

P0796r0:​ ​Supporting​ ​Heterogeneous​ ​&
Distributed​ ​Computing​ ​Through​ ​Affinity

Date: 2017-10-16

Project: ISO​ ​JTC1/SC22/WG21:​ ​Programming​ ​Language​ ​C++

Audience SG14,​ ​SG1

Authors: Gordon​ ​Brown,​ ​Ruyman​ ​Reyes,​ ​Michael​ ​Wong,​ ​H.​ ​Carter​ ​Edwards,​ ​Thomas
Rodgers

Contributors Patrice​ ​Roy,​ ​Jeff​ ​Hammond,​ ​Simon​ ​Brand

Emails: gordon@codeplay.com​,​ ​​ruyman@codeplay.com​,​ ​​michael@codeplay.com​,
hcedwar@sandia.gov​,​ ​​rodgert@twrodgers.com

Reply​ ​to: michael@codeplay.com

Abstract

Summary
This paper provides an initial meta-framework for the drives toward memory affinity for C++,
given the direction from Toronto 2017 SG1 meeting that we should look towards defining affinity
for C++ before looking at inaccessible memory as a solution to the separate memory problem
towards​ ​supporting​ ​heterogeneous​ ​and​ ​distributed​ ​computing.

Affinity​ ​Matters
Processor and memory binding, also called 'affinity', can help the performance of an application
for many reasons. Keeping a process bound to a specific thread and local memory region
optimizes cache affinity and reduces context switching and unnecessary scheduler activity.
Since memory accesses to remote locations incur higher latency and lower bandwidth, control
of thread placement to enforce affinity within parallel applications is crucial to fuel all the cores
and to exploit the full performance of the memory subsystem on Non-Uniform Memory
Architectures​ ​(NUMA).

mailto:gordon@codeplay.com
mailto:ruyman@codeplay.com
mailto:michael@codeplay.com
mailto:hcedwar@sandia.gov
mailto:rodgert@twrodgers.com
mailto:michael@codeplay.com

Traditional homogeneous designs where memory is accessible at the same cost from all
threads are difficult to scale up to the current computing needs. Current architectural trends
move towards Non-Uniform Memory Access (NUMA) architectures where, although there is a
coherent view of the memory, the cost to access it is not uniform. Memory affinity is especially
useful in these systems. Using memory that is located on the same node as the processing unit
helps​ ​to​ ​ensure​ ​that​ ​the​ ​application​ ​can​ ​access​ ​the​ ​data​ ​as​ ​quickly​ ​as​ ​possible.

In terms of traditional operating system behaviour, all processing elements of a CPU are
threads, and they are placed using high-level policies that do not necessarily match the optimal
usage​ ​pattern​ ​for​ ​a​ ​given​ ​application.

However, application developers must leverage the ​placement of memory ​and ​placement of
threads​​ ​in​ ​order​ ​to​ ​obtain​ ​maximum​ ​performance​ ​on​ ​current​ ​and​ ​future​ ​architecture.
For C++ developers to achieve this, native support for placement of threads and memory is
critical​ ​for​ ​application​ ​portability.​ ​We​ ​will​ ​refer​ ​to​ ​this​ ​as​ ​the​ ​​affinity​ ​problem​.

Affinity ​is defined as maintaining or improving the locality of threads and the most frequently
used data, especially if the program behaviour is unpredictable or changes over time, or the
machine​ ​is​ ​overloaded​ ​such​ ​that​ ​multiple​ ​programs​ ​interfere​ ​with​ ​each​ ​other.

Today, most OSes already can group processors according to their locality and distribute
processes, while keeping threads close to the initial thread, or even avoid migrating threads and
maintain first touch policy. But the fact is most programs can change their work distribution,
especially​ ​in​ ​the​ ​presence​ ​of​ ​nested​ ​parallelism.

Frequently, data is initialized at the beginning of the program by the initial thread and is used by
multiple threads. While automatic thread migration has been implemented in some OSes, the
reality is that this has migration can cause high overhead. In an optimal case the operating
system may automatically detect which thread access which data most frequently, or it may
replicate data which is read by multiple threads, or migrate data which is modified and used by
threads​ ​residing​ ​on​ ​remote​ ​locality​ ​groups.

The fact of it is that the OS may do a reasonable job, if the machine is not overloaded, and the
first touch policy has been carefully used, and the program does not change its behaviour with
respect​ ​to​ ​locality.

Imagine we have a code example using C++ STL container valarray using the latest C++17
parallel STL algorithm for_each, which applies the lambda to elements in the iterator range
[begin, end) but using a parallel execution policy such that the workload is distributed in parallel
across multiple cores on the CPU. We might expect the work to be fast, but because the
containers of valarray are initialized automatically and automatically allocated on the master
thread’s​ ​memory,​ ​we​ ​find​ ​that​ ​it​ ​is​ ​actually​ ​quite​ ​slow​ ​even​ ​when​ ​we​ ​have​ ​more​ ​than​ ​one​ ​thread.

//​ ​C++​ ​valarray​ ​STL​ ​containers​ ​are​ ​initialized
//​ ​automatically​ ​and​ ​allocated​ ​on​ ​the​ ​master's​ ​memory
valarray​<double>​​ ​a​(​N​),​​ ​b​(​N​),​​ ​c​(​N​);
//saxpying​ ​is​ ​slow
//Parallel​​ ​​foreach
std::for_each(par,​ ​std::begin(a),​ ​std::end(a)​,
[=](double​ ​b,​ ​double​ ​c){b​[​i​]+​scalar​*​c​[​i​]});
//​ ​if​ ​we​ ​can​ ​migrate​ ​data​ ​at​ ​next​ ​usage​ ​and​ ​move​ ​pages​ ​close​ ​to​ ​next​ ​accessing​ ​thread
//using​ ​the​ ​affinity​ ​interface​ ​in​ ​future
...

//now​ ​faster,​ ​because​ ​data​ ​is​ ​local​ ​now
std::for_each(par,​ ​std::begin(a),​ ​std::end(a)​,
[=](double​ ​b,​ ​double​ ​c){b​[​i​]+​scalar​*​c​[​i​]});

Listing​ ​1:​ ​Motivational​ ​example

Now with the affinity interface we propose below and in future, we will hopefully find that there is
significant increase in memory bandwidth when we have multiple threads by as much as 2x
GB/s as thread count increases (using system call madvise on Sun systems to implement next
touch​ ​policy​ ​to​ ​migrate​ ​the​ ​data​ ​close​ ​to​ ​the​ ​next​ ​executing​ ​thread).

The goal was that this would enable scaling up for heterogeneous and distributed computing in
future. Indeed OpenMP [14] where one of the author participated in the design of its affinity
model,​ ​has​ ​plans​ ​to​ ​integrate​ ​its​ ​affinity​ ​model​ ​with​ ​its​ ​heterogeneous​ ​model.[21]

Background​ ​Research:​ ​State​ ​of​ ​the​ ​Art
The problem of effectively partitioning a system’s topology is one which has been so for some
time, and there are a range of third party libraries / standards which provides APIs to solve the
problem. In order to standardise this process for the C++ standard we must carefully look at all
of​ ​these.​ ​Below​ ​is​ ​a​ ​list​ ​of​ ​the​ ​libraries​ ​and​ ​standards​ ​which​ ​define​ ​an​ ​interface​ ​for​ ​affinity:

Portable​ ​Hardware​ ​Locality:​ ​​https://www.open-mpi.org/projects/hwloc/
SYCL​ ​1.2:​ ​​https://www.khronos.org/registry/SYCL/specs/sycl-1.2.pdf
OpenCL​ ​2.2:​ ​​https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
HSA:​ ​​http://www.hsafoundation.com/standards/
OpenMP​ ​4.0:​ ​​https://www.cct.lsu.edu/mardigras14/abstracts#Wong
cpuaff:​ ​​https://github.com/dcdillon/cpuaff
OpenMP​ ​5.0:​ ​​http://www.openmp.org/wp-content/uploads/openmp-TR5-final.pdf
Persistent​ ​Memory​ ​Programming:​ ​​http://pmem.io/
MEMKIND:​ ​​https://github.com/memkind/memkind
Solaris​ ​pbind():​ ​​https://docs.oracle.com/cd/E26502_01/html/E29031/pbind-1m.html
Linux​ ​sched_setaffinity():​ ​​https://linux.die.net/man/2/sched_setaffinity
Windows​ ​SetThreadAffinityMask():
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686247(v=vs.85).aspx

https://www.open-mpi.org/projects/hwloc/
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://www.hsafoundation.com/standards/
https://www.cct.lsu.edu/mardigras14/abstracts#Wong
https://github.com/dcdillon/cpuaff
http://www.openmp.org/wp-content/uploads/openmp-TR5-final.pdf
http://pmem.io/
https://github.com/memkind/memkind
https://docs.oracle.com/cd/E26502_01/html/E29031/pbind-1m.html
https://linux.die.net/man/2/sched_setaffinity
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686247(v=vs.85).aspx

Libraries such as the Portable Hardware Locality (hwloc) [9] provide a low level of hardware
abstraction and offer a solution for the portability problem by supporting many platforms and
operating systems. This and similar approaches may provide detailed hardware information in a
tree-like structure. However, even some current systems cannot be represented correctly by a
tree,​ ​where​ ​the​ ​number​ ​of​ ​hops​ ​between​ ​two​ ​sockets​ ​vary​ ​between​ ​socket​ ​pairs​ ​[14].

Some systems will provide additional user control through explicit binding of threads to
processors through environment variables consumed by various compilers, system commands
(e.g. Linux: taskset, numactl; Windows: start /affinity), or system calls for example Solaris has
pbind()​,​ ​Linux​ ​has​ ​​sched_setaffinity()​​ ​and​ ​Windows​ ​has​ ​​SetThreadAffinityMask()​.

Problem​ ​Space
In this paper we describe the problem space of affinity for C++, the various challenges which
need to be addressed in defining a partitioning and affinity interface for C++ and some
suggested​ ​solutions:

● Querying​ ​a​ ​system’s​ ​resource​ ​topology
● Querying​ ​the​ ​relative​ ​affinity​ ​of​ ​partitions
● Binding​ ​execution​ ​and​ ​allocation​ ​to​ ​a​ ​partition

Wherever possible, we also evaluate how an affinity based solution could be scaled to support
both​ ​distributed​ ​and​ ​heterogeneous​ ​systems.

There​ ​are​ ​some​ ​additional​ ​challenges​ ​which​ ​we​ ​have​ ​been​ ​investigating​ ​but​ ​are​ ​not​ ​yet​ ​ready​ ​to
be​ ​included​ ​in​ ​this​ ​paper​ ​and​ ​will​ ​be​ ​presented​ ​in​ ​a​ ​future​ ​paper:

● Migrating​ ​data​ ​from​ ​memory​ ​allocated​ ​in​ ​one​ ​partition​ ​to​ ​another
● Defining​ ​memory​ ​placement​ ​algorithms​ ​or​ ​policies

Querying​ ​a​ ​System’s​ ​Topology
The first task in allowing C++ applications to leverage memory locality is to provide the ability to
query a ​system ​for its ​resource topology (commonly represented as a tree or graph) and
traverse​ ​its​ ​​execution​ ​resources​.

Execution​ ​resource

The capability of querying underlying ​execution resources ​of a given ​system is particularly
important towards supporting affinity control in C++. The current proposal for executors [5]
leaves the ​execution resource largely unspecified. This is intentional: ​execution resources

will vary greatly between one implementation and another, and it is out of the scope of the
current​ ​executors​ ​proposal​ ​to​ ​define​ ​those.

There is current work on extending the executors proposal to describe a typical interface for an
execution context [8]. In this paper a typical ​execution context is defined with an interface for
construction and comparison, and for retrieving an ​executor​, waiting on submitted work to
complete​ ​and​ ​querying​ ​the​ ​underlying​ ​​execution​ ​resource​.

Extending the executors interface to provide topology information can serve as a basis for
providing a unified interface to expose affinity. ​This interface cannot mandate a specific
architectural definition, and must be generic enough that future architectural evolutions can still
be​ ​expressed.

Level​ ​of​ ​abstraction

An important consideration when defining a unified interface for querying the ​resource
topology of a ​system is what level of abstraction should such an interface have and at what
granularity​ ​the​ ​​execution​ ​resources​​ ​of​ ​the​ ​topology​ ​be​ ​described.

As both the level of abstraction of an ​execution resource and the granularity that it is described
in will vary greatly from one implementation to another, it’s important for the interface to be
generic enough to support any level of abstraction. To achieve this we propose a generic
hierarchical structure of ​execution resources​; each ​execution resource being composed of
other ​execution resources recursively. Each ​execution resource within this hierarchy can be
used to place memory (i.e allocate memory within the ​execution resource’s memory region) or
place​ ​execution​ ​(i.e.​ ​bind​ ​an​ ​execution​ ​to​ ​an​ ​​execution​ ​resource’s​ ​execution​ ​agents​)​ ​or​ ​both.

● For example a NUMA system will likely have a hierarchy of nodes, each capable of
placing memory and placing agents and a CPU + GPU system may have GPU local
memory​ ​regions​ ​capable​ ​of​ ​placing​ ​memory​ ​but​ ​not​ ​capable​ ​of​ ​placing​ ​agents.

Straw​ ​Poll Should​ ​the​ ​interface​ ​for​ ​querying​ ​a​ ​system’s​ ​resource​ ​topology​ ​be​ ​completely
abstract​ ​or​ ​should​ ​it​ ​provide​ ​specific​ ​components​ ​of​ ​the​ ​hardware​ ​architecture?

Representation

Nowadays, there are various APIs and libraries that enable this functionality. One of the most
commonly used is the Portable Hardware Locality (hwloc) [9]. Hwloc presents the hardware as a
tree, where the root node represents the whole machine and subsequent levels represents
different partitions depending on different hardware characteristics. The picture below shows the
output of the hwloc visualization tool (lstopo) on a 2-socket Xeon E5300 server. Note that each
socket is represented by a package in the graph. Each socket contain its own cache memories,

but both share the same NUMA memory region. Note also that different I/O units are visible
underneath: Placement of these units w.r.t to memory and threads can be critical to
performance. The ability of placing threads and/or allocating memory appropriately on the
different components of this system is an important part of the process of application
development, especially as hardware architectures get more complex. The documentation of
lstopo [22] shows more interesting examples of topologies that can be encountered on today
systems.

Figure​ ​1:​ ​Example​ ​system​ ​resource​ ​topology​ ​provided​ ​by​ ​hwloc

However, systems are becoming increasingly non-hierarchical and a traditional tree based
representation of a ​system’s resource topology may not suffice anymore [18]. The HSA
standard solve this problem by allowing a node in the topology to have multiple parent nodes
[19]. This proposal in this paper currently focuses on a tree based solution for representing the
system’s resource topology however we wish to investigate other alternatives in a future
paper.

Straw​ ​Poll Should​ ​the​ ​interface​ ​for​ ​querying​ ​a​ ​system’s​ ​resource​ ​topology​ ​support
non-hierarchical​ ​architectures.

What​ ​kind​ ​of​ ​shape​ ​do​ ​we​ ​want​ ​for​ ​expressing​ ​the​ ​topology​ ​abstraction?

In the figure below (Figure 2) show an an example of how this could look in a C++
representation.

Figure​ ​2:​ ​Possible​ ​system​ ​hierarchy​ ​description

Extended​ ​Execution​ ​Resource​ ​Interface

Below is a proposed interface for the generalization of the ​execution resource based on the
definition​ ​of​ ​​thread_execution_resource_t​​ ​[8]​ ​with​ ​some​ ​extensions.

struct​ ​execution_resource​ ​{

​ ​​ ​execution_resource()​ ​=​ ​delete;
​ ​​ ​execution_resource(const​ ​execution_resource​ ​&)​ ​=​ ​delete;
​ ​​ ​execution_resource(execution_resource​ ​&&)​ ​=​ ​delete;
​ ​​ ​execution_resource​ ​&operator=(const​ ​execution_resource​ ​&)​ ​=​ ​delete;
​ ​​ ​execution_resource​ ​&operator=(execution_resource​ ​&&)​ ​=​ ​delete;

​ ​​ ​size_t​ ​concurrency()​ ​const​ ​noexcept;
​ ​​ ​size_t​ ​partition_size()​ ​const​ ​noexcept;

​ ​​ ​const​ ​execution_resource​ ​&partition(size_t​ ​i)​ ​const​ ​noexcept;
​ ​​ ​const​ ​execution_resource​ ​&member_of()​ ​const​ ​noexcept;

​ ​​ ​​std::string​ ​name()​ ​const​ ​noexcept;

​ ​​ ​bool​ ​can_place_memory()​ ​const​ ​noexcept;
​ ​​ ​​bool​ ​can_place_agent()​ ​const​ ​noexcept;

};

Listing​ ​2:​ ​Proposed​ ​extended​ ​execution​ ​resource​ ​interface

The interface described above describes an execution resource as an object which cannot be
user constructed, copied or moved, only referenced. It provides an interface for recursively
querying the partitions and concurrency of it’s child execution resources via the member
functions ​concurrency​, ​partition_size and ​partition and it’s parent execution resource via the
member function ​member_of​. This interface is designed to match the design of
thread_execution_resource_t [8]. Note that the resource is not limited to be an ​execution
resource​, but also a general resource where no execution can take place but memory can be
allocated​ ​such​ ​as​ ​off-chip​ ​memory.

● The intention is that the actual implementation details of a resource topology are
described in an execution context when required. This allows the execution resource
objects​ ​to​ ​be​ ​lightweight​ ​objects​ ​that​ ​serve​ ​as​ ​identifiers​ ​that​ ​are​ ​only​ ​referenced.

The interface also provides a member functions for querying whether the ​resource can place
memory regions and place execution agents; ​can_place_memory and ​can_place_agents​, for
querying​ ​an​ ​user-friendly​ ​name​ ​of​ ​the​ ​​resource​;​ ​​name​.

We may also wish to mirror the design of the executors proposal and have a generic query
interface using properties for querying information about an ​resource​. It’s expected that an
implementation may provide additional non standard queries that are specific to that
implementation.

Straw​ ​Poll Should​ ​the​ ​interface​ ​allow​ ​an​ ​execution​ ​resource​ ​to​ ​place​ ​memory,​ ​place​ ​agents
or​ ​both?

Is​ ​what​ ​is​ ​defined​ ​here​ ​a​ ​suitable​ ​solution?

Querying​ ​the​ ​topology

The interface for querying the ​resource topology of a ​system must be flexible enough to allow
both querying all ​execution resources available under an ​execution context and querying the
execution resources available to the entire system and constructing an ​execution context for
a particular ​execution resource​. This important as many standards such as OpenCL [20] and
HSA [19] require the ability to query the ​resource topology available in a ​system ​before
constructing​ ​an​ ​​execution​ ​context​​ ​for​ ​executing​ ​work.

● For example an implementation may provide an execution context for a particular
execution resource such as a static thread pool or a GPU context for a particular GPU
device or an implementation may provide a more generic execution context which can
be constructed from a number of CPU and GPU devices queryable through the system
resource​ ​topology.

Below​ ​is​ ​a​ ​proposed​ ​interface​ ​for​ ​querying​ ​a​ ​​system​ ​​for​ ​its​ ​​resource​ ​topology​.

namespace​ ​std::this_system​ ​{
​ ​​ ​std::vector<execution_resource​ ​&>​ ​resources();
}

Listing​ ​3:​ ​Interface​ ​for​ ​querying​ ​the​ ​execution​ ​resources​ ​available​ ​within​ ​a​ ​system

The ​resources function in the ​this_system namespace will return all ​execution resources
available​ ​to​ ​the​ ​current​ ​system.

Below is an example of the interface for querying the ​execution resources available to the
entire​ ​system​ ​and​ ​printing​ ​out​ ​the​ ​names​ ​of​ ​each​ ​​execution​ ​resource​.

auto​​ ​&​resources​ ​​=​​ ​std​::execution::​this_system::resources​();

for​​ ​​(​auto​ ​&r​ ​:​ ​​resources​)​​ ​{
​ ​​ ​​ ​​ ​​std​::​cout​ ​​<<​​ ​​r​.​name​()​ ​ ​​ ​​<<​ ​ ​std​::​endl;
}

Listing​ ​4:​ ​Example​ ​of​ ​querying​ ​the​ ​execution​ ​resources​ ​available​ ​within​ ​a​ ​system

Straw​ ​Poll Should​ ​the​ ​interface​ ​provide​ ​a​ ​way​ ​of​ ​querying​ ​the​ ​system​ ​topology​ ​directly?

Is​ ​what​ ​is​ ​defined​ ​here​ ​a​ ​suitable​ ​solution?

Below is a proposed extension to the ​execution context interface to allow an ​execution
context​ ​​to​ ​be​ ​constructed​ ​from​ ​an​ ​​execution​ ​resource​.

struct​ ​execution_context​ ​{
​ ​​ ​...

​ ​​ ​template​ ​<typename​ ​ExecutionResource>
​ ​​ ​execution_context(ExecutionResource​ ​&&execResource);

​ ​​ ​...
};

Listing​ ​5:​ ​Extension​ ​to​ ​execution_context​ ​interface

The ​execution context constructor described above allows constructing an ​execution context
from any ​execution resource within a ​system’s resource topology​. The constructed
execution​ ​context​​ ​can​ ​then​ ​execute​ ​work​ ​on​ ​any​ ​resource​ ​under​ ​that​ ​​execution​ ​resource​.

Below is an example of how this extended interface could be used to construct an ​execution
context​​ ​from​ ​an​​ ​execution​ ​resource​ ​​which​ ​is​ ​retrieved​ ​from​ ​the​ ​​system’s​ ​resource​ ​topology​.

Once an execution context is constructed it can then still be queried for its execution resource
and​ ​then​ ​that​ ​execution​ ​resource​ ​can​ ​be​ ​further​ ​partitioned.

auto​​ ​&​resources​ ​​=​​ ​std​::execution::​this_system::resources​();

std::execution::execution_context​ ​execContext(​resources[0]​);

auto​ ​&​execResource​ ​​=​ ​execContext.resource();

//​ ​resource[0]​ ​should​ ​be​ ​equal​ ​to​ ​​execResource

for​​ ​​(​int​ ​i​ ​=​ ​0;​ ​i​ ​<​ ​resource.​partition_size​();​ ​i++​)​​ ​{
​ ​​ ​​ ​​ ​​std​::​cout​ ​​<<​​ ​​resource.partition(i)​.​name​()​​ ​​ ​​<<​​ ​std​::​endl;
}

Listing​ ​6:​ ​Example​ ​of​ ​constructing​ ​an​ ​execution​ ​context​ ​from​ ​an​ ​execution​ ​resource

Straw​ ​Poll Should​ ​the​ ​interface​ ​provide​ ​a​ ​way​ ​of​ ​creating​ ​an​ ​execution​ ​context​ ​from​ ​an
execution​ ​resource?

Is​ ​what​ ​is​ ​defined​ ​here​ ​a​ ​suitable​ ​solution?

Binding​ ​Execution​ ​and​ ​Allocation​ ​to​ ​a​ ​Partition

When creating an ​execution context from a given ​execution resource​, the executors and
allocators associated with it are bound to that ​execution resource​. For example: when creating
an ​execution resource ​from a CPU socket resource, all executors associated with the given
socket​ ​will​ ​spawn​ ​execution​ ​agents​ ​with​ ​affinity​ ​to​ ​the​ ​socket​ ​partition​ ​of​ ​the​ ​system.

auto​​ ​cList​ ​​=​​ ​std​::​execution​::​this_system​::​resources​();
//​ ​FindASocketResource​ ​is​ ​a​ ​user-defined​ ​function​ ​that​ ​finds​ ​a
//​ ​resource​ ​that​ ​is​ ​a​ ​CPU​ ​socket​ ​in​ ​the​ ​given​ ​resource​ ​list
auto​&​​ ​socket​ ​​=​​ ​findASocketResource​(​cList​);
execution_context​eC​{​socket​}​​ ​​//​ ​Associated​ ​with​ ​the​ ​socket
auto​​ ​executor​ ​​=​​ ​eC​.​executor​(​myFunctor​);​​ ​​//​ ​By​ ​transitivity,​ ​associated​ ​with​ ​the​ ​socket​ ​too
auto​​ ​socketAllocator​ ​​=​​ ​eC​.​allocator​();​​ ​​//​ ​Retrieve​ ​an​ ​allocator​ ​to​ ​the​ ​closest​ ​memory​ ​node
std​::​vector​<​int​,​​ ​socketAllocator​>​​ ​v1​(​100​);
std​::​generate​(​par​.​on​(​executor​),​​ ​std​::​begin​(​v1​),​​ ​std​::​end​(​v1​),​​ ​std​::​rand​);

Listing​ ​8:​ ​Example​ ​of​ ​allocating​ ​with​ ​affinity​ ​to​ ​an​ ​execution​ ​resource

The construction of an ​execution context on a component implies affinity (where possible) to
the given resource. This guarantees that all executors created from that ​execution context ​can
access the resources and the internal data structures requires to guarantee the placement of
the​ ​processor.

Only developers that care about resource placement need to care about obtaining executors
and allocations from the correct ​execution context ​object. Existing code for vectors and STL
(including​ ​Parallel​ ​STL​ ​interface)​ ​remains​ ​unaffected.

If a particular policy or algorithm requires to access placement information, the resources
associated​ ​with​ ​the​ ​passed​ ​executor​ ​can​ ​be​ ​retrieved​ ​via​ ​the​ ​link​ ​to​ ​the​ ​​execution​ ​context​.

Importance​ ​of​ ​topology​ ​discovery

For traditional single CPU systems the execution resources reasoned about using standard
constructs such as std::thread, std::this_thread and thread local storage. This is because the
C++ memory model requires that a system have ​at least one thread of execution, some
memory and some I/O capabilities. ​This means that for these systems some assumptions can
be made about the topology could be made during at compile-time, for example the fact that
developers can query always the hardware concurrency available as there is always at least 1
thread​ ​or​ ​the​ ​fact​ ​that​ ​you​ ​can​ ​always​ ​use​ ​thread​ ​local​ ​storage.

This assumption, however, does not hold on newer more complex systems, and is particularly
false in heterogeneous systems. In these systems, the even the available high level resources
such as the number and type of devices available in a particular ​system ​is not known until the
system’s resource topology has been discovered which often happens as part of a runtime
API [19] [20]. Furthermore the level of support these for querying the resource topology these
devices may vary. This means the previous assumption that you can query thread concurrency
at any stage of the program or the availability of a ​std::thread with local storage is no longer
valid:​ ​Different​ ​devices​ ​may​ ​have​ ​different​ ​capabilities.

An interesting question which arises here is whether the system topology of an execution
resource should be fixed on initialisation or allowed to be dynamic. Allowing a dynamic system
topology allows components to go offline and become unavailable at runtime. If we do allow the
system topology to be dynamic then we will need to provide a mechanism by which users can
be notified of a topology change. However, providing this interface is out of the scope of this
initial​ ​document.

Note that this is different from devices that go online or offline during execution: The devices
themselves are online, they have not been found (or used) by the program until the appropriate
discovery​ ​stage​ ​has​ ​been​ ​executed.

Straw​ ​Poll Should​ ​the​ ​interface​ ​allow​ ​a​ ​system’s​ ​resource​ ​topology​ ​to​ ​be​ ​updated
dynamically​ ​after​ ​initial​ ​initialisation?

When​ ​do​ ​we​ ​enable​ ​the​ ​device​ ​discovery​ ​process?​ ​Can​ ​we​ ​change​ ​the​ ​system
topology​ ​after​ ​executors​ ​have​ ​been​ ​created?

Should​ ​be​ ​provide​ ​an​ ​interface​ ​for​ ​providing​ ​a​ ​call-back​ ​on​ ​topology​ ​change?

Lifetime​ ​considerations

As the execution context would provide a partitioning interface which returns objects describing
the components of the system topology of an execution resource it’s important to consider the
lifetime​ ​of​ ​these​ ​objects.

The objects returned from the partitioning interface would be opaque implementation defined
objects which do not perform any scheduling or execution functionality which would be expected
from an ​execution context and would not store any state related to an execution. Instead they
would​ ​act​ ​simply​ ​as​ ​an​ ​identifier​ ​to​ ​a​ ​particular​ ​partition​ ​of​ ​the​ ​​resource​ ​topology​.

For these reasons ​resources must always outlive any ​execution context which is constructed
from them and any ​resource retrieved from an ​execution context must not be tied to the
lifetime​ ​of​ ​that​ ​​execution​ ​context​.

Scaling​ ​to​ ​heterogeneous​ ​and​ ​distributed​ ​systems

The initial solution should target systems with a single addressable memory region, i.e. a
system which does not have discrete non-accessible memory regions such as a discrete GPU
or FPGA. However in the interest of maintaining a unified interface going forward the initial
solution should be designed with the latter in mind and should be scalable to support these
systems in the future. In particular to support heterogeneous systems it’s important that the
abstraction allows the interface for querying the ​resource topology of the ​system in order to
perform​ ​device​ ​discovery.

Querying​ ​the​ ​Relative​ ​Affinity​ ​of​ ​Partitions
In order to make decisions about where to place execution or allocate memory in a given
system’s resource topology​, it is important to understand the concept of affinity between
different ​execution resources​. This is usually expressed in terms of latency from resource a to
b.​ ​Distance​ ​does​ ​not​ ​need​ ​to​ ​be​ ​symmetric​ ​in​ ​all​ ​architectures.

The​ ​relative​ ​position​ ​of​ ​two​ ​components​ ​in​ ​the​ ​topology​ ​is​ ​not​ ​necessary​ ​and​ ​indicative​ ​of​ ​their
affinity.​ ​For​ ​example,​ ​two​ ​cores​ ​from​ ​two​ ​different​ ​CPU​ ​sockets​ ​may​ ​have​ ​the​ ​same​ ​latency​ ​to
access​ ​to​ ​the​ ​same​ ​NUMA​ ​memory​ ​node.

Straw​ ​Poll Should​ ​the​ ​interface​ ​allow​ ​users​ ​to​ ​query​ ​the​ ​relative​ ​affinity​ ​between​ ​two
execution​ ​resources?

Do​ ​we​ ​want​ ​to​ ​implement​ ​a​ ​complete​ ​interface​ ​for​ ​affinity​ ​querying​ ​on​ ​C++​ ​or​ ​do
we​ ​leave​ ​this​ ​for​ ​library​ ​vendors?

Do​ ​we​ ​need​ ​to​ ​define​ ​terms​ ​such​ ​as​ ​latency​ ​on​ ​the​ ​C++​ ​standard?

What​ ​should​ ​such​ ​an​ ​interface​ ​look​ ​like​ ​and​ ​should​ ​it​ ​be​ ​quantifiable?

Do​ ​we​ ​consider​ ​enough​ ​to​ ​show​ ​the​ ​number​ ​of​ ​“hops”​ ​for​ ​data​ ​to​ ​move​ ​from​ ​one
resource​ ​to​ ​the​ ​other?

Scaling​ ​to​ ​heterogeneous​ ​and​ ​distributed​ ​systems

This​ ​feature​ ​could​ ​be​ ​easily​ ​scaled​ ​to​ ​heterogeneous​ ​and​ ​distributed​ ​systems​ ​as​ ​the​ ​relative
affinity​ ​between​ ​components​ ​can​ ​apply​ ​to​ ​discrete​ ​heterogeneous​ ​and​ ​distributed​ ​systems​ ​as
well.

Future​ ​Work
Migrating​ ​data​ ​from​ ​memory​ ​allocated​ ​in​ ​one​ ​partition​ ​to​ ​another

In​ ​some​ ​cases​ ​for​ ​performance​ ​it​ ​is​ ​important​ ​to​ ​bind​ ​a​ ​memory​ ​allocation​ ​to​ ​a​ ​memory​ ​region
for​ ​the​ ​duration​ ​of​ ​an​ ​a​ ​tasks​ ​execution,​ ​however​ ​in​ ​other​ ​cases​ ​it’s​ ​important​ ​to​ ​be​ ​able​ ​to
migrate​ ​the​ ​data​ ​from​ ​one​ ​memory​ ​region​ ​to​ ​another.​ ​This​ ​is​ ​outside​ ​the​ ​scope​ ​of​ ​this​ ​paper,
however​ ​we​ ​would​ ​like​ ​to​ ​investigate​ ​this​ ​in​ ​a​ ​future​ ​paper.

Straw​ ​Poll Should​ ​the​ ​interface​ ​provide​ ​a​ ​way​ ​of​ ​migrating​ ​data​ ​between​ ​partitions?

Defining​ ​memory​ ​placement​ ​algorithms​ ​or​ ​policies

With​ ​the​ ​ability​ ​to​ ​place​ ​memory​ ​with​ ​affinity​ ​comes​ ​the​ ​ability​ ​to​ ​define​ ​algorithms​ ​or​ ​memory
policies​ ​which​ ​describe​ ​at​ ​a​ ​higher​ ​level​ ​how​ ​memory​ ​is​ ​distributed​ ​across​ ​large​ ​systems.​ ​Some
examples​ ​of​ ​these​ ​are​ ​pinned,​ ​first​ ​touch​ ​and​ ​scatter.​ ​This​ ​is​ ​outside​ ​the​ ​scope​ ​of​ ​this​ ​paper,
however​ ​we​ ​would​ ​like​ ​to​ ​investigate​ ​this​ ​in​ ​a​ ​future​ ​paper.

Straw​ ​Poll Should​ ​the​ ​interface​ ​provide​ ​standard​ ​algorithms​ ​or​ ​policies​ ​for​ ​distributing
memory?

References

[1]​ ​P0234r0​ ​Towards​ ​Massive​ ​Parallelism​ ​(aka​ ​Heterogeneous​ ​Devices/Accelerator/GPGPU)
support​ ​in​ ​C++​ ​with​ ​HPX
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0234r0.pdf

[2]​ ​P0236r0​ ​Khronos's​ ​OpenCL​ ​SYCL​ ​to​ ​support​ ​Heterogeneous​ ​Devices​ ​for​ ​C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0236r0.pdf

[3]​ ​P0362r0​ ​Towards​ ​support​ ​for​ ​Heterogeneous​ ​Devices​ ​in​ ​C++​ ​(Concurrency​ ​aspects)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0362r0.pdf

[4]​ ​P0363r0​ ​Towards​ ​support​ ​for​ ​Heterogeneous​ ​Devices​ ​in​ ​C++​ ​(Language​ ​aspects)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0363r0.pdf

[5]​ ​P0443r2​ ​A​ ​Unified​ ​Executors​ ​Proposal​ ​for​ ​C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0443r2.html

[6]​ ​P0567r1​ ​Asynchronous​ ​Managed​ ​Pointer​ ​for​ ​Heterogeneous​ ​and​ ​Distributed​ ​Computing
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0567r1.html

[7]​ ​P0687r0:​ ​Data​ ​Movement​ ​in​ ​C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0687r0.pdf

[8]​ ​P0737r0:​ ​Execution​ ​Context​ ​of​ ​Execution​ ​Agents
https://github.com/kokkos/ISO-CPP-Papers/blob/master/P0737_ExecContext.rst

[9]​ ​Portable​ ​Hardware​ ​Locality
https://www.open-mpi.org/projects/hwloc/

[10]​ ​cpuaff
https://github.com/dcdillon/cpuaff

[11]​ ​OpenMP​ ​5​ ​Technical​ ​Report
http://www.openmp.org/wp-content/uploads/openmp-TR5-final.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0234r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0236r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0362r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0363r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0443r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0567r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0687r0.pdf
https://github.com/kokkos/ISO-CPP-Papers/blob/master/P0737_ExecContext.rst
https://www.open-mpi.org/projects/hwloc/
https://github.com/dcdillon/cpuaff
http://www.openmp.org/wp-content/uploads/openmp-TR5-final.pdf

[12]​ ​Persistent​ ​Memory​ ​Programming
http://pmem.io/

[13]​ ​MEMKIND
https://github.com/memkind/memkind

[14]​ ​The​ ​Design​ ​of​ ​OpenMP​ ​Thread​ ​Affinity
https://link.springer.com/chapter/10.1007/978-3-642-30961-8_2

[15]​ ​Solaris​ ​pbind()
https://docs.oracle.com/cd/E26502_01/html/E29031/pbind-1m.html

[16]​ ​Linux​ ​sched_setaffinity()
https://linux.die.net/man/2/sched_setaffinity

[17]​ ​Windows​ ​SetThreadAffinityMask()
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686247(v=vs.85).aspx

[18]​ ​Exposing​ ​the​ ​Locality​ ​of​ ​new​ ​Memory​ ​Hierarchies​ ​to​ ​HPC​ ​Applications
https://docs.google.com/viewer?a=v&pid=sites&srcid=bGJsLmdvdnxwYWRhbC13b3Jrc2hvcHx
neDozOWE0MjZjOTMxOTk3NGU3

[19]​ ​HSA​ ​Foundation
http://www.hsafoundation.com/standards/

[20]​ ​OpenCL​ ​2.2
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf

[21]​ ​Affinity​ ​Matters
Euro-Par​ ​2011​ ​Parallel​ ​Processing:​ ​17th​ ​International

[22]​ ​Portable​ ​Hardware​ ​Locality​ ​Istopo
https://www.open-mpi.org/projects/hwloc/lstopo/

http://pmem.io/
https://github.com/memkind/memkind
https://link.springer.com/chapter/10.1007/978-3-642-30961-8_2
https://docs.oracle.com/cd/E26502_01/html/E29031/pbind-1m.html
https://linux.die.net/man/2/sched_setaffinity
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686247(v=vs.85).aspx
https://docs.google.com/viewer?a=v&pid=sites&srcid=bGJsLmdvdnxwYWRhbC13b3Jrc2hvcHxneDozOWE0MjZjOTMxOTk3NGU3
https://docs.google.com/viewer?a=v&pid=sites&srcid=bGJsLmdvdnxwYWRhbC13b3Jrc2hvcHxneDozOWE0MjZjOTMxOTk3NGU3
http://www.hsafoundation.com/standards/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
https://books.google.ca/books?id=Tz6qfcY9SyIC&pg=PA169&lpg=PA169&dq=affinity+matters+an+mey+terboven&source=bl&ots=JIW_dxHO9g&sig=Y4N-FCqsJgBsWasjlYO4XhZn8q8&hl=en&sa=X&ved=0ahUKEwjw77SfofXWAhXI2BoKHRwHDMIQ6AEIMzAC
https://www.open-mpi.org/projects/hwloc/lstopo/

