duration>& abs_time,
Predicate pred);

template<class Rep, class Period>
cv_status wait_for(unique_lock<mutex>& lock,

const chrono::duration<Rep, Period>& rel_time);
template<class Rep, class Period, class Predicate>

bool wait_for(unique_lock<mutex>& lock,
const chrono::duration<Rep, Period>& rel_time,
Predicate pred);

// 30.7.1.2 interrupt_token waits:
template <class Predicate>

bool wait_until(unique_lock<mutex>& lock,
Predicate pred,
interrupt_token itoken);

template <class Clock, class Duration, class Predicate>
bool wait_until(unique_lock<mutex>& lock,

const chrono::time_point<Clock, Duration>& abs_time
Predicate pred,
interrupt_token itoken);

template <class Rep, class Period, class Predicate>
bool wait_for(unique_lock<mutex>& lock,

const chrono::duration<Rep, Period>& rel_time,
Predicate pred,
interrupt_token itoken);

using native_handle_type = implementation-defined; // see ??
native_handle_type native_handle(); // see ??

};
}

1 The class condition_variable shall be a standard-layout class (??).

condition_variable();

2 Effects: Constructs an object of type condition_variable.
3 Throws: system_error when an exception is required (??).

§ 30.7.1 8

Josuttis, Sutter, Williams: jthread P0660R5

4 Error conditions:
—(4.1) resource_unavailable_try_again — if some non-memory resource limitation prevents initial-

ization.

~condition_variable();

5 Requires: There shall be no thread blocked on *this. [Note: That is, all threads shall have been
notified; they may subsequently block on the lock specified in the wait. This relaxes the usual rules,
which would have required all wait calls to happen before destruction. Only the notification to unblock
the wait needs to happen before destruction. The user should take care to ensure that no threads wait
on *this once the destructor has been started, especially when the waiting threads are calling the wait
functions in a loop or using the overloads of wait, wait_for, or wait_until that take a predicate.
—end note]

6 Effects: Destroys the object.

void notify_one() noexcept;

7 Effects: If any threads are blocked waiting for *this, unblocks one of those threads.

void notify_all() noexcept;

30.7.1.1 Noninterruptable waits [thread.condition.wait]
1 Effects: Unblocks all threads that are blocked waiting for *this.

void wait(unique_lock<mutex>& lock);

2 Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(2.1) no other thread is waiting on this condition_variable object or
—(2.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, wait_until) threads.
3 Effects:

—(3.1) Atomically calls lock.unlock() and blocks on *this.
—(3.2) When unblocked, calls lock.lock() (possibly blocking on the lock), then returns.
—(3.3) The function will unblock when signaled by a call to notify_one() or a call to notify_all(), or

spuriously.
4 Remarks: If the function fails to meet the postcondition, terminate() shall be called (??). [Note: This

can happen if the re-locking of the mutex throws an exception. —end note]
5 Ensures: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
6 Throws: Nothing.

template<class Predicate>
void wait(unique_lock<mutex>& lock, Predicate pred);

7 Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(7.1) no other thread is waiting on this condition_variable object or
—(7.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, wait_until) threads.
8 Effects: Equivalent to:

while (!pred())
wait(lock);

9 Remarks: If the function fails to meet the postcondition, terminate() shall be called (??). [Note: This
can happen if the re-locking of the mutex throws an exception. —end note]

10 Ensures: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
11 Throws: Any exception thrown by pred.

§ 30.7.1.1 9

Josuttis, Sutter, Williams: jthread P0660R5

template<class Clock, class Duration>
cv_status wait_until(unique_lock<mutex>& lock,

const chrono::time_point<Clock, Duration>& abs_time);

12 Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(12.1) no other thread is waiting on this condition_variable object or
—(12.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, wait_until) threads.
13 Effects:

—(13.1) Atomically calls lock.unlock() and blocks on *this.
—(13.2) When unblocked, calls lock.lock() (possibly blocking on the lock), then returns.
—(13.3) The function will unblock when signaled by a call to notify_one(), a call to notify_all(),

expiration of the absolute timeout (??) specified by abs_time, or spuriously.
—(13.4) If the function exits via an exception, lock.lock() shall be called prior to exiting the function.

14 Remarks: If the function fails to meet the postcondition, terminate() shall be called (??). [Note: This
can happen if the re-locking of the mutex throws an exception. —end note]

15 Ensures: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
16 Returns: cv_status::timeout if the absolute timeout (??) specified by abs_time expired, otherwise

cv_status::no_timeout.
17 Throws: Timeout-related exceptions (??).

template<class Rep, class Period>
cv_status wait_for(unique_lock<mutex>& lock,

const chrono::duration<Rep, Period>& rel_time);

18 Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(18.1) no other thread is waiting on this condition_variable object or
—(18.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, wait_until) threads.
19 Effects: Equivalent to:

return wait_until(lock, chrono::steady_clock::now() + rel_time);

20 Returns: cv_status::timeout if the relative timeout (??) specified by rel_time expired, otherwise
cv_status::no_timeout.

21 Remarks: If the function fails to meet the postcondition, terminate() shall be called (??). [Note: This
can happen if the re-locking of the mutex throws an exception. —end note]

22 Ensures: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
23 Throws: Timeout-related exceptions (??).

template<class Clock, class Duration, class Predicate>
bool wait_until(unique_lock<mutex>& lock,

const chrono::time_point<Clock, Duration>& abs_time,
Predicate pred);

24 Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(24.1) no other thread is waiting on this condition_variable object or
—(24.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, wait_until) threads.
25 Effects: Equivalent to:

while (!pred())
if (wait_until(lock, abs_time) == cv_status::timeout)

return pred();
return true;

26 Remarks: If the function fails to meet the postcondition, terminate() shall be called (??). [Note: This
can happen if the re-locking of the mutex throws an exception. —end note]

§ 30.7.1.1 10

Josuttis, Sutter, Williams: jthread P0660R5

27 Ensures: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
28 [Note: The returned value indicates whether the predicate evaluated to true regardless of whether the

timeout was triggered. —end note]
29 Throws: Timeout-related exceptions (??) or any exception thrown by pred.

template<class Rep, class Period, class Predicate>
bool wait_for(unique_lock<mutex>& lock,

const chrono::duration<Rep, Period>& rel_time,
Predicate pred);

30 Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(30.1) no other thread is waiting on this condition_variable object or
—(30.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, wait_until) threads.
31 Effects: Equivalent to:

return wait_until(lock, chrono::steady_clock::now() + rel_time, std::move(pred));

32 [Note: There is no blocking if pred() is initially true, even if the timeout has already expired. —end
note]

33 Remarks: If the function fails to meet the postcondition, terminate() shall be called (??). [Note: This
can happen if the re-locking of the mutex throws an exception. —end note]

34 Ensures: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
35 [Note: The returned value indicates whether the predicate evaluates to true regardless of whether the

timeout was triggered. —end note]
36 Throws: Timeout-related exceptions (??) or any exception thrown by pred.

§ 30.7.1.1 11

Josuttis, Sutter, Williams: jthread P0660R5

30.7.1.2 interrupt_token waits [thread.condition.interrupt_token]
The following functions ensure to get notified if an interrupt is signaled for the passed interrupt_token. In
that case they return (returning false if the predicate evaluates to false).
[Editorial note: Because all signatures here in the effects clause call is_interrupted(), we don’t need
wording that the calls synchronize with interrupt().]

template <class Predicate>
bool wait_until(unique_lock<mutex>& lock,

Predicate pred,
interrupt_token itoken);

[Editorial note: This color signals differences to the corresponding wait() function without the interrupt
token parameter.]

1 Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(1.1) no other thread is waiting on this condition_variable object or
—(1.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, wait_until) threads.
2 Effects: Registers *this to get notified when an interrupt is signaled on itoken during this call and

then equivalent to:
while(!pred() && !itoken.is_interrupted()) {

cv.wait(lock, [&pred, &itoken] {
return pred() || itoken.is_interrupted();

});
}
return pred();

3 [Note: The returned value indicates whether the predicate evaluated to true regardless of whether the
timeout was triggered or an interrupt was signaled. —end note]

4 Ensures: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
5 Remarks: If the function fails to meet the postcondition, terminate() shall be called (??). [Note: This

can happen if the re-locking of the mutex throws an exception. —end note]
6 Throws: Any exception thrown by pred.

template <class Clock, class Duration, class Predicate>
bool wait_until(unique_lock<mutex>& lock,

const chrono::time_point<Clock, Duration>& abs_time
Predicate pred,
interrupt_token itoken);

[Editorial note: This color signals differences to the corresponding wait_until() function without the
interrupt token parameter.]

7 Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(7.1) no other thread is waiting on this condition_variable object or
—(7.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, wait_until) threads.
8 Effects: Registers *this to get notified when an interrupt is signaled on itoken during this call and

then equivalent to:
while(!pred() && !itoken.is_interrupted() && Clock::now() < abs_time) {

cv.wait_until(lock,
abs_time,
[&pred, &itoken] {

return pred() || itoken.is_interrupted();
});

}
return pred();

9 [Note: The returned value indicates whether the predicate evaluated to true regardless of whether the
timeout was triggered or an interrupt was signaled. —end note]

§ 30.7.1.2 12

Josuttis, Sutter, Williams: jthread P0660R5

10 Ensures: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
11 Remarks: If the function fails to meet the postcondition, terminate() shall be called (??). [Note: This

can happen if the re-locking of the mutex throws an exception. —end note]
12 Throws: Timeout-related exceptions (??) or any exception thrown by pred.

template <class Rep, class Period, class Predicate>
bool wait_for(unique_lock<mutex>& lock,

const chrono::duration<Rep, Period>& rel_time,
Predicate pred,
interrupt_token itoken);

[Editorial note: This color signals differences to the corresponding wait_for() function without the interrupt
token parameter.]

13 Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(13.1) no other thread is waiting on this condition_variable object or
—(13.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, wait_until threads.
14 Effects: Equivalent to:

return wait_until(lock, chrono::steady_clock::now() + rel_time, std::move(pred),

std::move(itoken));

15 [Note: The returned value indicates whether the predicate evaluates to true regardless of whether the
timeout was triggered or an interrupt was signaled. —end note]

16 [Note: There is no blocking if pred() is initially true, even if the timeout has already expired. —end
note]

17 Ensures: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
18 Remarks: If the function fails to meet the postcondition, terminate() shall be called (??). [Note: This

can happen if the re-locking of the mutex throws an exception. —end note]
19 Throws: Timeout-related exceptions (??) or any exception thrown by pred.

30.8 Futures [futures]
...

§ 30.8 13

	30 Thread support library
	30.1 General
	30.2 Requirements
	30.3 Threads
	30.4 Interrupt Tokens
	30.5 Joining Threads
	30.6 Mutual exclusion
	30.7 Condition variables
	30.8 Futures

