Document Number: N4720

Date: 2018-01-29

Revises: N4689

Reply to: Gabriel Dos Reis
Microsoft

gdr@microsoft.com

Working Draft, Extensions to C++ for
Modules

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
fomatting.

©ISO/IEC N4720
Contents
Contents ii
1 Scope 1
2 Normative references 2
3 Terms and definitions 3
4 General 4
4.1 Implementation compliance L L L 4
4.2 Acknowledgments 4
5 Lexical conventions 5
5.1 Separate translation 5
5.2 Phases of translation e e e e e e 5
511 Keywords oL e 7
6 Basic concepts 8
6.1 Declarations and definitions e e e e e 8
6.2 One-definition rule e 8
6.3 SCOPE . .. e 9
6.4 Namelookup e 9
6.5 Program and linkage L 11
6.6 Start and termination L 12
10 Declarations 13
10.1 Specifiers e 13
10.3 Namespaces« . o v v e e e 13
10.7 Modules e e e e e e e 14
12 Classes 24
12.2 Class members e e e e e e e e e e e e 24
16 Overloading 25
16.5 Overloaded operators e e e 25
17 Templates 26
17.6 Name resolution o e e e e e e e e 26
Contents ii

©ISO/IEC N4720

1 Scope [intro.scope]

This Technical Specification describes extensions to the C++ Programming Language (Clause 2) that introduce
modules, a functionality for designating a set of translation units by symbolic name and ability to express
symbolic dependency on modules, and to define interfaces of modules. These extensions include new syntactic
forms and modifications to existing language semantics.

The International Standard, ISO/IEC 14882:2017, provides important context and specification for this
Technical Specification. This document is written as a set of changes against that specification. Instructions
to modify or add paragraphs are written as explicit instructions. Modifications made directly to existing
text from the International Standard use underlining to represent added text and strikethroueh to represent
deleted text.

Scope 1

(1.1)

©ISO/IEC N4720

2 Normative references [intro.refs]

The following referenced document is indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

— ISO/IEC 14882:2017, Programming Languages — C++

ISO/IEC 14882:2017 is hereafter called the C++ Standard. The numbering of clauses, subclauses, and
paragraphs in this document reflects the numbering in the C++ Standard. References to clauses and
subclauses not appearing in this Technical Specification refer to the original, unmodified text in the C++
Standard.

Normative references 2

©ISO/IEC N4720

3 Terms and definitions [intro.defs]

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— IEC Electropedia: available at http://www.electropedia.org

— ISO Online browsing platform: available at http://www.iso.org/obp

Terms and definitions 3

http://www.electropedia.org
http://www.iso.org/obp

©ISO/IEC N4720

4 General [intro]

4.1 Implementation compliance [intro.compliance]

Conformance requirements for this specification are those defined in subclause 4.1 in the C++ Standard,
except that references to the C++ Standard therein shall be taken as referring to the document that is the
result of applying the editing instructions. Similarly, all references to the C++ Standard in the resulting
document shall be taken as referring to the resulting document itself. [Note: Conformance is defined in
terms of the behavior of programs. — end note|

4.2 Acknowledgments [intro.ack]

This specification is based, in part, on the design and implementation described in the paper P0142R0 “A
Module System for C++".

§4.2 4

©ISO/IEC

5 Lexical conventions

5.1 Separate translation

[lex]

Modify paragraph 5.1/2 as follows

2

5.2 Phases of translation

[Note: Previously translated translation units and instantiation units can be preserved individ-
ually or in libraries. The separate translation units of a program communicate (6.5) by (for
example) calls to functions whose identifiers have external or module linkage, manipulation of
objects whose identifiers have external or module linkage, or manipulation of data files. Transla-
tion units can be separately translated and then later linked to produce an executable program
(6.5). —end note]

Modify bullet 7 of paragraph 5.2/1 as follows:

7. White-space characters separating tokens are no longer significant. Each preprocessing

token is converted into a token (5.6). The resulting tokens are syntactically and semanti-
cally analyzed and translated as a translation unit. [Note: The process of analyzing and
translating the tokens may occasionally result in one token being replaced by a sequence
of other tokens (17.2). —end note] It is implementation-defined whether the source for
module interface units for modules on which the current translation unit has an interface
dependency (10.7.3) is required to be available. [Note: Source files, translation units and
translated translation units need not necessarily be stored as files, nor need there be any
one-to-one correspondence between these entities and any external representation. The
description is conceptual only, and does not specify any particular implementation. —end
note]

Add new paragraphs as follows:

2 The result of processing a translation unit from phases 1 through 7 is a directed graph called

§5.2

the abstract semantics graph of the translation unit:

— Each vertex, called a declset, is a citation (10.7.3), or a collection of non-local declarations

and redeclarations (Clause 10) declaring the same entity or other non-local declarations of
the same name that do not declare an entity.

— A directed edge (D1, D) exists in the graph if and only if the declarations contained in D»

declare an entity mentioned in a declaration contained in D;.

The abstract semantics graph of a module is the subgraph of the abstract semantics graph of its
module interface unit generated by the declsets the declarations of which are in the purview of
that module interface unit. [Note: The abstract semantics graphs of modules, as appropriately
restricted (10.7.6), are used in the processing of module-import-declarations (10.7.3) and module
implementation units. —end note]

An entity is mentioned in a declaration D if that entity is a member of the basis of D, a set of
entities determined as follows:

— If D is a namespace-definition, the basis is the union of the bases of the declarations in its

namespace-body.

— If D is a nodeclspec-function-declaration,

— if D declares a contructor, the basis is the union of the type-bases of the parameter
types

N4720

[lex.separate]

[lex.phases]

©ISO/IEC

— if D declares a conversion function, the basis is the type-basis of the return type
— otherwise, the basis is empty.
If D is a function-definition, the basis is the type-basis of the function’s type
If D is a simple-declaration
— if D declares a typedef-name, the basis is the type-basis of the aliased type
— if D declares a variable, the basis is the type-basis of the type of that variable

— if D declares a function, the basis is the type-basis of the type of that function

— if D defines a class type, the basis is the union of the type-bases of its direct base
classes (if any), and the bases of its member-declarations.

— otherwise, the basis is the empty set.

If D is a template-declaration, the basis is the union of the basis of its declaration, the set
consisting of the entities (if any) designated by the default template template arguments,
the default non-type template arguments, the type-bases of the default type template ar-
guments. Furthermore, if D declares a partial specialization, the basis also includes the
primary template.

If D is an explicit-instantiation or an explicit-specialization, the basis includes the primary
template, and all the entities in the basis of the declaration of D.

If D is a linkage-specification, the basis is the union of all the bases of the declarations
contained in D.

If D is a namespace-alias-definition, the basis is the singleton consisting of the namespace
denoted by the qualified-namespace-specifier.

If D is a using-declaration, the basis is the union of the bases of all the declarations intro-
duced by the using-declarator.

If D is a using-directive, the basis is the singleton consisting of the norminated namespace.
If D is an alias-declaration, the basis is the type-basis of its defining-type-id.
Otherwise, the basis is empty.

The type-basis of a type T is

If T is a fundamental type, the type-basis is the empty set.
If T is a cv-qualified type, the type-basis is the type-basis of the unqualified type.

If T is a member of an unknown specialization, the type-basis is the type-basis of that
specialization.

If T is a class template specialization, the type-basis is the union of the set consisting of
the primary template and the template template arguments (if any) and the non-dependent
non-type template arguments (if any), and the type-bases of the type template arguments
(if any).

If T is a class type or an enumeration type, the type-basis is the singleton {7'}.

If T is a reference to U, or a pointer to U, or an array of U, the type-basis is the type-basis
of U.

If T is a function type, the type-basis is the union of the type-basis of the return type and
the type-bases of the parameter types.

If T is a pointer to data member of a class X, the type-basis is the union of the type-basis
of X and the type-basis of member type.

If T is a pointer to member function type of a class X, the type-basis is the union of the
type-basis of X and the type-basis of the function type.

Otherwise, the type-basis is the empty set.

4 [Note: The basis of a declaration includes neither non-fully evaluated expressions nor entities
used in those expressions. [Example:

§5.2

N4720

©ISO/IEC N4720

const int size = 2;

int aryll[sizel; // size not in aryl’s basis
constexpr int identity(int x) { return x; }
int ary2[identity(2)]; // identity not in ary2’s basis

template<typename> struct S;
template<typename, int> struct S2;
constexpr int g(int);

template<typename T, int N>

S<S2<T, g(N)>> £(0); // £'s basis: {8, 82}
—end example] —end note]
5.11 Keywords [lex.key]

In 5.11, add these two keywords to Table 5 in paragraph 5.11/1: module and import.

Modify note in paragraph 5.11/1 as follows:

1

[Note: The export-and register keywords-are is unused but are is reserved for future use. —end
note|

§5.11 7

©ISO/IEC N4720

6 Basic concepts [basic]

Modify paragraph 6/3 as follows:

3 An entity is a value, object, reference, function, enumerator, type, class member, bit-field, tem-
plate, template specialization, namespace, module, or parameter pack.

Modify paragraph 6/4 as follows:

4 A name is a use of an identifier (5.10), operator-function-id (16.5), literal-operator-id (16.5.8),
conversion-function-id (15.3.2), er- template-id (17.2), or module-name (10.7) that denotes an
entity or label (9.6.4, 9.1).

Add a sixth bullet to paragraph 6/8 as follows:

— they are module-names composed of the same dotted sequence of identifiers.

6.1 Declarations and definitions [basic.def]

Modify paragraph 6.1/1 as follows:

1 A declaration (Clause 10) may introduce one or more names into a translation unit or redeclare
names introduced by previous declarations. If so, the declaration specifies the interpretation
and attributessemantic properties of these names. [...]

Append the following two bullets to paragraph 6.1/2:

2 A declaration is a definition unless

— it is an explicit specialization (17.7.3) whose declaration is not definition-,
— it is a module-import-declaration,

— it is a proclaimed-ownership-declaration.

[Example:
import std.io; // make names from std.io available
export module M; // toplevel declaration for M
export struct Point { // define and export Point
int x;
int y;
I

—end example]

6.2 One-definition rule [basic.def.odr]
Replace paragraph 6.2/1 with:

1 Avariable, function, class type, enumeration type, or template shall not be defined where a prior
definition is reachable (6.4).

Modify opening of paragraph 6.2/6 as follows

§6.2 8

©ISO/IEC N4720

6 There can be more than one definition of a class type (Clause 12), enumeration type (10.2), in-
line function with external or module linkage (10.1.6), inline variable with external or module
linkage (10.1.6), class template (Clause 17), non-static function template (17.5.6), static data
member of a class template (17.5.1.3), member function of a class template (17.5.1.1), or tem-
plate specialization for which some template parameters are not specified (17.7, 17.5.5) in a
program provided that each-definition-appears-in-a-differenttranslation-unit no prior definition
is reachable (6.4) at the point where a definition appears, and provided the definitions satisfy
the following requirements. For an entity with an exported declaration, there shall be only one
definition of that entity; a diagnostic is required only if the abstract semantics graph of the
module contains a definition of the entity. [Note: If the definition is not in the interface unit,
then at most one module unit can have and make use of the definition. —end note] Given
such an entity named D defined in more than one translation unit, then

6.3 Scope [basic.scope]

6.3.2 Point of declaration [basic.scope.pdecl]
Add a new paragraph 6.3.2/13 as follows:

13 The point of declaration of a module is immediately after the module-name in a module-declaration.

6.3.6 Namespace scope [basic.scope.namespace]

From end-user perspective, there are really no new lookup rules to learn. The “old” rules are the “new” rules,
with appropriate adjustment in the definition of “associated entities.”

Modify paragraph 6.3.6/1 as follows:

1 The declarative region of a namespace-definition is its namespace-body. Entities declared in a
namespace-body are said to be members of the namespace, and names introduced by these
declarations into the declarative region of the namespace are said to be member names of the
namespace. A namespace member name has namespace scope. Its potential scope includes its
namespace from the name’s point of declaration (6.3.2) onwards; and for each using-directive
(10.3.4) that nominates the member’'s namespace, the member’s potential scope includes that
portion of the potential scope of the using-directive that follows the member’s point of declaration.
If a name X (not having internal linkage) is declared in a namespace N in the purview of the
module interface unit of a module M, the potential scope of X includes the portion of the
namespace N in the purview of every module implementation unit of M and, if the name X is
exported, in every translation unit that imports M after a module-import-declaration nominating
M. [Example:

// Translation unit #1
export module M;
export int sq(int i) { return ixi; }

// Translation unit #2

import M;
int main() { return sq(9); % // OK: ’sq’ from module M

—end example]

6.4 Name lookup [basic.lookup]
Modify paragraph 6.4/1 as follows:

1 The name lookup rules apply uniformly to all names (including typedef-names (10.1.3), namespace-
names (10.3), and class-names (12.1)) wherever the grammar allows such names in the context

§6.4 9

©ISO/IEC N4720

discussed by a particular rule. Name lookup associates the use of a name with a set of decla-
rations (6.1) or citations (10.7.3) of that name. For all intent and purposes of further semantic
processing requiring declarations, a citation is replaced with the declarations contained in its
declset. [...] Only after name lookup, function overload resolution (if applicable) and access
checking have succeeded are the attributessemantic properties introduced by the name’s decla-
ration used further in the expression processing (Clause 8).

Add new paragraph 6.4/5 as follows:

5 A declaration is reachable from a program point if it can be found by unqualified name lookup
in its scope.

6.4.2 Argument-dependent name lookup [basic.lookup.argdep]

Modify paragraph 6.4.2/2 as follows:

2 For each argument type T in the function call, there is a set of zero or more associated name-
spaces (10.3) and a set of zero or more associated elasses entities (other than namespaces) to
be considered. The sets of namespaces and elasses entities are determined entirely by the types
of the function arguments (and the namespace of any template template argument). Typedef
names and using-declarations used to specify the types do not contribute to this set. The sets
of namespaces and elasses entities are determined in the following way:

— If T is a fundamental type, its associated sets of namespaces and elasses entities are both
empty.

— If T is a class type (including unions), its associated elasses entities are the class itself;
the class of which it is a member, if any; and its direct and indirect base classes. Its
associated namespaces are the innermost enclosing namespaces of its associated elasses
entities. Furthermore, if T is a class template specialization, its associated namespaces
and elasses entities also include: the namespace and elasses entities associated with the
types of the template arguments provided for template type parameters (excluding template
template arguments); the templates used as template template arguments; the namespaces
of which any template template arguments are members; and the classes of which any
member template used as template template arguments are members. [Note: Non-type
template arguments do not contribute to the set of associated namespaces. —end note]

— If T is an enumeration type, its associated namespace is the innermost enclosing name-
space of its declaration, and its associated entities are T, and, it it is a class member, its
asseeiated-elassis the member’s class;-else-ithasnoe-asseeiated-elass.

— If T is a pointer to U or an array of U, its associated namespaces and elasses entities are
those associated with U.

— If T is a function type, its associated namespaces and elasses entities are those associated
with the function parameter types and those associated with the return type.

— If T is a pointer to a data member of class X, its associated namespaces and elasses entities
are those associated with the member type together with those associated with X.

If an associated namespace is an inline namespace (10.3.1), its enclosing namespace is also
included in the set. If an associated namespace directly contains inline namespaces, those
inline namespaces are also included in the set. In addition, if the argument is the name or ad-
dress of a set of overloaded functions and/or function templates, its associated elasses entities
and namespaces are the union of those associated with each of the members of the set, i.e.,
the elasses entities and namespaces associated with its parameter types and return type. Ad-
ditionally, if the aforementioned set of overloaded functions is named with a template-id, its
associated elasses entities and namespaces also include those of its type template-arguments
and its template template-arguments.

Modify paragraph 6.4.2/4 as follows:

§6.4.2

10

©ISO/IEC N4720

4 When considering an associated namespace, the lookup is the same as the lookup performed
when the associated namespace is used as a qualifier (6.4.3.2) except that:

— Any using-directives in the associated namespace are ignored.

— Any namespace-scope friend declaration functions or friend function templates declared
in asseeiated classes in the set of associated entities are visible within their respective
namespaces even if they are not visible during an ordinary lookup (14.3).

— All names except those of (possibly overloaded) functions and function templates are ig-
nored.

— In resolving dependent names (17.6.4), any function or function template that is owned by
a named module M (10.7), that is declared in the module interface unit of M, and that has
the same innermost enclosing non-inline namespace as some entity owned by M in the set
of associated entities, is visible within its namespace even if it is not exported.

6.5 Program and linkage [basic.link]
Change the definition of translation-unit in paragraph 6.5/1 to:

toplevel-declaration-seqopt

toplevel-declaration-seq
toplevel-declaration

toplevel-declaration-seq toplevel-declaration

toplevel-declaration
module-declaration
declaration

Insert a new bullet between first and second bullet of paragraph 6.5/2:

— When a name has module linkage, the entity it denotes can be referred to by names from
other scopes of the same module unit (10.7.1) or from scopes of other module units of that
same module.

Modify bullet (3.2) of paragraph 6.5/3 as follows:

— a non-inline non-exported variable of non-volatile const-qualified type that is neither ex-
plicitly declared extern nor previously declared to have external or module linkage; or

Modify paragraph 6.5/4 as follows:

4 An unnamed namespace or a namespace declared directly or indirectly within an unnamed
namespace has internal linkage. All other namespaces have external linkage. A name having

namespace scope that has not been given internal linkage above has-the-same-linkage-as—the
enelosing namespaee-ifitand that is the name of

— a variable; or
— a function; or

— a named class (Clause 12), or an unnamed class defined in a typedef declaration in which
the class has the typedef name for linkage purposes (10.1.3); or

— anamed enumeration (10.2), or an unnamed enumeration defined in a typedef declaration
in which the enumeration has the typedef name for linkage purposes (10.1.3); or

— a template-

has the same linkage as the enclosing namespace if

— said namespace has internal linkage, or

§ 6.5 11

©ISO/IEC N4720

— the name is exported (10.7.2), or is declared in a proclaimed-ownership-declaration, or is
not being declared in the purview of a named module (10.7.1);

otherwise, the name has module linkage.

Modify 6.5/6 as follows:

6 The name of a function declared in block scope and the name of a variable declared by a block
scope extern declaration have linkage. If there is a visible declaration of an entity with link-
age having the same name and type, ignoring entities declared outside the innermost enclosing
namespace scope, the block scope declaration declares that same entity and receives the link-
age of the previous declaration. If that entity was exported by an imported module or if the
containing block scope is in the purview of a named module, the program is ill-formed. If there
is more than one such matching entity, the program is ill-formed. Otherwise, if no matching
entity is found, the block scope entity receives external linkage.

Modify paragrapgh 6.5/9 as follows:

9 Two names that are the same (Clause 9) and that are declared in different scopes shall denote
the same variable, function, type, template or namespace if

— both names have external or module linkage and are declared in declarations attached to
the same module', or else both names have internal linkage and are declared in the same
translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance,
of the same class; and

— when both names denote functions, the parameter-typelists of the functions (11.3.5) are
identical; and

— when both names denote function templates, the signatures (17.5.6.1) ar the same.

If two declarations declaring entities (other than namespaces) and attached to different modules
introduce two names that are the same and that both have external linkage, the program is
ill-formed; no diagnostic required. [Note: using-declarations, typedef declarations, and alias-declarations
do not declare entities, but merely introduce synonyms. Similarly, using-directives do not

declare entities, either. —end note]
6.6 Start and termination [basic.start]
6.6.1 main function [basic.start.main]

Modify paragraph 6.6.1/1 as follows:

1 A program shall contain a global function called main declared in the purview of the global
module.

1) This provision supports implementations where exported entities in different modules have different implementation symbols.
Conversely, for other implementations, exported entities have the same implementation symbols regardless of in which module
they are declared. Such implementations are supported for the time being by disallowing all situations where the same names
with external linkage might appear from different modules.

§ 6.6.1 12

©ISO/IEC N4720

10 Declarations [dcl.dcl]

Add a new alternative to declaration in paragraph 10/1 as follows

declaration:
block-declaration
nodeclspec-function-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
empty-declaration
attribute-declaration
export-declaration
module-import-declaration
proclaimed-ownership-declaration

10.1 Specifiers [dcl.spec]
10.1.2 Function specifiers [dcl.fct.spec]
Add a new paragraph 10.1.2/7 as follows:

7 An exported inline function shall be defined in the same translation unit containing its export
declaration. [Note: There is no restriction on the linkage (or absence thereof) of entities that
the function body of an exported inline function can reference. A constexpr function (10.1.5) is
implicitly inline. —end note]

10.1.6 The inline specifier [dcl.inline]
Modify paragraph 10.1.6/6 as follows

6 Some definition for Aan inline function or variable shall be definedreachable in every translation
unit in which it is odr-used and the function or variable shall have exactly the same definition
in every case (6.5). [Note: A call to the inline function or a use of the inline variable may be
encountered before its definition appears in the translation unit. —end note] If the definition of
a function or variable appears in a translation unit before its first declaration as inline, the pro-
gram is ill-formed. If a function or variable with external or module linkage is deelaredreachable
via an inline declaration in one translation unit, it shall be deelaredreachable via an inline
declaration in all translation units in which it appearsis reachable; no diagnostic is required.
An inline function or variable with external or module linkage shall have the same address in
all translation units. [Note: A static local variable in an inline function with external or module
linkage always refers to the same object. A type defined within the body of an inline function
with external or module linkage is the same type in every translation unit. —end note]

10.3 Namespaces [basic.namespace]

Modify paragraph 10.3/1 as follows:

1 A namespace is an optionally-named declarative region. The name of a namespace can be used
to access entities declared in that namespace; that is, the members of the namespace. Unlike

§10.3 13

©ISO/IEC N4720

other declarative regions, the definition of a namespace can be split over several parts of one
or more translation units. A namespace with external linkage is always exported regardless
of whether any of its namespace-definitions is introduced by export. [Note: There is no way to
define a namespace with module linkage. —end note] [Example:

export module M;
namespace N { // N has external linkage and is exported

}
—end example]

10.3.3 The using declaration [namespace.udecl]
Modify paragraph 10.3.3/1 as follows:

1 Each using-declarator in a using-declaration introduces a set of declarations and citations into
the declarative region in which the using-declaration appears. The set of declarations and
citations introduced by the using-declarator is found by performing qualified name lookup (6.4.3,
13.2) for the name in the using-declarator, excluding functions that are hidden as described be-
low. If the using-declarator does not name a constructor, the unqualified-id is declared in the
declarative region in which the using-declaration appears as a synonym for each declaration or
citation introduced by the using-declarator. [...]

Add a new subclause 10.7 titled “Modules” as follows:

10.7 Modules [dcl.module]
10.7.1 Module units and purviews [dcl.module.unit]

module-declaration:
export,,; module module-name attribute-specifier-seqopt ;

module-name:
module-name-qualifier-seqop: identifier

module-name-qualifier-seq:
module-name-qualifier .
module-name-qualifier-seq identifier .

module-name-qualifier:
identifier

1 A module unit is a translation unit that contains a module-declaration. A named module is the
collection of module units with the same module-name. A translation unit shall not contain
more than one module-declaration. A module-name has external linkage but cannot be found by
name lookup.

2 A module interface unit is a module unit whose module-declaration contains the export keyword;
any other module unit is a module implementation unit. A named module shall contain exactly
one module interface unit.

3 A module unit purview starts at the module-declaration and extends to the end of the translation
unit. The purview of a named module M is the set of module unit purviews of M’'s module units.

4 The global module is the collection of all declarations not in the purview of any module. By
extension, such declarations are said to be in the purview of the global module. [Note: The
global module has no name, no module interface unit, and is not introduced by any module-
declaration. —end note]

§10.7.1 14

©ISO/IEC N4720

5 A module is either a named module or the global module. A proclaimed-ownership-declaration is
attached to the module it nominates; any other declaration is attached to the module in whose
purview it appears.

6 For a namespace-scope declaration D of an entity (other than a namespace), if D is within a
proclaimed-ownership-declaration for a module X, the entity is said to be owned by X. Oth-
erwise, if D is the first declaration of that entity, then that entity is said to be owned by the
module in whose purview D appears.

7 If a declaration attached to some module matches (according to the redeclaration rules) a reach-
able declaration from a different module, the program is ill-formed. [Example:

// module interface of M

int £(); /) #1

int gQ); // #2, owned by the global module
export module M;

export using ::f; // OK: does not declare an entity

int gO; // error: matches #2, but appears in the purview of M
export int h(); /) #3

export int k(); /) #4

// other translation unit

import M;

static int hQ); // error: matches #3

int k(Q); // error: matches #/

—end example]

8 The subgraph of the abstract semantics graph G of a module M generated by the nodes of G,
excluding those introducing names with internal linkage, is available to name lookup in the
purview of every module implementation unit of M. The declsets made available by the module-
import-declarations in the purview of the module interface unit of M are also available to name
lookup in the purview of all module implementation units of M.

10.7.2 Export declaration [dcl.module.interface]

export-declaration:
export declaration
export { declaration-seqop: }

1 An export-declaration shall only appear at namespace scope and only in the purview of a mod-
ule interface unit. An export-declaration shall not appear directly or indirectly within an un-
named namespace. An exported-declaration has the declarative effects of its declaration or its
declaration-seq (if any). An export-declaration does not establish a scope and shall not contain
more than one export keyword. The interface of a module M is the set of all export-declarations
in its purview.

2 In an export-declaration of the form

export declaration

the declaration shall be a module-import-declaration, or it shall declare at least one name, and
if that declaration declares an entity, the decl-specifier-seq (if any) of the declaration shall not
contain static. The declaration shall not be an unnamed-namespace-definition or a proclaimed-
ownership-declaration. [Example:

export int x; // error: not in the purview of a module interface unit
export module M;
namespace {

§10.7.2 15

©ISO/IEC

export int a;
}
export static int b;
export int £();
export namespace N { }

N4720

// error: export within unnamed namespace

// error: b explicitly declared static.

// OK
// OK

export using namespace N; // error: does not declare a name

—end example]

If the declaration is a using-declaration (10.3.3), any entity to which the using-declarator ulti-
mately refers shall have been introduced with a name having external linkage. [Example:

int £(Q)

export module M;
export using ::f;
struct S;

export using ::S;
namespace N {

// [has external linkage

// OK

// error: S has module linkage

int h(Q);
static int h(int); // #I
}
export using N::h; // error: #1 has internal linkage

—end example]

[Note: Names introduced by typedef declarations are not so constrained. [Example:

export module M;
struct S;

export using T = S; // OK: exports name T denoting type S

—end example] —end note]

An export-declaration of the form

export { declaration-seqop: }

is equivalent to a sequence of declarations formed by prefixing each declaration of the declaration-

seq (if any) with export.

4 A namespace-scope or a class-scope declaration lexically contained in an export-declaration,
as well as the entities and the names it introduces are said to be exported. The exported
declarations in the interface of a module are reachable from any translation unit importing that
module. [Note: Exported names have either external linkage or no linkage; see 6.5 —end note]

[Example:

// Interface unit of M
export module M;
export struct X {
void £();

struct Y { };

};

namespace {
struct S { };
}

§10.7.2

16

©ISO/IEC N4720

export void f(8); // OK

struct T { };

export T id(T); // OK

export struct A; // A exported as incomplete

export auto rootFinder(double a) {
return [=] (double x) { return (x + a/x)/2; };
}

export comnst int n = 5; // OK: n has external linkage

// Implementation unit of M
module M;
struct A {

int value;

};

// main program
import M;
int main() {
3. £0; // OK: X and X::f are exported
X::Y y; // OK: X::Y is exported as a complete type
auto f = rootFinder(2); // OK
return A{45}.value; // error: A is incomplete

—end example |

5 [Note: Redeclaring a name in an export-declaration cannot change the linkage of the name
(10.1.1). [Example:

// Interface unit of M
export module M;

static int £(Q); /) #1
export int £(); // error: #1 gives internal linkage
struct S; /) #2
export struct S; // error: #2 gives module linkage

namespace {
namespace N {

extern int x; /) #38
}
}
export int N::x; // error: #8 gives internal linkage
—end example] —end note]

6 Declarations in an exported namespace-definition or in an exported linkage-specification (10.5)
are implicitly exported and subject to the rules of exported declarations. [Example:

export module M;
export namespace N {
int x; // OK
static_assert(l == 1); // error: does not declare a name

}

§10.7.2 17

©ISO/IEC N4720

—end example]

10.7.3 Import declaration [dcl.module.import]

module-import-declaration:
import module-name attribute-specifier-seqopt ;

1 A module-import-declaration shall appear only at global scope, and not in a linkage-specification
or proclaimed-ownership-declaration. A module-import-declaration nominating a module M makes
every citation and every exported declaration from the abstract semantics graph of M available,
as a citation, to name lookup in the current translation unit, in the same namespaces and
contexts as in M. A citation for a declaration attached to a module M is a pair of M and
the corresponding declset from the abstract semantics graph of M. [Note: The declarations in
the declsets and the entities denoted by the declsets are not redeclared in the translation unit
containing the module-import-declaration. —end note] [Example:

// Interface unit of M
export module M;
export namespace N {

struct A { };
}
namespace N {

struct B { };

export struct C {

friend void £(C) { } // exported, visible only through argument-dependent lookup

};

}

// Translation unit 2

import M;

N::Aad{3; // OK.

N::Bb {3} // error: ‘B’ not found in N.

void h(N::C c) {
f(c); // OK: ‘N::f’ found via argument-dependent lookup
N::f(c); // error: f” not found via qualified lookup in N.

}

—end example]

2 A module M1 has a dependency on a module M2 if any module unit of M1 contains a module-import-
declaration nominating M2. A module shall not have a dependency on itself. [Example:

module M;
import M; // error: cannot import M in its own unit.

—end example]

3 A module M1 has an interface dependency on a module M2 if the module interface of M1 contains
a module-import-declaration nominating M2, or if there exists a module M3 such that M1 has an
interface dependency on M3 and M3 has an interface dependency on M2. A module shall not have
an interface dependency on itself. [Example:

// Interface unit of M1
export module M1;
import M2;

// Interface unit of M2

§10.7.3 18

©ISO/IEC N4720

export module M2;
import M3;

// Interface unit of M3
export module M3;
import Mi; // error: cyclic interface dependency M3 -> M1 -> M2 -> M3

—end example]

4 A translation unit has an interface dependency on a module M if it is a module implementation
unit of M, or if it contains a module-import-declaration nominating M, or if it has an interface
dependency on a module that has an interface dependency on M.

10.7.4 Module exportation [dcl.module.export]

1 An exported module-import-declaration nominating a module M2 in the purview of a module inter-
face unit of a module M makes all exported names of M2 visible to any translation unit importing
M, as if that translation unit also contains a module-import-declaration nominating M2. [Note: A
module interface unit (for a module M) containing a non-exported module-import-declaration does
not make the imported names transitively visible to translation units importing the module M. —
end note] In addition to its usual semantics, a module-import-declaration nominating a module
M with a module interface unit containing one or more exported module-import-declarations also
behaves as if it nominates each module nominated by an exported module-import-declaration in
M; this may in turn lead it to be considered to nominate yet additional modules.

10.7.5 Proclaimed ownership declaration [dcl.module.proclaim)]

proclaimed-ownership-declaration:
extern module module-name : declaration

1 A proclaimed-ownership-declaration shall only appear at namespace scope. It shall not appear
directly or indirectly within an unnamed namespace. A proclaimed-ownership-declaration has
the declarative effects of its declaration. The declaration shall declare at least one name, and the
decl-specifier-seq (if any) of the declaration shall not contain static. The declaration shall not be
a namespace-definition, an export-declaration, or a proclaimed-ownership-declaration. The decla-
ration shall not be a defining declaration (6.1). A proclaimed-ownership-declaration nominating
a module M shall not appear in the purview of M.

2 A proclaimed-ownership-declaration asserts that the entities introduced by the declaration are
exported by the nominated module. [Note: A proclaimed-ownership-declaration may be used to
break circular dependencies between two modules (in possibly too finely designed components.)
[Example:

// TU 1

export module Ty;
extern module Sym: struct Symbol;
export struct Type {

Symbol* decl;

/.
}.

s

// TU 2
export module Sym;
extern module Ty: struct Type;
export struct Symbol {
const char* name;
const Typex type;

/).

§10.7.5 19

©ISO/IEC N4720

};

—end example] —end note]

3 The program is ill-formed, no diagnostic required, if the nominated module in the proclaimed-
ownership-declaration does not export the entities introduced by the declaration.

10.7.6 Reachability [dcl.module.reach]

1 When declarations from the abstract semantics graph of a module M are made available to
name lookup in another translation unit 7U, it is necessary to determine the interpretation of
the names they introduce and their semantic properties. Except as noted below, the reachable
semantic properties of declset D (or of the entity, if any, denoted by that declset) of the abstract
semantic graph of M from TU are

— if D contains at least one exported declaration, the semantic properties cumulatively ob-
tained in the context of the exported declaration (10.7.2) members of D in the module
interface unit of M. Furthermore, if D denotes an inline function, the property that the
inline function has a definition (10.1.2) is a reachable semantic property, even if that defi-
nition is not exported. Otherwise,

— the semantic properties cumulatively obtained in the context of all declaration members of
D in the module interface unit of M.

[Note: These reachable semantic properties include type completeness, type definitions, initial-
izers, default arguments of functions or template declarations, attributes, visibility to normal
lookup, entities that are direct targets of edges emanating from D in the abstract semantics
graph of M, etc. Since default arguments are evaluated in the context of the call expres-
sion, reachable semantic properties of the corresponding parameter types apply in that context.
[Example:

// TU 1

struct F { int £ { 42 }; };
export module M;

export using T = F;

export struct A { int i; };
export int f(int, A = { 3 });

export struct B; // exported as incomplete type

struct B { // definition not exported
operator int();

1

export int g(B = B{});
export int h(int = B{}); // #I

export struct S {
static constexpr int v(int);

};

export S jO; // S attendant entity of j()
constexpr int S::v(int x) { return 2 * x; }

// TU 2

import M;

int main() {
TtA{}; // OK: reachable semantic properties of T include completeness.
auto x = £(42); // OK: default argument A{3} evaluated here.

§ 10.7.6 20

©ISO/IEC N4720

auto y = h(); // OK: completeness of B only checked at #1.
auto z = g(); // error: parameter type incomplete here.
constexpr auto a = decltype(j())::v(3); // OK: S:v defined

// in the abstract semantics graph of M (10.1.2)

—end example] —end note]

2 Within a module interface unit, it is necessary to determine that the declarations being exported
collectively present a coherent view of the semantic properties of the entities they reference. This
determination is based on the semantic properties of attendant entities. [Note: The reachable
semantics properties of an entity, the declarations of which are made available via a module-
import-declaration, are determined by its owning module and are unaffected by the importing
module. [Example:

// module interface of M1
export module Mi;
export struct S { };

// module interface of M2
import Mi;

export module M2;

export S £(); /) #1
export Sx g(); /) #2

// elsewher
import M2;
auto x = £(); // OK: completeness of S obtained at #1
auto y = *g(); // OK: completeness of S obtained at #2

—end example] —end note]
For each declaration D exported from the module interface unit of a module M, there is a set of
zero or more attendant entities defined as follows:
— If D is a type alias declaration, then the attendant entities of D are those determined by
the aliased type at the point of the declaration D.

— If D is a using-declaration, the set of attendant entities is the union of the sets of attendant
entities of the declarations introduced by D at the point of the declaration.

— If D is a template declaration, the set of attendant entities is the union of the set of at-
tendant entities of the declaration being parameterized, the set of attendant entities deter-
mined by the default type template arguments (if any), and the set consisting of the entities
(if any) designated by the default template template argument, the default non-type tem-
plate arguments (if any).

— if D has a type T, the set of attendant entities is the set of attendant entities determined
by T at the point of declaration.

— Otherwise, the set of attendant entities is empty.

The set of attendant entities determined by a type T is defined as follows (exactly one of these
cases matches):

— If T is a fundamental type, then the set of attendant entities is empty.

— If T is a member of an unknown specialization, the set of attendant entities is the set of
attendant entities determined by that unknown specialization.

§ 10.7.6 21

©ISO/IEC N4720

— If T' is a class type owned by M, the set of attendant entities includes T itself, the union
of the sets of the attendant entities determined by its direct base classes owned by M, the
sets of the attendant entities of its data members, static data member templates, member
functions, member function templates, the function parameters of its constructors and
constructor templates. Furthermore, if 7 is a class template specialization, the set of
attendant entities also includes: the class template if it is owned by M, the union of
the sets of attendant entities determined by the type template-arguments, the sets of the
attendant entities of the templates used as template template-arguments, the sets of the
attendant entities determined by the types of the non-type template-arguments.

— If T'is an enumeration type owned by M, the set of attendant entities is the singleton {7'}.

— If T'is a reference to U, or a pointer to U, or an array of U, the set of attendant entities is
the set of attendant entities determined by U.

— If T is a function type, the set of attendant entities is the union of the set of attendant
entities determined by the function parameter types and the return type.

— if T is a pointer to data member of class X, the set of attendant entities is the union of the
set of attendant entities of the member type and the set of attendant entities determined
by X.

— If T is a pointer to member function type of a class X, the set of attendant entities is the
union of the set of attendant entities determined by X and the set of attendant entities
determined by the function type.

— Otherwise, the set of attendant entities is empty.

If a class template X is an attendant entity, then its reachable semantic properties include all
the declarations of the primary class template, its partial specializations, and its explicit spe-
cializations in the containing module interface unit. If a complete class type X is an attendant
entity, then its reachable semantic properties include the declarations of its nested types but
not the definitions of the types denoted by those members unless those definitions are exported.
Furthermore, if X is an attendant entity of an exported declaration D, then its reachable seman-
tic properties are restricted to those defined by the exported declarations of X (if X is introduced
by an exported declaration), or by the semantic properties of X available at the point of the dec-
laration D. [Note: If X is a complete class type that is an attendant entity, its nested types
(including nested enumerations and associated enumerators) and member class templates are
not considered attendant entities unless they are determined attendant entities by one of the
rules above. Attendant entities allow type checking of direct member selection of an object even
if that object’s type isn’t exported. Declarations, such as asm-declaration or alias-declaration or
static_assert-declaration, that do not declare entities do not contribute to the set of attendant
entities. —end note] [Example:

export module M;
export struct Foo; // Foo exported as incomplete type
struct Foo { };
export using ::Foo; // OK: exports complete type Foo
struct C { };
struct S
struct B { };
using C = ::C;
int i : 8;
double d { };
};

{
{
B

export S £(); // S attendant entity of f().

// translation unit 2
import M;
int main() {
int x = sizeof (decltype(£())::B); // error: incomplete B

§ 10.7.6 22

©ISO/IEC N4720

int y = sizeof (decltype(£())::C); // error: incomplete C

decltype(f(0)) s { };

s.d = 3.14; // OK

return &s.i != nullptr; // error: cannot take address of bitfield

—end example]

3 If X is an attendant entity of two exported declarations designating two distinct entities, its

reachable semantic properties shall be the same at the points where the declarations occur.

[Example:

export module M;
struct S;

export S £(); /) #1
struct S { };
export S g(); // error: class type S has different properties from #1

—end example |

§ 10.7.6

23

©ISO/IEC N4720

12 Classes [class]
12.2 Class members [class.mem)]
12.2.4 Bit-fields [class.bit]

Modify paragraph 12.2.4/1 as follows:

1 [...] The bit-field attributesemantic property is not part of the type of the class member. [...]

§12.2.4 24

©ISO/IEC N4720

16 Overloading [over]

16.5 Overloaded operators [over.oper]

16.5.8 User-defined literals [over.literal]
Modify paragraph 16.5.8/7 as follows:

7 [Note: Literal operators and literal operator templates are usually invoked implicitly through
user-defined literals (5.13.8). However, except for the constraints described above, they are
ordinary namespace-scope functions and function templates. In particular, they are looked up
like ordinary functions and function templates and they follow the same overload resolution
rules. Also, they can be declared inline or constexpr, they may have internal, module, or
external linkage, they can be called explicitly, their addresses can be taken, etc. —end note]

§ 16.5.8 25

©ISO/IEC N4720

17 Templates [temp]

Modify paragraph 17/2 as follows:

2 A template-declaration can appear only as a namespace scope or class scope declaration. Its
declaration shall not be an export-declaration or a proclaimed-ownership-declaration. In a func-
tion template declaration, the last component of the declarator-id shall not be a template-id.

17.6 Name resolution [temp.res]

17.6.4 Dependent name resolution [temp.dep.res]

Add new example to paragraph 17.6.4/1:

[Example:

// Header file X.h
namespace Q {

struct X { };
}

// Interface unit of M1
#include "X.h" // global module
namespace Q {
void g_impl(X, X);
}
export module Mi;
export template<typename T>
void g(T t) {
g_impl(t, Q::X{ }); // #1: ADL in definition contezt finds Q::g_impl
}

// Interface unit of M2
#include "X.h"
import Mi;
export module M2;
void h(Q::X x) {

g(0); // OK
}

—end example]

Add new paragraphs to 17.6.4:

2 [Example:
// Interface unit of Std
export module Std;
export template<typename Iter>

void indirect_swap(Iter lhs, Iter rhs)

{
swap (¥1hs, *rhs); // swap can be found only via ADL

§17.6.4 26

©ISO/IEC N4720

}

// Interface unit of M
import Std;
export module M;

struct S { /fx ..x/ };
void swap(S&, S&); /) #1;

void £(S* p, Sx q)
{

indirect_swap(p, q); // instantiation finds #1 via ADL
}

—end example]
3 [Example:

// Header file X.h
struct X { /% ... x/ };
X operator+(X, X);

// Module interface unit of F
export module F;
export template<typename T>
void £(T t) {

t + t;
}

// Module interface unit of M
#include "X.h"
import F;
export module M;
void g(X x) {
£(x); // OK: instantiates f from F
// point of instantiation: just before g(X)

—end example]

4 [Note: [Example:
// Module interface unit of A

export module A;
export template<typename T>
void £(T t) {
t ot /) #1
}

// Module interface unit of B
export module B;
import Aj;
export template<typename T, typename U>
void g(T t, U u) {
f(t);

§17.6.4 27

©ISO/IEC

5

}

// Module interface unit of C

#include <string> // mot in the purview of C
import B;

export module C;

export template<typename T>

void h(T t) {
g(std::string{ }, t);

}
// Translation unit of main()
import C;
void i() {
h(0); // ill-formed: '+’ not found at #1
// point of instantiation of h<<int>: just before ’i()’
// point of instantiation of g<std::string, int>: same as h<int>’s
// point of instantiation of f<std::string>: same as g<std::string, int>’s
}

—end example]

This example is ill-formed by the current specification. It is an open question as to how often the
scenario occurs in practice, and whether to make the example well-formed or whether additional

syntax will be introduced that does not involve modifying the header. —end note]

[Note: [Example:

// Module interface unit of M1
#include <algorithm>

export module Mi;
export template<typename T, typename U>
void f(T& t, Uk w) {

min(t, w; // #1
3

// Module interface unit of M2

#include <locale>

struct Aux : std::ctype_base {
operator int() const;

I

void min(Aux&, Aux&); // #2

export module M2;
import Mi;
export template<typename T>
void g(T t) {
Aux aux;
f (aux, aux);

}

// Elsewhere, translation unit of global module
import M2;
void h() {

g(0);

§17.6.4

N4720

28

©ISO/IEC N4720

In the body of the function h, the call to g triggers a request for (implicit) instantiation of g<int>.
The point of instantiation of that specialization is right before the definition of h. That instan-
tiation, in turn, requests the implicit instantiation of f<Aux,Aux>. The point of instantiation of
that specialization immediately preceeds that of g<int>. In that context, the invocation of min:
(a) selects std: :min; and (b) invokes the implicit conversion. In particular, the declaration at #2
is not used because it is neither available in the context of definition, nor in the context of in-
stantiation of f<Aux,Aux>. However, paragraph 17.6.4.2/1 of the C++ Standard formally renders
the behavior of the program undefined because the better match wasn’t considered. This is a
case where it is unclear if that paragraph is too broad and needs further restrictions, or if there
ought to be a mechanism to consider all such functions. —end example] —end note]

17.6.4.1 Point of instantiation [temp.point]
Replace paragraph 17.6.4.1/7 as follows:

7 . g _ ; rtdenendson 5

speeialization—in—the—same—translatieon—unit:The instantiation context of an expression that
depends on template arguments is the context of a lookup at the point of instantiation of the
enclosing template.

17.6.4.2 Candidate functions [temp.dep.candidate]
Modify paragraph 17.6.4.2/1 as follows

If the call would be ill-formed or would find a better match had the lookup within the associated
namespaces considered all the function declarations with external or module linkage introduced
in those namespaces in all translation units, not just considering those declarations found in
the template definition and template instantiation contexts, then the program has undefined
behavior.

§17.6.4.2 29

	Contents
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 General
	4.1 Implementation compliance
	4.2 Acknowledgments

	5 Lexical conventions
	5.1 Separate translation
	5.2 Phases of translation
	5.11 Keywords

	6 Basic concepts
	6.1 Declarations and definitions
	6.2 One-definition rule
	6.3 Scope
	6.4 Name lookup
	6.5 Program and linkage
	6.6 Start and termination

	10 Declarations
	10.1 Specifiers
	10.3 Namespaces
	10.7 Modules

	12 Classes
	12.2 Class members

	16 Overloading
	16.5 Overloaded operators

	17 Templates
	17.6 Name resolution

