
WG21/P0868R0: Selected RCU Litmus Tests

Paul E. McKenney
Linux Technology Center

IBM Beaverton
paulmck@linux.vnet.ibm.com

Alan Stern
The Rowland Institute at Harvard University

stern@rowland.harvard.edu

Andrew Hunter
Google

ahh@google.com

The indefatigable “TBD”

November 20, 2017

Abstract

This document provides a set of litmus tests for read-copy update (RCU) that
are selected to help work out ordering constraints and requirements. All of these
litmus tests illustrate patterns that a correct RCU implementation must prohibit,
although a few of them are closely related to litmus tests that can be allowed. These
litmus tests use a C-language syntax similar to that of the Linux kernel because we
do not yet have an executable C++ memory model that includes RCU.

1 Introduction
This document assumes that the reader has some knowledge of RCU, for exam-
ple, as provided by WG21/P0461R2 [4], WG21/P0297R1 [3], WG21/P0232R0 [6],
and WG21/P0561R1 [5]. An good understanding of RCU read-side critical sections
(rcu_reader) and RCU grace periods (for example, synchronize_rcu()) will be
particularly helpful. Some knowledge of memory ordering and related tools is also
helpful [1, 2].

For the tl;dr crowd, here is a rough summary of the relevant RCU rules, where an
RCU read-side critical section is the lifetime of an rcu_reader and where an RCU
grace period is the duration of a call to synchronize_rcu():

1. If any part of a given RCU read-side critical section precedes anything preceding
a given RCU grace period, then that entire RCU read-side critical section, along
with everything preceding it, must precede anything following that RCU grace
period.

1

mailto:paulmck@linux.vnet.ibm.com
mailto:stern@rowland.harvard.edu
mailto:ahh@google.com

WG21/P0868R0 2

Listing 2.1: Classic RCU Use Case
1 C MP+o-sr-r+rlk-o-addr-o-rulk
2 {
3 int *0:r3=z0; int *x0=y0;
4 }
5
6 P0(int **x0, int *y0)
7 {
8 WRITE_ONCE(*x0, r3); /* x0.store(&z0, relaxed); */
9 synchronize_rcu(); /* std::synchronize_rcu(); */

10 smp_store_release(y0, 1); /* y0.store(1, release); */
11 }
12
13
14 P1(int **x0)
15 {
16 int *r1;
17 int r2;
18
19 rcu_read_lock(); /* std::rcu_reader rr; */
20 r1 = rcu_dereference(*x0); /* r1 = x0.load(consume); */
21 r2 = READ_ONCE(*r1); /* r2 = r1->load(relaxed); ??? */
22 rcu_read_unlock();
23 }
24
25
26 exists
27 (1:r1=y0 /\ 1:r2=1)

2. If anything following a given RCU grace period precedes any part of a given
RCU read-side critical section, then anything preceding that RCU grace period
must precede that entire RCU read-side critical section, along with everything
following it.

3. It is permissible for a given RCU grace period to completely overlap a given RCU
read-side critical section, so that the grace period begins before the critical section
begins and ends after the critical section ends. However, the reverse is absolutely
forbidden as a consequence of the previous pair of rules.

4. RCU read-side critical sections are not required to impose any ordering other
than that specified by the above rules. In particular, if a program contains no
RCU grace periods, the RCU read-side critical sections need not have any effect
whatsoever.

5. In the absence of RCU read-side critical sections, RCU grace periods have the
same ordering properties as do full memory fence. However, if a given execution
is forbidden in the absence of RCU read-side critical sections, adding such critical
sections cannot cause that execution to become allowed. The C++ full memory
fence is atomic_thread_fence(memory_order_seq_cst).

The goal is to arrive at wording that causes the C++ standard to enforce these rules.
Section 2 gives an overview of litmus-test syntax and semantics, Section 3 presents

a series of of litmus tests intended to illustrate ordering properties, Section 4 provides a
rationale for the various ordering properties, and finally, Section 6 provides a decoder
ring for the otherwise inexplicable litmus-test filenames.

WG21/P0868R0 3

2 A Tour Through A Litmus Test
This section takes a tour through Listing 2.1, a realistic RCU litmus test that is
nevertheless not useful for semantics discussion due to its reliance on the infamous
memory_order_consume load. However, this litmus test does represent the bread-and-
butter use case within the Linux kernel, so it is a worthwhile illustration of litmus-test
syntax and semantics.

Line 1 identifies the language (“C”, as opposed as some other language or some
CPU’s assembly language) and names the test. As far as the litmus-test analysis tools
are concerned, the name is arbitrary, but these tests use a convention that identifies the
type of the test. This convention is explained in Section 6. There are other conventions:
In some situations, a more concise but more specialized naming scheme is desirable,
and in other situations the naming scheme is automatically generated by one of many
tools and scripts.

Lines 2-4 contain initialization statements. All variables are by default initialized
to zero, so in cases zero initialization is sufficient, line 3 could be omitted. However,
lines 2 and 4 are required. There are two initialization statements on line 3. The first
statement (0:r3=z0) specifies that process 0’s local register r3 is to be initialized to
the address of a global variable named z0. Because z0 isn’t otherwise mentioned in the
initialization section, its initial value is zero. The second statement (x0=y0) specifies
that global variable x0 is initialized to the address of another zero-initialized global
variable y0.

Variables not requiring initialization need not be declared, which raises the question
of how global and local variables are distinguished. The answer evokes old memories
of FORTRAN: Variables starting with “r” are local, and all others are global.1

Lines 6-11 and 14-23 define processes P0() and P1(), respectively. Processes can
be arbitrarily named, as long as the first letter is P and the remaining letters are numeric,
and numbered consecutively from zero.

A given process can directly access only those global variables passed in by reference.
Therefore, line 6 shows that P0 can directly access only x0 and y0. Similarly, line 14
shows that P1 can directly access only x0, however, it might indirectly access either y0
or z0 because the addresses of these two variables might be contained in x0.

Processes of course contain statements, and the current versions of litmus-test
analysis tools [1, 2] only handle Linux-kernel statements for the various RCU-related
primitives. As a service to the C++-savvy reader, close C++ equivalents are provided
as comments. The tool understands ordering, so for example, the tool understands that
the effects of lines 20 and 21 might become visible in either order, and in fact might
appear in different orders to different processes.

These processes should be viewed as running concurrently, and the tools processing
litmus tests carry out something similar to a full state-space search. These tools then
classify all valid executions based on whether the logic expression in the exists clause
on lines 26-27 holds or not. Please note that this expression is evaluated only “at the
end of time” for each valid execution, “after all the dust has settled”. For example, if the
expression evaluates to true midway through a particular valid execution, but evaluates
to false at the end of that execution, then that execution will be classified as resulting
in a false outcome.

1 Back in ancient times, undeclared FORTRAN variables beginning with the letters “i”, “j”, “k”, “l”,
“m”, or “n” were implicitly INTEGER, and all other undeclared variables were implicitly REAL. Modern best
practices dictate that a IMPLICIT NONE declaration be used, which requires that all variables be explicitly
declared, thus preventing any number of hard-to-find bugs stemming from variable-name typos.

WG21/P0868R0 4

Listing 3.1: Two-Process Load Buffering
1 C LB+o-sr-o+rlk-o-o-rulk
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 int r1;
8
9 r1 = READ_ONCE(*x0); /* r1 = x0.load(relaxed); */

10 synchronize_rcu(); /* std::synchronize_rcu(); */
11 WRITE_ONCE(*x1, 1); /* x1.store(1, relaxed); */
12 }
13
14
15 P1(int *x0, int *x1)
16 {
17 int r1;
18
19 rcu_read_lock(); /* std::rcu_reader rr; */
20 r1 = READ_ONCE(*x1); /* r1 = x1.load(relaxed); */
21 WRITE_ONCE(*x0, 1); /* x0.store(1, relaxed); */
22 rcu_read_unlock();
23 }
24
25 exists
26 (0:r1=1 /\ 1:r1=1)

Note also that the /\ in the litmus test denotes logical AND. The individual terms are
evaluated in a manner similar to the initialization statements, so that 1:r1=y0 evaluates
to true iff P1()’s local variable r1 ends up containing a value equal to the address of
global variable y0. Similarly, 1:r2=1 evaluates to true iff P1()’s local variable r2
ends up containing the value 1.

The following section will discuss litmus tests that are less frequently used in
practice, but which more clearly illustrate ordering requirements.

3 Litmus Tests
Section 3.1 presents a litmus test illustrating RCU’s fundamental grace-period guarantee
and Section 3.2 presents more ornate litmus tests. In the Linux kernel, any RCU
implementation providing the fundamental grace-period guarantee can be proven to also
satisfy the guarantees illustrated by the more ornate litmus tests. Proving (or disproving)
this result in the context of the C++ memory model is important future work.

3.1 Basic Litmus Test
Listing 3.1 contains a basic litmus test that illustrates the lowest-level ordering guar-
antees that RCU provides. This idiom is used in change-of-state use cases where the
state change need not be instantaneously visible throughout the application, but where
specific processing must wait until the change becomes globally visible. In other words,
if P1() sees P0()’s write, P0() must be guaranteed not to see P1()’s write, and vice
versa. Similar guarantees must be provided for store buffering and message-passing
litmus tests, but for simplicity, this paper focuses on load buffering.

The ordering guarantee has three cases:

1. P0()’s r1 ends with the value 1.

2. P1()’s r1 ends with the value 1.

WG21/P0868R0 5

3. Both r1 variables end with the value 0.

For the first case, if P0()’s r1 ends with the value 1, some part of P1()’s RCU read-
side critical section (spanning lines 19-22) precedes the call to P0’s synchronize_rcu().
RCU therefore requires that the destructor for P1()’s RCU read-side critical section
must in some sense precede the return from P0’s synchronize_rcu(), whether “pre-
cedes” means synchronizes with, happens before, strongly happens before, or something
else. Either way, it is necessary that anything within or before P1()’s RCU read-side crit-
ical section must happen before everything sequenced after P0’s synchronize_rcu().
Therefore, when P0()’s r1 ends with the value 1, then P1()’s r1 must end with the
value 0, so that the exists clause’s expression cannot evaluate to true.

For the second case, if P1()’s r1 ends with the value 1, some part of P1()’s
RCU read-side critical section (spanning lines 19-22) follows the return from P0’s
synchronize_rcu(). RCU therefore requires that the call to P0’s synchronize_rcu()
must in some sense precede the constructor for P1()’s RCU read-side critical section,
whether “precedes” means synchronizes with, happens before, strongly happens be-
fore, or something else. Either way, it is necessary that anything sequenced before
P0’s synchronize_rcu() must happen before everything within or after P1()’s RCU
read-side critical section. Therefore, when P1()’s r1 ends with the value 1, then P0()’s
r1 must end with the value 0, so that the exists clause’s expression cannot evaluate to
true.

For the third case, we have no ordering information. It is still the case that
there is ordering because RCU read-side critical sections are not allowed to span
synchronize_rcu() invocations. So it is the case that either:

1. Anything within or before P1()’s RCU read-side critical section happens before
everything sequenced after P0’s synchronize_rcu(), or

2. Anything sequenced before P0’s synchronize_rcu() must happen before ev-
erything within or after P1()’s RCU read-side critical section.

However, it is not possible to distinguish between these two outcomes.

3.2 Ornate Litmus Tests
Section 3.2.1 presents three-process load buffering with one reader, Section 3.2.2
presents three-process load buffering with two readers, Section 3.2.3 presents four-
process load buffering, and finally Section 3.2.4 presents six-process load buffering.

3.2.1 Three-Process Load Buffering, One Reader

Listing 3.2 shows a litmus test with three processes, two invoking synchronize_rcu()
and a third containing an RCU read-side critical section.

The interactions between P1() and P2() on the one hand and between P2() and
P0() on the other can be modeled in a manner similar to the interactions between P0()
and P1() in Listing 3.1. In particular, if P0()’s and P2()’s r1 both obtain the value 1,
then:

1. Anything within or before P2()’s RCU read-side critical section happens before
everything sequenced after P0’s synchronize_rcu(), and

WG21/P0868R0 6

Listing 3.2: Three-Process Load Buffering, One Reader
1 C LB+o-sr-o+o-sr-o+rlk-o-o-rulk
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 int r1;
8
9 r1 = READ_ONCE(*x0); /* r1 = x0.read(relaxed); */

10 synchronize_rcu(); /* std::synchronize_rcu(); */
11 WRITE_ONCE(*x1, 1); /* x1.store(1, relaxed); */
12 }
13
14
15 P1(int *x1, int *x2)
16 {
17 int r1;
18
19 r1 = READ_ONCE(*x1); /* r1 = x1.read(relaxed); */
20 synchronize_rcu(); /* std::synchronize_rcu(); */
21 WRITE_ONCE(*x2, 1); /* x2.store(1, relaxed); */
22 }
23
24
25 P2(int *x2, int *x0)
26 {
27 int r1;
28
29 rcu_read_lock(); /* std::rcu_reader rr; */
30 r1 = READ_ONCE(*x2); /* r1 = x2.read(relaxed); */
31 WRITE_ONCE(*x0, 1); /* x0.store(1, relaxed); */
32 rcu_read_unlock();
33 }
34
35 exists
36 (0:r1=1 /\ 1:r1=1 /\ 2:r1=1)

WG21/P0868R0 7

2. Anything sequenced before P1’s synchronize_rcu() must happen before ev-
erything within or after P2()’s RCU read-side critical section.

However, careful consideration of RCU’s safety properties indicates that this sit-
uation requires everything preceding P1()’s synchronize_rcu() to happen before
everything following P0()’s synchronize_rcu(), so that P1()’s r1 must obtain the
value 0. In other words, the choice of ordering type from synchronize_rcu() to a
subsequent rcu_reader’s constructor and the choice of ordering from a rcu_reader’s
destructor to a subsequent synchronize_rcu() must allow some sort of transitivity.

Alternatively, suppose that P1()’s and P2()’s r1 obtain the value 1. In this case,
everything preceding both P0()’s and P1()’s invocations of synchronize_rcu()
must happen before everything within or after P2()’s RCU read-side critical section,
so that P0()’s r1 would obtain the value 0. Furthermore, synchronize_rcu() has
all the ordering semantics of the atomic_memory_fence(memory_order_seq_cst)
full fence, which means that line 10 synchronizes with line 20, which implies that line 9
happens before line 21.

Finally, suppose that P0()’s r1 and P1()’s r1 both obtain the value 1. In this case,
everything within or before P2()’s RCU read-side critical section must happen before
everything following either P0()’s and P1()’s invocations of synchronize_rcu(),
so that P2()’s r1 would obtain the value 0. Again, synchronize_rcu() full-fence
semantics imply that line 9 happens before line 21.

3.2.2 Three-Process Load Buffering, Two Readers

Listing 3.3 shows two reader processes (P1() and P2()) and a third process with not
one but two invocations of synchronize_rcu().

Suppose that both P0()’s and P1()’s r1 both obtain the value 1. Then everything
within or before P2()’s RCU read-side critical section, including line 32, happens
before P0()’s first synchronize_rcu() returns. Because P1()’s r1 obtains the value
1, the call to P0()’s first invocation of synchronize_rcu() happens before everything
within or after P1()’s RCU read-side critical section, including line 22. This means that
line 32 happens before line 22, and therefore that P2()’s r1 must obtain the value 0.

Suppose that both P0()’s and P2()’s r1 both obtain the value 1. Because P0()’s r1
obtains 1, everything within or before P2()’s RCU read-side critical section happens be-
fore anything following the return from P0()’s first invocation of synchronize_rcu(),
a set that includes the entirety of P0()’s second invocation of synchronize_rcu().
Now, P1()’s write to x2 in some sense precedes P2()’s read because P2()’s r1 ob-
tained the value 1,2 which in turn means that P1()’s write to x2 in some sense also
precedes P0()’s second invocation of synchronize_rcu(). Therefore, everything
within or before P1()’s RCU read-side critical section must happen before the return
from P0()’s second synchronize_rcu(), which means that P2()’s r1 must obtain
the value zero.

Finally, suppose that both P1()’s and P2()’s r1 both obtain the value 1. Because
P1()’s r1 obtains 1, anything preceding the call to P0()’s second synchronize_rcu()
invocation (including P0()’s first invocation of synchronize_rcu()) must happen
before anything within or after P1()’s RCU read-side critical section. Again, P1()’s
write to x2 in some sense precedes P2()’s read because P2()’s r1 obtained the value
1, which in turn means that P2()’s read from x2 in some sense also follows P0()’s

2 Recall that RCU read-side critical sections are in no way shape or form allowed to completely overlap
the execution of any synchronize_rcu() invocation.

WG21/P0868R0 8

Listing 3.3: Three-Process Load Buffering, Two Readers
1 C LB+o-sr-sr-o+rlk-o-o-rulk+rlk-o-o-rulk
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 int r1;
8
9 r1 = READ_ONCE(*x0); /* r1 = x0.read(relaxed); */

10 synchronize_rcu(); /* std::synchronize_rcu(); */
11 synchronize_rcu(); /* std::synchronize_rcu(); */
12 WRITE_ONCE(*x1, 1); /* x1.store(1, relaxed); */
13 }
14
15
16 P1(int *x1, int *x2)
17 {
18 int r1;
19
20 rcu_read_lock(); /* std::rcu_reader rr; */
21 r1 = READ_ONCE(*x1); /* r1 = x1.load(relaxed); */
22 WRITE_ONCE(*x2, 1); /* x2.store(1, relaxed); */
23 rcu_read_unlock();
24 }
25
26
27 P2(int *x2, int *x0)
28 {
29 int r1;
30
31 rcu_read_lock(); /* std::rcu_reader rr; */
32 r1 = READ_ONCE(*x2); /* r1 = x2.load(relaxed); */
33 WRITE_ONCE(*x0, 1); /* x0.store(1, relaxed); */
34 rcu_read_unlock();
35 }
36
37 exists
38 (0:r1=1 /\ 1:r1=1 /\ 2:r1=1)

WG21/P0868R0 9

Listing 3.4: Four-Process Load Buffering
1 C LB+o-sr-o+o-sr-o+rlk-o-o-rulk+rlk-o-o-rulk
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 int r1;
8
9 r1 = READ_ONCE(*x0); /* r1 = x0.read(relaxed); */

10 synchronize_rcu(); /* std::synchronize_rcu(); */
11 WRITE_ONCE(*x1, 1); /* x1.store(1, relaxed); */
12 }
13
14
15 P1(int *x1, int *x2)
16 {
17 int r1;
18
19 r1 = READ_ONCE(*x1); /* r1 = x1.read(relaxed); */
20 synchronize_rcu(); /* std::synchronize_rcu(); */
21 WRITE_ONCE(*x2, 1); /* x2.store(1, relaxed); */
22 }
23
24
25 P2(int *x2, int *x3)
26 {
27 int r1;
28
29 rcu_read_lock(); /* std::rcu_reader rr; */
30 r1 = READ_ONCE(*x2); /* r1 = x2.read(relaxed); */
31 WRITE_ONCE(*x3, 1); /* x3.store(1, relaxed); */
32 rcu_read_unlock();
33 }
34
35
36 P3(int *x0, int *x3)
37 {
38 int r1;
39
40 rcu_read_lock(); /* std::rcu_reader rr; */
41 r1 = READ_ONCE(*x3); /* r1 = x3.read(relaxed); */
42 WRITE_ONCE(*x0, 1); /* x0.store(1, relaxed); */
43 rcu_read_unlock();
44 }
45
46 exists
47 (0:r1=1 /\ 1:r1=1 /\ 2:r1=1 /\ 3:r1=1)

first invocation of synchronize_rcu(). Therefore, everything preceding the call to
P0()’s first invocation of synchronize_rcu() must happen before everything within
or after P2()’s RCU read-side critical section, which means that P0()’s r1 must obtain
the value zero.

This example shows that a consecutive pair of synchronize_rcu() invocations is
stronger than that of a single invocation: If P0() had only one synchronize_rcu(),
the resulting litmus test would be allowed, that is, all three instances of r1 could obtain
the value 1. In contrast, a consecutive pair of atomic_thread_fence(memory_order_seq_cst)
invocations is no stronger than a single invocation.

3.2.3 Four-Process Load Buffering

Listing 3.4 shows a four-process litmus test two processes using synchronize_rcu()
and two processes having RCU read-side critical sections. The two interesting orders
occur when P0()’s, P1()’s, and P3()’s r1 all obtain the value 1 and when P1()’s,

WG21/P0868R0 10

P2()’s, and P3()’s r1 all obtain the value 1. In both orderings, P1()’s r1 obtains the
value 1, which means that the two invocations of synchronize_rcu() are serialized,
that is, P0()’s synchronize_rcu() ends before P1()’s synchronize_rcu() begins.

In the first order, where P0()’s, P1()’s, and P3()’s r1 all obtain the value 1,
because P0()’s r1 obtains the value 1, everything within or preceding P3()’s RCU
read-side critical section happens before P0()’s invocation of synchronize_rcu(), in
particular, line 41 happens before line 11. Because P3()’s r1 obtains the value 1, line 31
happens before line 11. Now, P2()’s RCU read-side critical section is in no way, shape,
or form allowed to completely overlap P1()’s invocation of synchronize_rcu(),
which means that everything within or preceding P2()’s RCU read-side critical section
happens before everything following P1()’s invocation of synchronize_rcu(), in
particular, line 30 happens before line 21. This means that P2()’s r1 must obtain the
value zero.

In the second order, when P1()’s, P2()’s, and P3()’s r1 all obtain the value
1, because P2()’s obtains the value 1, everything preceding P1()’s invocation of
synchronize_rcu() happens before everything within and after P2()’s RCU read-
side critical section, in particular, line 19 happens before line 31. Because P3()’s r1
obtains the value 1, line 19 happens before line 41. Now, P3()’s RCU read-side critical
section is in no way, shape, or form allowed to completely overlap P0()’s invocation
of synchronize_rcu(), which means that everything preceding P0()’s invocation of
synchronize_rcu() happens before everything within or after P3()’s RCU read-side
critical section, in particular, line 9 happens before line 42. This means that P0()’s r1
must obtain the value zero.

3.2.4 Six-Process Load Buffering

Listing 3.5 shows a six-process litmus test with three processes using synchronize_rcu()
and three processes having RCU read-side critical sections. The two interesting orders
occur when P0()’s, P1()’s, P2()’s, P4()’s, and P5()’s r1 all obtain the value 1 and
when P1()’s, P2()’s, P3(), P4(), and P5()’s r1 all obtain the value 1. In both order-
ings, P1()’s and P2()’s r1 obtain the value 1, which means that the three invocations of
synchronize_rcu() are serialized, that is, P0()’s synchronize_rcu() ends before
P1()’s synchronize_rcu() begins and P1()’s synchronize_rcu() ends before
P2()’s synchronize_rcu() begins.

In the first order, where P0()’s, P1()’s, P2()’s, P4()’s, and P5()’s r1 all ob-
tain the value 1, because P0()’s r1 obtains the value 1, everything within or pre-
ceding P5()’s RCU read-side critical section happens before P1()’s invocation of
synchronize_rcu(), in particular, line 62 happens before line 11. Because P5()’s
r1 obtains the value 1, line 52 also in some sense precedes line 11. Now, P4()’s RCU
read-side critical section is in no way, shape, or form allowed to completely overlap
P1()’s invocation of synchronize_rcu(), which means that everything within or
preceding P4()’s RCU read-side critical section happens before everything follow-
ing P1()’s invocation of synchronize_rcu(). In particular, line 51 happens before
line 21. Because P4()’s r1 obtains the value 1, line 41 also in some way precedes
line 21. But P3()’s RCU read-side critical section is in no way, shape, or form allowed
to completely overlap P2()’s invocation of synchronize_rcu(), which means that
everything within or preceding P3()’s RCU read-side critical section happens before
everything following P2()’s invocation of synchronize_rcu(). In particular, line 40
happens before line 31. This means that P3()’s r1 must obtain the value zero.

In the second order, when P1()’s, P2()’s, P3()’s, P4()’s, and P5()’s r1 all obtain

WG21/P0868R0 11

Listing 3.5: Six-Process Load Buffering
1 C LB+o-sr-o+o-sr-o+o-sr-o+rlk-o-o-rulk+rlk-o-o-rulk+rlk-o-o-rulk
2 {
3 }
4
5 P0(int *x0, int *x1)
6 {
7 int r1;
8
9 r1 = READ_ONCE(*x0); /* r1 = x0.read(relaxed); */

10 synchronize_rcu(); /* std::synchronize_rcu(); */
11 WRITE_ONCE(*x1, 1); /* x1.store(1, relaxed); */
12 }
13
14
15 P1(int *x1, int *x2)
16 {
17 int r1;
18
19 r1 = READ_ONCE(*x1); /* r1 = x1.read(relaxed); */
20 synchronize_rcu(); /* std::synchronize_rcu(); */
21 WRITE_ONCE(*x2, 1); /* x1.store(1, relaxed); */
22 }
23
24
25 P2(int *x2, int *x3)
26 {
27 int r1;
28
29 r1 = READ_ONCE(*x2); /* r1 = x2.read(relaxed); */
30 synchronize_rcu(); /* std::synchronize_rcu(); */
31 WRITE_ONCE(*x3, 1); /* x1.store(1, relaxed); */
32 }
33
34
35 P3(int *x3, int *x4)
36 {
37 int r1;
38
39 rcu_read_lock(); /* std::rcu_reader rr; */
40 r1 = READ_ONCE(*x3); /* r1 = x3.read(relaxed); */
41 WRITE_ONCE(*x4, 1); /* x1.store(1, relaxed); */
42 rcu_read_unlock();
43 }
44
45
46 P4(int *x4, int *x5)
47 {
48 int r1;
49
50 rcu_read_lock(); /* std::rcu_reader rr; */
51 r1 = READ_ONCE(*x4); /* r1 = x4.read(relaxed); */
52 WRITE_ONCE(*x5, 1); /* x1.store(1, relaxed); */
53 rcu_read_unlock();
54 }
55
56
57 P5(int *x0, int *x5)
58 {
59 int r1;
60
61 rcu_read_lock(); /* std::rcu_reader rr; */
62 r1 = READ_ONCE(*x5); /* r1 = x5.read(relaxed); */
63 WRITE_ONCE(*x0, 1); /* x1.store(1, relaxed); */
64 rcu_read_unlock();
65 }
66
67 exists
68 (0:r1=1 /\ 1:r1=1 /\ 2:r1=1 /\ 3:r1=1 /\ 4:r1=1 /\ 5:r1=1)

WG21/P0868R0 12

r1 = READ_ONCE(x0);

synchronize_rcu();

WRITE_ONCE(x1, 1);

r1 = READ_ONCE(x1);

synchronize_rcu();

WRITE_ONCE(x2, 1);

r1 = READ_ONCE(x2);

synchronize_rcu();

WRITE_ONCE(x3, 1);

rcu_read_lock();
WRITE_ONCE(x4, 1);

r1 = READ_ONCE(x3);
rcu_read_unlock();

rcu_read_lock();
WRITE_ONCE(x5, 1);

r1 = READ_ONCE(x4);
rcu_read_unlock();

rcu_read_lock();
WRITE_ONCE(x0, 1);

r1 = READ_ONCE(x5);
rcu_read_unlock();

Figure 1: Visual Representation of Six-Process Load Buffering

the value 1, because P3()’s obtains the value 1, everything preceding P2()’s invoca-
tion of synchronize_rcu() happens before everything within and after P3()’s RCU
read-side critical section. Because P4()’s r1 obtains the value 1, line 29 happens
before line 51. Now, P4()’s RCU read-side critical section is in no way, shape, or
form allowed to completely overlap P1()’s invocation of synchronize_rcu(), which
means that everything preceding P1()’s invocation of synchronize_rcu() happens
before everything within or after P4()’s RCU read-side critical section, in particular,
line 19 happens before line 52. Because P5()’s r1 obtains the value 1, line 19 happens
before line 63. Now, P5()’s RCU read-side critical section is in no way, shape, or
form allowed to completely overlap P0()’s invocation of synchronize_rcu(), which
means that everything preceding P0()’s invocation of synchronize_rcu() happens
before everything within or after P5()’s RCU read-side critical section, in particular,
line 11 happens before line 63. This means that P0()’s r1 must obtain the value zero.

4 RCU Ordering Rationale
To see why synchronize_rcu() includes the ordering semantics of a full memory
fence, consider P0() and P1() in Listing 3.4. Without full-fence semantics, it might be
that P1()’s r1 would obtain the value 1, but line 7’s read not happen before line 17’s
write. This outcome would be quite surprising to most users, and furthermore it would be
quite difficult to create a synchronize_rcu() implementation that interacted correctly
with RCU read-side critical sections, but that failed to provide full-fence ordering
semantics.

Another way to estimate ordering effects in simple RCU litmus tests is to assume
that RCU grace periods are a given fixed duration and that RCU read-side critical
sections are a slightly shorter fixed duration. Then if maximally obtuse memory-access
reorderings are applied, the RCU relationships may be easily diagrammed. For example,
the relationships for Listing 3.5, assuming that all r1 local variables other than that

WG21/P0868R0 13

of P0() obtain the value one, are shown in Figure 1. Further consideration of this
estimation approach gives rise to the counting rule for pure RCU litmus tests: As long
as there are at least as many RCU grace periods as there are RCU read-side critical
sections in the litmus test’s cycle, the outcome will be forbidden.

This leads to the question that is the whole point of this paper: What ordering
is required between rcu_reader constructors and destructors on the one hand and
synchronize_rcu() on the other?

5 Candidate Solutions
The following sections propose various solutions to the RCU ordering problem. Note
that these proposals are not necessarily all mutually exclusive.

5.1 Synchronizes-With
This section documents the initial state of D0556R4 (“Proposed Wording for Concurrent
Data Structures: Hazard Pointer and Read-Copy-Update (RCU)”).

This proposal assumes that synchronize_rcu() is implemented using a call to
rcu_retire() whose deleter3 awakens the thread that invoked rcu_retire(), which
allows specification of ordering to focus on rcu_retire(), and, by extension, the
retire() member function of rcu_obj_base.

This proposal guarantees that for each instance R of rcu_reader, one of the
following two things hold:

1. rcu_retire synchronizes with R’s constructor, or

2. R’s destructor synchronizes with the invocation of the deleter.

5.2 Happens-Before and Synchronizes-With
This section documents Andrew Hunter’s proposed update to D0556R4 (“Proposed
Wording for Concurrent Data Structures: Hazard Pointer and Read-Copy-Update
(RCU)”).

This proposal also assumes that synchronize_rcu() is implemented using a call to
rcu_retire() whose deleter awakens the thread that invoked rcu_retire(), which
again allows specification of ordering to focus on rcu_retire(), and, by extension,
the retire() member function of rcu_obj_base.

This proposal guarantees that for each instance R of rcu_reader, one of the
following two things hold:

1. rcu_retire happens before R’s constructor, or

2. R’s destructor synchronizes with the invocation of the deleter.

In other words, this proposal is the same as that of Section 5.1, except that the first
option’s synchronizes with has become happens before.

3 What the Linux kernel calls an RCU callback, C++ calls a deleter.

WG21/P0868R0 14

Listing 5.1: Split synchronize_rcu()
1 synchronize_rcu()
2 {
3 atomic_thread_fence(memory_order_seq_cst);
4 stmt1: /* nop */ ;
5 stmt2: /* nop */ ;
6 atomic_thread_fence(memory_order_seq_cst);
7 }

5.3 Split synchronize_rcu()

The preceding sections assume that synchronize_rcu() is implemented as an rcu_retire()
whose callback awakens the thread that invoked the rcu_retire(). This section in-
stead handles synchronize_rcu() directly, as proposed by Alan Stern.

This proposal splits synchronize_rcu() as shown in Listing 5.1. Given this split,
the RCU ordering requirements could be expressed as: For any read-side critical section
and any call to synchronize_rcu() in different threads, the behavior should be as if
either:

1. The rcu_reader destructor synchronizes with stmt2 (this is the case where the
corresponding RCU read-side critical section comes before the end of the grace
period), or

2. The stmt1 in synchronize_rcu() synchronizes with the rcu_reader con-
structor (this is the case where the start of the RCU grace period comes before
the corresponding RCU read-side critical section).

Note that the above definition best matches Linux-kernel RCU semantics given
a fully functional strong fence. This proposal therefore assumes that one of the pro-
posals for strengthening C++’s atomic_thread_fence(memory_order_seq_cst)
eventually becomes part of the standard.

Within a given thread, for any read-side critical section and any call to synchronize_rcu():

1. The rcu_reader destructor is sequenced before synchronize_rcu(), or

2. The invocation of synchronize_rcu() is sequenced before the rcu_reader
constructor.

Placing a synchronize_rcu() between a rcu_reader’s constructor and destruc-
tor is not a strategy to win. If you are lucky, all that will happen is a deadlock. If you
are not so lucky, you will invoke undefined behavior.

6 Litmus-Test Filename Decoder Ring
The name of the file is “C-” followed by a litmus-test class name and process descriptors,
and ended by “.litmus”. Each process descriptor consists of “+” followed by operation
designators separated by “-”. The operator designators are as follows:

a Acquire load (Linux-kernel smp_load_acquire()) or RCU pointer assignment
(Linux-kernel rcu_assign_pointer()).

addr Address dependency.

WG21/P0868R0 15

ctrl Control dependency.

data Data dependency.

l Lock acquisition (Linux-kernel spin_lock().

L Strongly ordered lock acquisition (Linux-kernel spin_lock() followed by
smp_mb__after_spinlock()).

mb Full memory fence (Linux-kernel smp_mb()). Similar to C++

atomic_thread_fence(memory_order_seq_cst).

o "ONCE" access, either Linux-kernel READ_ONCE() or WRITE_ONCE(), depending
on the litmus-test name. These are similar to C++ volatile relaxed loads and
stores.

r Store release (Linux-kernel smp_store_release()) if a store, and the mythical
consume load (Linux-kernel rcu_dereference()) if a load.

rlk Enter RCU read-side critical section (Linux-kernel rcu_read_lock()).

rmb Read memory fence (Linux-kernel smp_rmb()).

rulk Exit RCU read-side critical section (Linux-kernel rcu_read_unlock()).

sr Wait for relevant RCU readers (Linux-kernel synchronize_rcu()).

u Lock release (Linux-kernel spin_unlock().

wmb Write memory fence (Linux-kernel smp_wmb()).

References
[1] Alglave, J., Maranget, L., McKenney, P. E., Parri, A., and Stern, A. A formal

kernel memory-ordering model (part 1). https://lwn.net/Articles/718628/,
April 2017.

[2] Alglave, J., Maranget, L., McKenney, P. E., Parri, A., and Stern, A. A formal
kernel memory-ordering model (part 2). https://lwn.net/Articles/720550/,
April 2017.

[3] McKenney, P. E. Read-copy update (RCU) for C++. http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2016/p0279r1.pdf, August 2016.

[4] McKenney, P. E., Michael, M., Wong, M., Muerte, I., OâĂŹDwyer, A., ,
Hollman, D., Hunter, A., Romer, G., and Roy, L. Proposed RCU C++

API. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/
p0461r2.pdf, October 2017.

[5] Romer, G., and Hunter, A. An RAII interface for deferred recla-
mation. Available: http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2017/p0561r2.html [Viewed November 13, 2017], October 2017.

[6] Wong, M., Michael, M., andMcKenney, P. E. A lock-free concurrency toolkit for
deferred reclamation and optimistic speculation. https://www.youtube.com/
watch?v=uhgrD_B1RhQ, September 2016.

https://lwn.net/Articles/718628/
https://lwn.net/Articles/720550/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0279r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0279r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0461r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0461r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0561r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0561r2.html
https://www.youtube.com/watch?v=uhgrD_B1RhQ
https://www.youtube.com/watch?v=uhgrD_B1RhQ

	1 Introduction
	2 A Tour Through A Litmus Test
	3 Litmus Tests
	3.1 Basic Litmus Test
	3.2 Ornate Litmus Tests
	3.2.1 Three-Process Load Buffering, One Reader
	3.2.2 Three-Process Load Buffering, Two Readers
	3.2.3 Four-Process Load Buffering
	3.2.4 Six-Process Load Buffering

	4 RCU Ordering Rationale
	5 Candidate Solutions
	5.1 Synchronizes-With
	5.2 Happens-Before and Synchronizes-With
	5.3 Split synchronize_rcu()

	6 Litmus-Test Filename Decoder Ring

