
common_type and duration

Document #: WG21 P0548R1
Date: 2017-03-03
Project: JTC1.22.32 Programming Language C++
Audience: LWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Tweaking common_type 1
3 Tweaking duration 2
4 Proposed wording 4

5 Acknowledgments 5
6 Bibliography 5
7 Document history 5

Abstract

Based on unexpected ripple effects of our recently adopted paper [P0435R1], this paper proposes
a few small tweaks to the wording for (a) common_type and (b) duration.

Duration is not a test of truth or falsehood.

— ANNE MORROW LINDBERGH

When you can do the common things of life in an uncommon
way, you will command the attention of the world.

— GEORGE WASHINGTON CARVER

1 Introduction

Our paper [P0435R1] was recently adopted for C++17 in order to address LWG issues 2465, 2763,
2460 (in part), and “several other concerns.” Certain ripple effects of that paper’s changes have
since been brought to our attention. The present paper will explicate those effects and propose a
few small tweaks to the wording for (a) common_type and (b) duration.

2 Tweaking common_type

We recently received1 the following correspondence (lightly reformatted), pointing out a ripple
effect of our earlier paper’s adoption:

The new Note B says that common_type<T1,T2> specializations are allowed only if T1
and T2 are distinct types

If so, that would seemingly outlaw partial specializations like the ones done for
chrono::duration, since those will be used even for identical duration types like
common_type_t<chrono::seconds, chrono::seconds>[.]

Copyright c© 2017 by Walter E. Brown. All rights reserved.
1Tim Song: “Specializing our favorite type trait, again.” Personal communication, 2016–12–27.

1

mailto:webrown.cpp@gmail.com

2 P0548R1: common_type and duration

This is certainly an unexpected consequence, and one that should be promptly addressed by
a change either to the specification of common_type or to the specification of its duration
specialization.

That specialization is currently quite simply and elegantly specified in [time.traits.specializations]
(reflowed below to fit available space):

1 template <class Rep1, class Period1, class Rep2, class Period2>
2 struct common_type< chrono::duration<Rep1, Period1>
3 , chrono::duration<Rep2, Period2>
4 >
5 {
6 using type = chrono::duration<common_type_t<Rep1, Rep2>, see below>;
7 };

We would like to preserve this and similar specializations. We therefore restrict ourselves to
consider how best to adjust common_type to allow this.

On the one hand, it would certainly be easy enough to strike “distinct” from the common_type
specification, and thereby again permit partial specializations for chrono::duration, etc. On
the other hand, doing so removes what we believe to be an important guarantee regarding
common_type’s behavior, namely, that common_type_t<T,T> and common_type_t<T> always
denote the same type. (There is even a Note pointing out that “When is_same_v<T1,T2> is true,
the effect is equivalent to that of common_type<T1>.”)

We therefore propose the following adjustments to common_type’s specification: (a) to strike
“distinct” as discussed above, (b) to redefine the result of common_type’s single-argument case
as having common_type_t<T0,T0> (rather than the current decay_t<T0>), and (c) to strike the
now-redundant Note cited above.

We note that the net effect of these changes may impact existing code, but only in contrived
scenarios that seem unlikely to arise in practice. Here are three examples:

1 using non_reduced_seconds = duration< int, ratio<10, 10> >;
2 static_assert(is_same_v< common_type_t<non_reduced_seconds>
3 , non_reduced_seconds
4 >
5 , "no longer holds"
6);

1 struct A { };
2 template< typename T > struct common_type<A, T> { }; // no common type
3 · · · common_type_t<A> · · · // previously ignores, now uses the above specialization

1 struct B { };
2 struct common_type<B, B> { using type = common_type_t; }; // now recursive

3 Tweaking duration

While examining duration’s use of common_type’s specializations as discussed above, we noted
what appeared to be a minor inconsistency between duration’s unary + and - operators and
their corresponding binary operators. The relevent - operators are today specified as follows (+ is
nearly identical):

P0548R1: common_type and duration 3

1 template< class Rep, class Period = ratio<1> >
2 class duration {
3 · · ·
4 constexpr duration operator-() const;
5 · · ·
6 };

8 template< class Rep1, class Period1, class Rep2, class Period2 >
9 common_type_t< duration<Rep1, Period1>, duration<Rep2, Period2> >

10 constexpr operator-(const duration<Rep1, Period1>& lhs
11 , const duration<Rep2, Period2>& rhs
12);

Note especially these declarations’ return types. The unary member function returns the type of
which it is a member, while the binary free function returns the common_type_t of its arguments’
types.

Now consider the following example:

1 using D = duration<int, ratio<10,10>>;
2 D a{0};
3 D b{1};

5 static_assert(is_same_v< decltype(-b), D >);
6 static_assert(is_same_v< decltype(a-b), duration<int,ratio<1,1>> >);
7 static_assert(not is_same_v< decltype(-b), decltype(a-b) >);

It seems a bit surprising that all the assertions hold true. In particular:

• If binary minus may implicitly reduce the ratio, shouldn’t unary minus do the same?

• Conversely, if unary minus never reduces the ratio, shouldn’t binary minus behave likewise?

• More simply stated, when a is zero (and at all other times), shouldn’t the type of a-b be the
same as the type of -b?

We believe that the answer to this last question should be yes, the types ought always be the
same.

How common are such occurrences? <chrono> expert Howard Hinnant reported2 that “Non-
reduced duration types are an anomaly that may or may not exist in the wild at this point. I
haven’t seen one, so at most they are not common.” He further opined that “we should also be
conservative and not . . . propagate more of them into existing code.”

Accordingly, we propose to change the return types for duration’s unary operator+ and
operator- members such that reduced duration types may be produced, as is the case for the
corresponding binary operators. Given the changes already proposed above for common_type, the
change here becomes very simple: merely replace the operators’ return type, currently duration,
by common_type_t<duration>.3

Further, it would be beneficial to indicate more explicitly that non-reduced duration types
are discouraged. They are not propagated via the binary operators, and with the above change
are no longer routinely propagated via the unary operators. To close the door a bit further, we
additionally recommend that duration’s nested type alias period be adjusted so as to alias
Period::type (the reduced ratio) rather than Period (the non-reduced ratio).4

2Howard Hinnant: “Re: Specializing our favorite type trait, again.” Personal correspondence, 2016–12–28.
3Note that this change does not introduce any additional conversion operations. Thus there are no new opportunities

for rounding or other error even if the underlying representation were a floating-point type, for example.
4We intend, in a future paper, to explore the possibility of unifying all non-reduced ratio types with their respective

reduced equivalents. While such an approach seems promising, it is far beyond the scope of the present proposal.

4 P0548R1: common_type and duration

4 Proposed wording5

4.1 Tweaking common_type

4.1.1 Adjust [meta.trans.other]/3.2 as shown:

If sizeof...(T) is one, let T0 denote the sole type constituting the pack T. The member
typedef-name type shall denote the same type, if any, as decay_t<T0>common_type_t<T0,T0>;
otherwise there shall be no member type.

4.1.2 Strike, in its entirety, the following Note that concludes [meta.trans.other]/3:

. . . . [Note: When is_same_v<T1,T2> is true, the effect is equivalent to that of common_type<T1>.
— end note]

4.1.3 Adjust [meta.trans.other]/4 as shown:

. . . a program may specialize common_type<T1,T2> for distinct types T1 and T2 such that

4.2 Tweaking duration

4.2.1 Adjust an alias and two return types in the synopsis following [time.duration]/1 as
shown:

· · ·
public:

using rep = Rep;
using period = typename Period::type;

private:
· · ·
// 20.17.5.3, arithmetic
constexpr common_type_t<duration> operator+() const;
constexpr common_type_t<duration> operator-() const;
· · ·

4.2.2 Adjust the return types in [time.duration.arithmetic]/1-2 as shown:

constexpr common_type_t<duration> operator+() const;

1 Returns: common_type_t<duration>(*this).

constexpr common_type_t<duration> operator-() const;

2 Returns: common_type_t<duration>(-rep_).

5All proposed additions and deletions are relative to the post-Issaquah Working Draft [N4618]. Editorial notes are
displayed against a gray background.

P0548R1: common_type and duration 5

5 Acknowledgments

Tim Song first brought these matters to our attention, Howard Hinnant was instrumental in
devising an acceptable strategy to address them, and they, Casey Carter, and Andrey Semashev
served as reviewers of pre-publication drafts. Thank you, gentlemen, for your contributions.

6 Bibliography

[N4618] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4618 (post-Issaquah mailing), 2016–11–28. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2016/n4618.pdf.

[P0435R1] Walter E. Brown: “Resolving LWG Issues re common_type.” ISO/IEC JTC1/SC22/WG21 doc-
ument P0435R1 (post-Issaquah mailing), 2016–11–11. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2016/p0435r1.pdf.

7 Document history

Version Date Changes

0 2017-02-01 • Published as P0548R0.

0 2017-03-03 • Adjusted proposed return types per LWG guidance. • Published as P0548R1.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4618.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4618.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0435r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0435r1.pdf

	Title
	Contents
	Abstract
	1 Introduction
	2 Tweaking common_type
	3 Tweaking duration
	4 Proposed wording
	5 Acknowledgments
	6 Bibliography
	7 Document history

