
Document Number: P0303R0
Date: 2017-10-15
Based on: P0192R1
Authors: Boris Fomitchev boris@stlport.com

Sergei Nikolaev me@cvmlib.com
Olivier Giroux ogiroux@nvidia.com
Lawrence Crowl Lawrence@Crowl.org

Extensions to C++ for Short Float Type

P0303R0

Contents
Contents ii

List of Tables iii

1 Scope 1

5 Lexical conventions 2

6 Basic concepts 3

7 Standard conversions 4
7.7 Floating-point promotion . 4

8 Expressions 5

10 Declarations 6

11 Declarators 7

21 Language support library 8
21.3 Implementation properties . 8

29 Numerics library 9
29.5 Complex numbers . 9
29.9 Mathematical functions for floating-point types . 10

Contents ii

P0303R0

List of Tables
11 simple-type-specifiers and the types they specify . 6

List of Tables iii

P0303R0

1 Scope [intro.scope]
1 This document describes extensions to the C++ Programming Language (1.2) that enable the specification

and checking of constraints on template arguments, and the ability to overload functions and specialize class
templates based on those constraints. These extensions include new syntactic forms and modifications to
existing language semantics.

2 The following referenced document is indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.
N4687, 2017-07-30, Programming Languages — C++ is hereafter called the C++ Standard. The numbering of
Clauses, sections, and para- graphs in this document reflects the numbering in the C++ Standard. References
to Clauses and sections not appearing in this Technical Specification refer to the original, unmodified text in
the C++ Standard.

Scope 1

P0303R0

5 Lexical conventions [lex]
5.13.4 Floating literals [lex.fcon]
In this section, ’SF’ and ’sf’ literals shall be added to the floating-suffix list:

floating-suffix: one of:
f l sf F L SF

Also, in paragraph 1, explanation text below the list shall be extended to cover new literal suffixes for short
float type:

1 A floating literal consists of an optional prefix specifying a base, an integer part, a radix point, a fraction
part, an e, E, p or P, an optionally signed integer exponent, and an optional type suffix.
...
The type of a floating literal is double unless explicitly specified by a suffix. The suffixes f and F specify float,
the suffixes sf and SF specify short float, the suffixes l and L specify long double. If the scaled value is not
in the range of representable values for its type, the program is ill-formed.

§ 5.13.4 2

P0303R0

6 Basic concepts [basic]
6.9.1 Fundamental types [basic.fundamental]
Paragraph 8 of section 6.9.1 shall be modified to add short float to the list of floating-point types, and to
define its precision in the same manner as it does for the rest of floating-point types:

8 There are three four floating-point types: short float, float, double, and long double. The type double
provides at least as much precision as float, the type float provides at least as much precision as short float,
and the type long double provides at least as much precision as double. The set of values of the type float is
a subset of the set of values of the type double; the set of values of the type short float is a subset of the set
of values of the type float; the set of values of the type double is a subset of the set of values of the type long
double. The value representation of floating-point types is implementation-defined.

§ 6.9.1 3

P0303R0

7 Standard conversions [conv]
7.7 Floating-point promotion [conv.fpprom]
Paragraph 2 for short float to float promotion shall be added:

1 A prvalue of type float can be converted to a prvalue of type double. The value is unchanged.
2 A prvalue of type short float can be converted to a prvalue of type double. The value is unchanged.
3 This conversion is Those conversions are called floating-point promotions.

§ 7.7 4

P0303R0

8 Expressions [expr]
Paragraph 11 shall be extended to include a clause for short float as follows:

11 Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of the result.
This pattern is called the usual arithmetic conversions, which are defined as follows:
— If either operand is of scoped enumeration type (10.2), no conversions are performed; if the other operand
does not have the same type, the expression is ill-formed.
— If either operand is of type long double, the other shall be converted to long double. Otherwise, if either
operand is double, the other shall be converted to double.
— Otherwise, if either operand is float, the other shall be converted to float.
— Otherwise, if either operand is short float, the other shall be converted to short float.
— Otherwise, the integral promotions (7.6) shall be performed on both operands.

Expressions 5

P0303R0

10 Declarations [dcl.dcl]
10.1.7.2 Simple type specifiers [dcl.type.simple]
Table 11 — simple-type-specifiers and the types they specify, shall be extended to include a clause for short
float as follows:

Table 11 — simple-type-specifiers and the types they specify

Specifier(s) Type
short float "short float"

§ 10.1.7.2 6

P0303R0

11 Declarators [dcl.decl]
11.6.4 List-initialization [dcl.init.list]
In Paragraph 7.2 ("narrowing conversion"), the language shall be changed:
.27 from long double to double or float , or from double to float, higher precision floating-point value to lower
precision one, except where the source is a constant expression and the actual value after conversion is within
the range of values that can be represented ...

§ 11.6.4 7

P0303R0

21 Language support library
[language.support]
21.3 Implementation properties [support.limits]
21.3.2 Header <limits> synopsis [limits.syn]
Specialization for short float shall be added:
template<> class numeric_limits<short float>;

template<> class numeric_limits<float>;

§ 21.3.2 8

P0303R0

29 Numerics library [numerics]
29.5 Complex numbers [complex.numbers]
The paragraph 2 shall be extended to include short float specializatons.

2 The effect of instantiating the template complex for any type other than short float, float, double, or long
double is unspecified. The specializations complex<short float>, complex<float>, complex<double>, and
complex<long double> are literal types (6.9).

29.5.1 Header <complex> synopsis [complex.syn]
Specialization for short float shall be added:
template<> class complex<short float>;

template<> class complex<float>;

...

29.5.3 complex specializations [complex.special]
namespace std {

template<> class complex<short float> {
public:

using value_type = short float;

constexpr complex(short float re = 0.0sf, short float im = 0.0sf);
constexpr explicit complex(const complex<float>&);
constexpr explicit complex(const complex<double>&);
constexpr explicit complex(const complex<long double>&);

constexpr short float real() const;
void real(short float);
constexpr short float imag() const;
void imag(short float);

complex<short float>& operator= (short float);
complex<short float>& operator+=(short float);
complex<short float>& operator-=(short float);
complex<short float>& operator*=(short float);
complex<short float>& operator/=(short float);

complex<short float>& operator=(const complex<short float>&);
template<class X> complex<short float>& operator= (const complex<X>&);
template<class X> complex<short float>& operator+=(const complex<X>&);
template<class X> complex<short float>& operator-=(const complex<X>&);
template<class X> complex<short float>& operator*=(const complex<X>&);
template<class X> complex<short float>& operator/=(const complex<X>&);

};

...
// 29.5.10, complex literals

§ 29.5.3 9

P0303R0

inline namespace literals {
inline namespace complex_literals {

constexpr complex<long double> operator""il(long double);
constexpr complex<long double> operator""il(unsigned long long);
constexpr complex<double> operator""i(long double);
constexpr complex<double> operator""i(unsigned long long);
constexpr complex<float> operator""if(long double);
constexpr complex<float> operator""if(unsigned long long);
constexpr complex<short float> operator""isf(long double);
constexpr complex<short float> operator""isf(unsigned long long);

}
}

...

29.5.10 Suffixes for complex number literals [complex.literals]
1 This section describes literal suffixes for constructing complex number literals. The suffixes i, il, if and

ifs create complex numbers of the types complex<double>, complex<long double>, complex<float> and
complex<short float> respectively, with their imaginary part denoted by the given literal number and the
real part being zero.
...

constexpr complex<short float> operator""isf(long double d);
constexpr complex<short float> operator""isf(unsigned long long d);

5 Returns: complex<short float>{0.0sf, static_cast<short float>(d)}.

29.9 Mathematical functions for floating-point types [c.math]
29.9.1 Header <cmath> synopsis [cmath.syn]
Specialization for short float shall be added:

namespace std {
using short_float_t = see below;
using float_t = see below;
using double_t = see below;

...
Overloads for short float shall be added:
// 29.9.4, classification / comparison functions

int fpclassify(short float x);
bool isfinite(short float x);
bool isinf(short float x);
bool isnan(short float x);
bool isnormal(short float x);
bool signbit(short float x);
bool isgreater(short float x, short float y);
bool isgreaterequal(short float x, short float y);
bool isless(short float x, short float y);
bool islessequal(short float x, short float y);
bool islessgreater(short float x, short float y);
bool isunordered(short float x, short float y);
int fpclassify(short float x);
bool isfinite(short float x);

§ 29.9.1 10

P0303R0

bool isinf(short float x);
bool isnan(short float x);
bool isnormal(short float x);
bool signbit(short float x);
bool isgreater(short float x, short float y);
bool isgreaterequal(short float x, short float y);
bool isless(short float x, short float y);
bool islessequal(short float x, short float y);
bool islessgreater(short float x, short float y);
bool isunordered(short float x, short float y);}

29.9.4 Classification / comparison functions [c.math.fpclass]
1 The classification / comparison functions behave the same as the C macros with the corresponding names

defined in the C standard library. Each function is overloaded for the three four floating-point types.

29.9.5 Mathematical special functions [sf.cmath]
3 Overloaded versions for short float are not provided out of precision considerations. If any argument value to

any of the functions specified in this subclause are of short float type, standard rules for argument conversion
apply.

§ 29.9.5 11

	Contents
	List of Tables
	1 Scope
	5 Lexical conventions
	5.13.4 Floating literals

	6 Basic concepts
	6.9.1 Fundamental types

	7 Standard conversions
	7.7 Floating-point promotion

	8 Expressions
	10 Declarations
	10.1.7.2 Simple type specifiers

	11 Declarators
	11.6.4 List-initialization

	21 Language support library
	21.3 Implementation properties
	21.3.2 Header <limits> synopsis

	29 Numerics library
	29.5 Complex numbers
	29.5.1 Header <complex> synopsis
	29.5.3 complex specializations
	29.5.10 Suffixes for complex number literals

	29.9 Mathematical functions for floating-point types
	29.9.1 Header <cmath> synopsis
	29.9.4 Classification / comparison functions
	29.9.5 Mathematical special functions

