
Light-Weight Execution Agents

Revision 4

Document number: N4439
Revises: N4156 (see Section 7 for revision history)
Date: 2015-04-10
Author: Torvald Riegel
Reply-to: Torvald Riegel <triegel@redhat.com>

1 Introduction

N4016 makes a case for adding execution modes for threads of execution that are less
capable than std::thread; doing so either allows for avoiding runtime overheads of
std::thread or enables semantically different ways to execute such as SIMD loops.

This paper defines the semantics of these lighter-weight modes of execution by defining
certain kinds of execution agents (EAs). An EA is a mechanism that executes a particular
thread of execution1.

Execution context was suggested as a different name instead of EA; this might make
it clearer that the intent is to model execution properties and not primarily to describe
the hardware or software resources used for execution. To provide some consistency in
the revisions of this paper, I will stick to using the term EA and will happily delegate
the choice of a final name to the committee.

The standard seems not quite clear regarding whether a thread of execution is a static
(e.g., a function) or dynamic entity (i.e., an instance of an execution of single flow
of control); in this paper, I will assume the latter. Given that, there is a one-to-one
correspondence between an EA and a thread of execution. std::thread is a simple way
to create and manage a certain type of EA. The entity that is a running thread (i.e.,
what was created by std::thread) is an EA. See N4321 for a more detailed explanation
of this terminology (and of the existing terminology in the standard).

The standard also seems to not explicitly state what execution agent executes main.
I will assume that it executes on an execution agent that is created implicitly by the im-
plementation and has equivalent semantics to execution agents created by std::thread.

1A thread of execution is defined in the standard as “a single flow of control within a program” (see
§1.10p1). sequenced-before is defined exactly for a thread of execution (see §1.9p13).

At the Rapperswil meeting, there was very strong consensus that forward progress re-
quirements are essential to specifying EAs. Therefore, I will first present refined progress
requirements (Section 2), then discusses std::thread-specific features such as thread-
local storage (Section 3), sketch how to represent EA requirements in the type system
(Section 4), and propose wording for version 2 of the Parallelism TS (Section 5).

2 Forward progress requirements

The requirements described in what follows are requirements for an implementation of
the particular kinds of execution agents; in turn, programmers can treat them as the
guarantees the implementation gives to the EAs they use in a program.

The requirements are deliberately specified on an abstract level of “making progress”
and not by explaining them based on current implementation techniques such as map-
pings to OS threads. This helps separate implementation artifacts from the requirements
we really need to specify in a standard, and thus should help avoid misunderstandings;
for example, OS threads on a host CPU are often quite different from threads running
on a GPU. There certainly is a performance aspect of EAs, but this should be separate
from the semantics I am focusing on here (e.g., exposed through Executors).

2.1 Basic forward progress definitions

Currently, the standard requires that “implementations should ensure that all unblocked
threads eventually make progress” (§1.10p2). While “progress” is not explicitly defined,
it likely means events of observable behavior of the abstract machine, or termination
of the abstract machine. Such behavior will be produced by the implementation taking
steps that eventually lead to observable behavior (and thus correspond to steps of exe-
cution of the abstract machine). The term “unblocked” is also not defined, and is the
trickier issue because there are different causes that prevent progress: (1) no execution
of implementation steps vs. (2) a thread that is blocked due to program logic. The
latter can happen both when the implementation does not execute steps (e.g., when a
blocking file I/O function has been called, or a lock uses a blocking facility of the OS)
and when it does execute steps (e.g., busy-waiting using atomics until another thread
produces a value).

I propose to replace this with the following requirements. First, we define what
“progress” of a thread of execution is:

The execution of threads of execution consists of steps: A step ends with
either (1) termination of the thread of execution, (2) access to or modifica-
tion of a volatile object, or (3) a synchronization or atomic operation; the
remainder of a step consists of other things executed by the implementation
that are not in the previous list.

Note: A thread of execution makes progress when its steps are executed.

N4439 2

These steps could also be summarized as observable actions in the sense of being either
observable by other threads or observable in terms of observable behavior of the abstract
machine.

Next, we need to cover calls to library I/O functions, which may block in an OS
kernel when waiting for data to arrive, for example. This blocking is internal to the
application, and as I mentioned previously, we need to distinguish between blocking due
to, for example, lack of input data and the implementation not allowing the thread of
execution to make progress. To solve this, we can model such blocking functions as
conceptual busy-waiting loops:

Calls to library I/O functions and other functions that block (i.e., that cannot
return to the caller unless a certain, potentially external condition is met) can
be conceptually expressed using steps as defined previously; each blocking
operation can be replaced by a busy-waiting loop that polls for the condition
to be met (e.g., using observable behavior of the abstract machine).

Note that this is purely a model to enable the specification of progress; implementa-
tions are not required to busy-wait nor required to not do that. It allows us to separate
the progress allowed by the implementation (i.e., whether a thread of execution is allowed
to make steps) from whether particular blocking operations such as I/O make progress
in the sense of achieving what the program was meant to do. The implementation has
control over the former, but not necessarily over the latter.

If blocking operations want to specify which condition they may wait for, then they
can express this with busy-waiting loops.2 The progress requirements defined below do
not require such specifications but only rely on the fact that such a specification would
be possible. Therefore, we do not need to add these specifications to the standard before
being able to define progress as described here.

2.2 Execution agent progress requirements

Next, I will discuss three classes of forward progress requirements that EAs can fall into.

Concurrent execution This class provides the same progress guarantees as std::thread:
EAs in this class will eventually be allowed by the scheduler to make all steps they need
to execute, independently of what other EAs (including those created by std::thread)
are doing.

Two EAs in this class will run concurrently with respect to each other, and can depend
on the other EA to make implementation steps concurrently, even if they block on the
other EA:

The implementation should ensure that a concurrent execution agent will
eventually be allowed to execute all steps its thread of execution consists

2For example, a non-lock-free atomic operation can be expressed as performing the (sequential code
for the) operation in a critical section protected by a global lock; in turn, lock acquisition can be
expressed as a spinlock.

N4439 3

of, independently of which steps other execution agents might or might not
execute.

The execution agents created by std::thread are concurrent execution agents.

Note: To eventually fulfill this requirement means that this will happen in
an unspecified but finite amount of time.

Thus, this can effectively replace the existing progress requirement (§1.10p2); it clar-
ifies that the requirement is about providing each concurrent execution agent (e.g., one
created using std::thread) with the compute resources it needs. In other words, what
the implementation should provide for std::thread is a thread scheduler that never
starves any thread, and is thus fair (at least to some degree).

The progress requirement is specified as “should” instead of “shall” (as in §1.10) be-
cause there might be implementations based on OS schedulers that cannot give these
properties (e.g., in a hard-real-time environment). Nonetheless, general-purpose imple-
mentations should strive to fulfill this requirement.

Parallel execution Parallel execution is weaker than concurrent execution in terms of
forward progress. In particular, we need to capture the notion that one would like to
let programs define lots of parallel tasks, yet use a bounded set of resources (e.g., CPU
cores) to execute those tasks:

A parallel EA cannot be expected to be allowed by the implementation to
execute steps if it has not yet executed any step; once it has, the implemen-
tation should ensure that it will eventually be allowed to execute all steps its
thread of execution consists of, independently of which steps other execution
agents might or might not execute.

Note: This effectively makes the same progress requirements as for a concur-
rent execution agent once the parallel execution agent is started, but does
not specify a requirement for when to start the parallel execution agent;
the latter will typically be specified by the entity that creates the parallel
execution agent.

In other words, a parallel EA will behave like a std::thread in terms of progress, but
only after performing its first step. Note that though having no requirement on when
to start a parallel EA might seem odd at first, this is completely taken care of by the
notion of boost-blocking (see Section 2.3).

This progress requirement is stronger than for other forms of parallel execution (see
below); the main advantage of it is that it allows typical uses of critical sections because
as soon as a parallel EA starts and might acquire a mutex, it is guaranteed to eventually
be able to finish execution, and thus it will not block other EAs indefinitely.3

3This still does not allow other uses of mutexes, for example an EA using a mutex to wait for the
finished execution of another EA that already owned the mutex before it got started.

N4439 4

Weakly parallel execution Weakly parallel EAs cannot be expected to make steps
concurrently with other EAs. Thus, they get weaker progress guarantees than parallel
EAs in that there is no upgrade to concurrent execution once a weakly parallel EA has
started executing:

The implementation does not need to ensure that a weakly parallel EA is
allowed to execute steps independently of which steps other EAs might or
might not execute.

As a result, unlike for parallel EAs, typical uses of critical sections are not possible
in weakly parallel EAs because then an EA might wait for another EA that is not
guaranteed to be able to make implementation steps concurrently.4 However, using
nonblocking synchronization (e.g., using lock-free atomics) is possible because it does
not need any specific guarantees from the scheduler (i.e., it just finishes a step).5

Also note that like for parallel EAs, boost-blocking takes care of what might appear
to be a too weak progress requirement (see Section 2.3).

Implementation examples There are many possible implementations that would sat-
isfy the progress requirements for the three classes of EAs; I will highlight just a few to
illustrate the possibilities.

Concurrent EAs can be easily implemented by mapping each EA to one OS thread and
using a round-robin OS thread scheduler. An unbounded thread pool that eventually
adds a new OS thread to the pool if some EAs did not run yet is also a valid imple-
mentation. However, a bounded thread pool is not a correct implementation because
it does not guarantee concurrent execution if there are more concurrent EAs than OS
threads in the pool (e.g., the pool’s threads might all be taken by consumers waiting for
a producer that hasn’t been started because the pool’s threads are all being used).

Nonetheless, if an implementation that uses a non-preemptive thread scheduler is
aware of all points of blocking—more precisely, points where one EA depends on another
EA’s progress—and it either preempts or starts new threads in case of blocking, then
this can be a valid implementation of concurrent EAs. However, this can be nontrivial
to implement; the, for example, compiler could have to instrument all loops containing
atomic loads or read-modify-write ops and volatile loads (because these end steps), as
well as calls to (OS) library functions that might block.

Parallel EAs, on the other hand, can be implemented based on a bounded thread pool;
because the progress requirement does not require a certain amount of resources (e.g.,
OS threads) to be used, the implementation has full flexibility regarding resource usage.
This is easy to implement because we just need to execute all parallel EAs eventually,

4Specifically, consider cases like when parallel EAs use the same mutex to protect critical sections.
Other cases would still be allowed, such as when an EA uses a critical section that it will never block
on (e.g., because nobody else uses the same mutex).

5Note that while the success of obstruction-free synchronization depends on whether operations are
scheduled in such a way that there is no obstruction eventually, this can be emulated by the code
executing the obstruction-free operations (e.g., using randomized exponential back-off). Blocking
synchronization is different in that it cannot tolerate another EA not making any progress.

N4439 5

in some order and interleaving. However, it cannot be implemented with, for example,
certain kinds of work-stealing schedulers if work-stealing is allowed to happen during
critical sections.6

Weakly parallel EAs can be implemented in several ways. They can be run concur-
rently on threads from a thread pool, or in some interleaving on a single thread. Even
implementations that use SIMD instructions fall into the latter category (i.e., using a mix
of SIMD-parallel execution and serialized execution of code that cannot be vectorized).
Work-stealing implementations are also able to provide weakly parallel EAs.

The progress requirements for parallel and weakly parallel EAs match the progress
guarantees that are essentially in effect when using parallel execution policy and
parallel vector execution policy, respectively, of the Parallelism TS (N4104).

2.3 Boosting progress

While concurrent EAs are guaranteed to just execute eventually, the requirements for
parallel and weakly parallel EAs do not include having to actually start execution of
such EAs.

As an example, consider a simple program that contains a parallel loop; the calling
EA of such a loop spawns a number of parallel EAs and waits until all of them have
finished. The whole program starts executing as one std::thread, so the EA that calls
the parallel loop construct is a concurrent EA. Thus, the program is already guaranteed
to execute eventually up to the invocation of the parallel loop. However, then we have a
bootstrap problem because the concurrent EA waits for the completion of parallel EAs,
which have weaker progress requirements.

What we need is a way to specify that the stronger progress requirements for the
concurrent EA should eventually lead to finishing execution of the parallel EAs spawned
by the parallel loop. To do that, let us define a notion of boost-blocking :

If an execution agent P uses boost-blocking to block on the completion of a
set S of execution agents, and if P is subject to a stronger forward progress
requirement than at least one execution agent in S, then throughout the whole
time of P being boost-blocked on S, P will boost the progress requirement of
at least one execution agent in S to Ps stronger requirement. Specifically, P
is free to select which execution agent in S to boost and for which amount
of time (i.e., the boost is not permament and in place for the rest of the
lifetime of the boosted execution agent); as long as P is boost-blocked, it
has to eventually boost an execution agent in S. Once an execution agent in
S finishes execution, it is removed from S. Once S is empty, P stops being
blocked.

6Consider a scheduler that immediately executes a spawned parallel task instead of finishing the spawn-
ing task (and keeps using a single OS thread): If the former blocks on a mutex acquired by the latter,
then the OS thread used for the two EAs will get deadlocked; if the scheduler isn’t aware of all block-
ing relationships nor promotes parallel EAs to concurrent EAs after a while (i.e., adds OS threads
to the pool), a deadlock will arise.

N4439 6

Note: An execution agent thus can have an effectively stronger forward
progress requirement for a certain amount of time, due to second agent being
boost-blocked on it. In turn, this may allow this agent to itself boost the
progress of a third agent that this agent is boost-blocked on.

Note: If all execution agents in S finish execution (e.g., they do not use
blocking synchronization incorrectly), then Ps progress requirement will not
be weakened by executing the boost-blocking operation.

Note: This does not remove any constraints regarding blocking synchro-
nization for parallel or weakly parallel execution agents because P is not
guaranteed to boost the particular execution agent whose too-weak progress
requirement is preventing overall progress.

In the parallel loop example, this means that the calling EA’s progress just helps one
of the parallel EAs to make progress (e.g., to get a parallel EA started). If all of them
terminate, they will eventually all be allowed by the implementation to execute all their
steps. Note that, however, this does not mean that the concurrent EA will make all
the parallel EAs start concurrently; the concurrent EA is free to boost just one parallel
EA until this EA has terminated, and then boost the next one. This way, if none of
the parallel EAs blocks for another parallel EA to be started, then the whole loop is
guaranteed to be executed eventually.

This is straight-forward to implement when concurrent EAs are based on OS threads:
Ahe calling EA just participates in executing iterations of the loop that are not processed
yet; any OS threads available in a program-wide thread pool can be used to execute other
iterations of the loop.

When a group of weakly parallel EAs are boosted by a concurrent or parallel EA,
this works similarly to the previous example in that one of the weakly parallel EAs
will always eventually make steps. This allows vectorized execution, for example: The
concurrent or parallel EA can use SIMD operations to execute steps from all weakly
parallel EAs in a lockstep execution fashion.

Boost-blocking is a property that operations such as the parallel loop from our example
would explicitly guarantee, including specifying the group of EAs that the boost-blocking
applies to. In the Parallelism TS, for example, all algorithms executed with a parallel or
parallel-vector execution policy would guarantee boost-blocking for the group of parallel
or weakly-parallel EAs that an algorithm spawns. Boost-blocking is not intended to
be the default form of blocking; for example, std::mutex would not guarantee boost-
blocking as this would increase the implementation complexity and performance cost.

Examples Let us look at two more complex examples. First, if we have two concurrent
EAs that both execute one parallel loop spawning parallel EAs, then each concurrent
EA boost-blocks on its own group of parallel EAs. If one of the parallel EAs of the
first concurrent EA produces an intermediate value that a parallel EA of the second
concurrent EA needs, then the second parallel EA can block on the first EA without
needing boost-blocking to ensure progress (e.g., it can use a condition variable). This

N4439 7

works because boost-blocking reduces this case to essentially the second concurrent EA
waiting for the first concurrent EA.

As a second example, consider an implementation that schedules several threads of
execution nonpreemptively on fewer OS threads than there are threads of execution.
This means having weakly parallel EAs because one of the EAs cannot expect to make
steps without another EA potentially having to preempt voluntarily (i.e., making the OS
thread it runs on available). We can envision a facility that spawns an entire network
of such EAs that do message passing between each other (e.g., each EA represents one
actor in an actor-based model). After being spawned, the network may make progress
but this is not guaranteed because these are all weakly parallel EAs. To get an actual
output from the network, we can use boost-blocking in two ways:

• Let a concurrent or started parallel EA boost-block on the whole network (i.e., the
group of all weakly parallel EAs it is comprised of).

• If the network uses pull-based communication, let a concurrent or started parallel
EA boost-block on exactly the EAs that produce the final output of the network,
and employ pull or receive–message operations that use boost-blocking. This will
establish transitive boost-blocking towards all the EAs whose input is needed to
produce the output.

3 std::thread-specific state and features

Besides forward progress, we also need to consider how light-weight EAs relate to fea-
tures of EAs created by std::thread, notably thread-local storage (TLS) and the value
returned by this thread::get id. While programmers often will not need these fea-
tures, we need to at least define the level of compatibility with existing code based on
std::thread.

There are several choices for whether, and how, an EA can relate to these features.
We can express these by specifying to which extent a particular EA can be conceptually
considered to be running on top of another EA created by std::thread (in what fol-
lows, this is abbreviated as “being associated with a std::thread”). Ranging from the
weakest requirement to the strongest, these are:

(1) Not associated with std::thread. In an EA for which only this requirement ap-
plies, accesses to TLS or calls to this thread::get id result in undefined behav-
ior.

(2) Always associated with some std::thread. There is an associated std::thread,
but which instance this is can change at any time during the execution of the
EA; however, there will be no change during a single access to TLS, a call to
this thread::get id, or the execution of external, non-C++ code.7 This requires

7We could also say that changes can happen in all std:: code and certain language constructs; however,
this might not make it easier to use because, for example, calls to customized operators can be easy
to overlook.

N4439 8

TLS to be used as if it where relaxed atomic accesses with respect to the change
of the associated thread; it would be safe to make a plain load or store to TLS,
but trying to apply a plain read–modify–write operation (e.g., threadlocal++;)
is not guaranteed to work.

(3) Association with std::thread only changes in certain cases. Compared to (2), this
restricts the places where the associated std::thread can change to explicitly spec-
ified cases, for example calls to certain std:: functions or execution of language
constructs. Depending on which these cases are, only a few or many std:: func-
tions might have to be included in the set (e.g., when the associated std::thread
can change in every parallelism construct, then every potentially parallelized std::
function is in the set).

(4) Associated std::thread is stable. The associated std::thread will not change
during the lifetime of the EA.

(5) Associated std::thread is stable and has same lifetime as EA. This is exactly what
code using std::thread would get. The difference to (4) is that constructors and
destructors of TLS are guaranteed to be executed at the start and termination of
the EA.

Additionally, we can distinguish whether TLS is potentially shared between several
EAs, which can be useful if TLS is used as a mechanism to maintain likely-local state (in
the sense of likely being accessed by just a few EAs), for example for caching. Thus, if
we consider the above requirements to include that any associated std::thread is only
associated with one EA at a particular point in time, then we can add two additional
requirements:

(3s) Association with std::thread only changes in certain cases; shared. Like (3) ex-
cept that an associated std::thread can be associated with other EAs concur-
rently.

(4s) Associated std::thread is stable; shared. Like (4) except that an associated std::thread
can be associated with other EAs concurrently.

Note that for (5), a shared TLS implementation is probably not useful because it
would require the affected EAs to have the exact same lifetimes. For (2), a shared TLS
implementation does not make much difference in practice because the associated TLS
can change anytime, so any value or pointer obtained through it could be accessible to
another EA at the next moment anyway.

Consequences for implementations Option (1) is the easiest to implement. In con-
trast, option (5) restricts the implementation most in that each EA really has to have
it’s separate TLS space and constructors and destructors have to run. Because TLS is
program-wide currently (although a compiler may be able to optimize this), short-lived
EAs might face additional construction overhead.

N4439 9

Option (4) is somewhat better in that constructors/destructors do not need to be
run on EA start/finish, so an implementation can implement such EAs on top of a
std::thread thread pool, for example. Nonetheless, TLS and this thread::get id
must not change across the EAs lifetime, so an implementation has to either (a) use
exactly one underlying std::thread for such an EA (which can conflict with certain im-
plementations of work stealing), change memory mappings, or introduce an indirection,
and thus runtime overhead, for TLS (depending on the actual TLS implementation).

Options (2) and (3) should give implementations enough leeway in terms of which
underlying std::thread is used while still allowing to run external or legacy code that
might use TLS with little impact (unless, for example, there are several callbacks into
the code and it expects to be executed by a single std::thread). However, code gen-
eration by the compiler is probably affected because accesses to TLS do not have the
exact semantics as sequential code or TLS with options (4) and (5): TLS can change
concurrently, so the compiler may have to prevent reloading of TLS values or may have
to reload in other cases. Option (3) is a little less constraining for the compiler if all
standard library functions, or at least those that can actually change the underlying
std::thread in the particular implementation, are opaque to the compiler.

Options (3s) and (4s) are probably a little easier to implement than (3) and (4) because
whether an EA has its own isolated TLS becomes basically a quality-of-implementation
issue.

Storing a value for this thread::get id can be implemented using TLS; when TLS
is shared (options (3s) and (4s)), one might still want to have distinct IDs for each EA
(this thread::get id is currently specified to return an ID for a thread of execution,
not just for a std::thread8). If so, we need to create unique IDs; we discussed this in
Issaquah, and while some people felt that having a unique ID would be valuable and
creating them would not cause a lot of runtime overhead, others though that creating
unique IDs could be costly in terms of performance (e.g., on highly-parallel hardware
with a large number of hardware threads).

It might also be interesting to reconsider whether, for an associated std::thread,
there is still a relation to an underlying OS thread. Not establishing such a relation could
make an implementation of light-weight EAs simpler because then it can implement the
standard’s TLS as required yet does not have to make the OS thread’s TLS mechanism
work.

Potential replacements for TLS I think that it would be valuable to investigate ab-
stractions that can replace TLS usage, especially to make options (1) to (3) more widely
applicable. Also, this could provide abstractions that are better suited to the particular
use case than current std::thread-specific TLS; often, TLS is used as a mechanism but
does not necessarily fulfill the intent perfectly.

When considering just a single EA, TLS is basically a special allocator combined with
a very efficient way to obtain an EA-specific root pointer. Where TLS differs from that

8The standard does not provide a way to look up a std::thread object based on an ID, so we do not
need to create a std::thread.

N4439 10

is that if you allocate a TLS data item (e.g., by adding a thread local variable), that
this automatically allocates one EA-specific data item for every past and future EA in
the program; furthermore, that in each EA one can access this data item through a
shared key (e.g., the thread local variable).

I do not think that programmers need exactly that in the majority of use cases; usually,
you need a TLS data item just for a subset of all EAs (e.g., all the EAs a subsequent
parallel loop will spawn). Considering programs with several parallelized parts and
systems that can run thousands of EAs potentially, this can make a difference.

Two major TLS use cases seem to be (a) global state that is accessed by just one
thread and (b) locality of access. If TLS is used for the former, then allocating the data
in the particular EA is fine, if it is possible to pass the pointer to the data along with
other arguments to functions called by this EA, for example. If this data is expected to
have the same lifetime as the EA, the implementation could even use a very efficient,
local allocator for that.

If TLS is used for locality of access, then the motivation is primarily to try to reduce
interference from other EAs, for example to reduce cache misses or access local memory.
As an example, consider caches for sets of worker EAs on a NUMA system: A thread-
safe cache could be costly if accessed from all EAs in the program due to lack of locality
of memory accesses, but if all EAs running on one NUMA node would share a cache, the
synchronization overheads would be small; giving each EA its own cache would remove
the synchronization overheads completely, but could increase memory usage. In such a
situation, it might be best to let an EA access the cache that is closest to the CPU core
it is actually executing on; the instance of the cache might even change when the EA
migrates to executing on another CPU core. This could be provided through a special
allocator, for example one that allocates from per-workgroup memory on a GPU.

To summarize, I think that while TLS is important for compatibility with legacy code,
specialized mechanisms should be better suited to address the actual intent behind using
the TLS mechanism.

Lock ownership The standard already specifies lock acquisition semantics in terms of
lock ownership of EAs, and notes that other EAs than those created by std::thread
may exist (see §30.2.5). Thus, we do not need to define any association to any existing
threads as for TLS.

However, implementations might have to be changed if they rely on having OS threads
or std::thread as the only possible EA (e.g., if a mutex stores an OS thread ID to
designate the lock owner). For options (4) and (5) above, implementations might be
able to use existing thread-ID-based lock implementations. Implementations of weakly
parallel execution such as SIMD execution could not use those, but weakly parallel
EAs do not support blocking synchronization in general either; thus, perhaps the actual
impact on implementations would be small.

N4439 11

4 A simple interface to schedule execution agents

So far, we have discussed EAs as purely a concept used to specify execution properties.
Beyond that, one could add ways to directly create instances of EAs. Here is a sketch of
how to make the requirements part of the type system, defining the different requirements
as tag types:

// Forward progre s s requirements , ordered by s t r en g t h
struct p r o g r e s s w e a k l y p a r a l l e l t a g {} ;
struct p r o g r e s s p a r a l l e l t a g : public p r o g r e s s w e a k l y p a r a l l e l t a g {} ;
struct p r o g r e s s c o n c u r r e n t t a g : public p r o g r e s s p a r a l l e l t a g {} ;

// TLS requirements , ordered by s t r en g t h
// (Please i gnore f o r a second t ha t the f o l l ow i n g would on ly work wi th
// v i r t u a l inher i t ance , whose overhead we want to avoid though .)
// Options (1) to (4) :
struct t l s n o n e t a g {} ;
struct t l s e x i s t s t a g : public t l s n o n e t a g {} ;
struct t l s a s s o c i a t e d t a g : public t l s e x i s t s t a g {} ;
struct t l s s t a b l e t a g : public t l s a s s o c i a t e d t a g {} ;
// Option (3 s) and (4 s) :
struct t l s a s s o c i a t e d s h a r e d t a g : public t l s e x i s t s t a g {} ;
struct t l s s t a b l e s h a r e d t a g : public t l s a s s o c i a t e d s h a r e d t a g {} ;
// Option (5) :
struct t l s t h r e a d t a g : public t l s s t a b l e t a g , public t l s s t a b l e s h a r e d t a g {} ;

Next, we can define concrete EA types and traits. In this example, there is a parallel
EA and an EA that is like those created by std::thread:

// Proper t i e s o f an EA
template<class EA> struct e a t r a i t s ;

// A p a r a l l e l EA type wi thout TLS suppor t
struct e a l e a n p a r a l l e l {} ;
template<> struct e a t r a i t s <e a l e a n p a r a l l e l > {

typedef p r o g r e s s p a r a l l e l t a g p rog r e s s ;
typedef t l s n o n e t a g t l s ;

} ;

// An EA type t ha t has the p r o p e r t i e s o f EAs crea ted by s t d : : thread
struct ea s td thread {} ;
template<> struct e a t r a i t s <ea stdthread > {

typedef p r o g r e s s c o n c u r r e n t t a g p rog r e s s ;
typedef t l s t h r e a d t a g t l s ;

} ;

If we have interfaces that spawn EAs (e.g., something similar to executors), then
we can use the traits to select the most efficient implementation at compile time. We
can also use them to disallow trying to create kinds of EAs that are not supported by
the particular interface. For example, a strictly bounded thread pool cannot guarantee

N4439 12

concurrent execution of all EAs in general, so it might just refuse spawning concurrent
EAs altogether:

// Executor− l i k e example : Bounded thread poo l can ’ t launch concurrent EAs
struct bounded threadpool {

template<class Function>
void spawn (Function f , p r o g r e s s p a r a l l e l t a g) { /∗ Can do i t . ∗/ }
template<class Function>
// Can ’ t c r ea t e concurrent EAs :
void spawn (Function f , p r o g r e s s c o n c u r r e n t t a g) = delete ;
template<class EA, class Function>
void spawn (EA&, Function f) {

spawn (std : : forward<Function >(f) , typename e a t r a i t s <EA> : : p r og r e s s {}) ;
}

} ;

Considering executors in general, I think it would be beneficial to parametrize them
or their member functions by an EA type. Although one could argue that, for example,
a client of a bounded thread pool should be well aware which properties EAs created by
it have, making the requirement explicit helps catch mistakes and is less error-prone in
generic code.

More importantly, it separates semantic constraints for the execution of a particular
piece of code from all the other reasons the programmer might have to use a specific
executor—in particular, performance reasons.

For example, a programmer might want to use a thread pool with a fixed number
of OS threads primarily because those threads may have been bound to the cores on a
particular CPU socket, not because the programmer was thinking about bounded vs.
not bounded and the consequences for progress. The thread pool implementation even
could add additional OS threads to the pool if the program requests it to schedule more
concurrent EAs. Another example would be a GPU executor: Its purpose would be to
run EAs on the GPU, not just to run a particular type of EA.

We could specify one concrete executor for each combination of execution requirements
(e.g., concurrent GPU, parallel GPU, parallel-no-TLS GPU, . . . executors) but I do not
think this would be easier to consume for readers of the standard. Also, if we want to
combine, chain, or merge executors, then having a larger number of concrete executors
makes the implementation more complex too.

As a last example for simple interfaces, let us consider a facility to upgrade the cur-
rently executing EA to stronger EA requirements:

// Spawns and boost−b l o c k s on j u s t one EA
template<class EA, class Function> void upgrade ea (EA& ea , Function f) ;

// Just need s t a b l e TLS, but no con s t r a i n t s on progre s s
struct e a s t a b l e t l s {} ;
template<> struct e a t r a i t s <e a s t a b l e t l s > {

typedef p r o g r e s s w e a k l y p a r a l l e l t a g p rog r e s s ;
typedef t l s s t a b l e t a g t l s ;

} ;

N4439 13

// . . . code t ha t does not use TLS . . .
upgrade ea (e a s t a b l e t l s , l e g a c y c o d e t h a t n e e d s t l s) ;
// . . . code t ha t does not use TLS . . .

upgrade ea spawns a new EA and waits for its termination. It will give the new EA
requirements that are not weaker than neither the current EA nor the supplied EA type.
Note that for the progress requirement, this could as well be achieved by specifying that
upgrade ea boost-blocks on the completion of the spawned EA.

5 Suggested wording for version 2 of the Parallelism TS

There was consensus in Urbana that the next step regarding the forward progress defi-
nitions would be to apply them to other proposals, notably the Parallelism TS. Thus, in
what follows, I will propose wording for the next version of this TS, relative to N4352.

To avoid having to use and define execution agents, the proposed wording simply
associates forward progress requirements directly with threads of execution. I still think
that using EAs as a concept makes sense, but it’s not strictly necessary for the uses in
the current Parallelism TS.

First, we need to add the base definitions around progress. Those are not specific to
the Parallelism TS but would rather replace the existing requirements in the standard;
nonetheless, we need to refer to them, so just add a subsection titled “Forward progress”
before Section 4.1.2, with the following content. The definitions are essentially the
same as discussed previously in this paper except associating progress with threads of
execution directly. Also, a few explanatory notes have been added:

[Note: The definitions and requirements in this section are supposed to re-
place the forward progress requirements in the current C++ standard. —
end note]

The execution of threads of execution consists of steps: A step ends with
either (1) termination of the thread of execution, (2) access to or modifica-
tion of a volatile object, or (3) a synchronization or atomic operation; the
remainder of a step consists of other things executed by the implementation
that are not in the previous list. [Note: A thread of execution makes progress
when its steps are executed. — end note]

Calls to library I/O functions and other functions that block (i.e., that cannot
return to the caller unless a certain, potentially external condition is met) can
be conceptually expressed using steps as defined previously; each blocking
operation can be replaced by a busy-waiting loop that polls for the condition
to be met (e.g., using observable behavior of the abstract machine).

[Note: It is not necessary to provide such specifications of blocking. The
previous paragraph only states that it is always possible to do so, which
allows separating blocking due to program logic from blocking due to how
an implementation executes the abstract machine. — end note]

N4439 14

The implementation should ensure that a thread of execution providing con-
current forward progress guarantees will eventually be allowed to execute all
its steps, independently of which steps other threads of executions might or
might not execute. [Note: To eventually fulfill this requirement means that
this will happen in an unspecified but finite amount of time. — end note]

[Note: The threads of execution created by std::thread and the implementation-
created thread of execution that executes main provide concurrent forward
progress guarantees. — end note]

A thread of execution providing parallel forward progress guarantees cannot
be expected to be allowed by the implementation to execute steps if it has
not yet executed any step; once it has, the implementation should ensure
that it will eventually be allowed to execute all of its steps, independently of
which steps other threads of execution might or might not execute.

[Note: This effectively makes the same progress requirements as for a concur-
rent forward progress guarantees once the parallel-forward-progress thread
of execution is started, but does not specify a requirement for when to start
this thread of execution; the latter will typically be specified by the entity
that creates this thread of execution. — end note]

For a thread of execution providing weakly parallel forward progress guaran-
tees, the implementation does not need to ensure that this thread of execu-
tion is allowed to execute steps independently of which steps other threads
of execution might or might not execute.

[Note: Concurrent forward progress guarantees are stronger than parallel,
which in turn are stronger than weakly parallel guarantees. For example,
some kinds of synchronization between threads of execution may only make
forward progress if the respective threads of execution provide parallel for-
ward progress guarantees, but fail to make progress under weakly parallel
guarantees. — end note]

If a thread of execution P uses boost-blocking to block on the completion
of a set S of threads of execution, and if P is providing a stronger forward
progress guarantee than at least one thread of execution in S, then throughout
the whole time of P being boost-blocked on S, P will boost the progress
requirement of at least one thread of execution in S to P’s stronger guarantee.
Specifically, P is free to select which thread of execution in S to boost and
for which amount of time (i.e., the boost is not permament and in place for
the rest of the lifetime of the boosted thread of execution); as long as P is
boost-blocked, it has to eventually boost a thread of execution in S. Once a
thread of execution in S finishes execution, it is removed from S. Once S is
empty, P stops being blocked.

[Note: A thread of execution thus can temporarily provide an effectively
stronger forward progress guarantee for a certain amount of time, due to a
second thread of execution being boost-blocked on it. In turn, this may allow

N4439 15

the former thread of execution to itself boost the progress of a third thread
of execution that it is itself boost-blocked on. — end note]

[Note: If all threads of execution in S finish executing (e.g., they terminate
and do not use blocking synchronization incorrectly), then P’s progress guar-
antee will not be weakened by executing the boost-blocking operation. —
end note]

[Note: This does not remove any constraints regarding blocking synchroniza-
tion for threads of execution providing parallel or weakly parallel forward
progress guarantees because P is not required to boost a particular thread of
execution whose too-weak progress guarantee is preventing overall progress.
— end note]

With these foundations in place, we can then adapt Section 4.1.2 as follows. Generally,
to avoid misinterpretations, we should replace all occurrences of “thread” with “thread
of execution” (see N4231 for background).

In the third paragraph, specify that threads of execution supplied by the library
provide parallel forward progress guarantees:

The invocations of element access functions in parallel algorithms invoked
with an execution policy object of type parallel execution policy are
permitted to execute in an unordered fashion in either the invoking thread
of execution or in a thread of execution implicitly created by the library to
support parallel algorithm execution; the latter will provide parallel forward
progress guarantees. Any such invocations executing in the same thread of
execution are indeterminately sequenced with respect to each other. [Note:
It is the caller’s responsibility to ensure correctness, for example that the
invocation does not introduce data races or deadlocks. — end note]

Similarly, specify weakly parallel guarantees in the fourth paragraph. Also, clarify
that affected threads of execution are the invoking thread or managed by the library, and
that blocking synchronization is the problematic case, not all kinds of synchronization
in general:

The invocations of element access functions in parallel algorithms invoked
with an execution policy of type parallel vector execution policy are
permitted to execute in an unordered fashion in unspecified threads of ex-
ecution, and unsequenced with respect to one another within each thread
of execution. These threads of execution are either the invoking thread of
execution or implicitly created by the library; the latter will provide weakly
parallel forward progress guarantees. [Note: This means that multiple func-
tion object invocations may be interleaved on a single thread of execution.
— end note]

[Note: This overrides the usual guarantee from the C++ standard, Section
1.9 [intro.execution] that function executions do not interleave with one an-
other. — end note]

N4439 16

Since parallel vector execution policy allows the execution of element
access functions to be interleaved on a single thread of execution, blocking
synchronization, including the use of mutexes, risks deadlock. Thus, code
with parallel vector execution policy is restricted as follows:

A standard library function is vectorization-unsafe if it is specified to syn-
chronize with another function invocation, or another function invocation is
specified to synchronize with it, and if it is not a memory allocation or deal-
location function. Vectorization-unsafe standard library functions may not
be invoked by user code called from parallel vector execution policy
algorithms.

[Note: Implementations must ensure that internal synchronization inside
standard library routines does not prevent forward progress when those
routines are executed by threads of execution with weakly parallel forward
progress guarantees. This can be achieve by either avoiding synchronization
incompatible with those guarantees, or by executing these routines differ-
ently. — end note]

I would have liked to make the two paragraphs before the last note of this more precise;
however, we need to use some categorization of synchronization that the current standard
gives us, and it doesn’t make a distinction between blocking and general synchronization.

The changes to the last note attempt to clarify what I understand as the actual take-
away: The deadlock mentioned is a clash between blocking synchronization and weak
progress, and implementations can either avoid such blocking or make sure that progress
is stronger (e.g., by not “vectorizing” calls to such routines).

Finally, we need to ensure that threads of execution implicitly created by the library
do not weaken the forward progress of the threads of execution invoking the library. Add
a new paragraph before paragraph 6:

If an invocation of a parallel algorithm uses threads of execution implicitly
created by the library, then the invoking thread of execution will boost-block
on the completion of these library-managed threads of execution. [Note: In
boost-blocking in this context, a thread of execution created by the library is
considered to have finished execution as soon as it has finished the execution
of the particular element access function that the invoking thread of execution
logically depends on.]

5.1 What if we consider just forward progress?

It may seem surprising that the changes proposed previously do not significantly change
the wording regarding which threads can be used to execute a parallel algorithm. This
is not because the forward progress definitions would be insufficient, but because I did
not want to change the semantics of TLS and lock ownership.

If we do not rule out TLS accesses and want to allow typical implementations, we need
to cover executions in which element access functions access both the invoking thread’s

N4439 17

TLS and TLS of threads managed by the library. Thus, this is a TLS visibility/lifetime
issue, not a limitation of the forward progress model.

This is furthermore problematic because allowing functions to be executed in indeter-
minately ordered fashion on the invoking thread is not just needed to allow implementa-
tions to do exactly that, but also to—indirectly—create a forward progress constraint:
If the order is not specified, we cannot expect another element access function to start
executing eventually (which covers the weaker guarantee of parallel EAs compared to
concurrent EAs). The same problem exists in the specification of the parallel-vector pol-
icy. Thus, this cannot be used to describe an execution policy that would never execute
on the invoking thread (e.g., because it really wants to promise to execute the algorithm
on a capable accelerator) — because disallowing execution on the invoking thread would
remove the progress constraint.

Finally, basing the specification solely on which threads of execution are used binds
thread identity and TLS to progress guarantees: We cannot specify a parallel-vector
policy that provides weakly parallel progress for the element access functions but gives
each concurrent invocation of such a function its own, non-shared TLS. This is because
if this would be the case (i.e., visible to the program through different thread identi-
ties), a program could infer that there are separate threads, and thus also assume the
default progress guarantees for threads of execution specified by the current standard
(i.e., concurrent progress).

In contrast, if we were to ignore or disallow TLS and lock ownership in the specifica-
tion, or would specify these aspects by assigning TLS support levels to execution agents
(see Section 3), we could simply let each element access function run on one conceptual
execution agent managed by the implementation.

In such a scenario, we would just need to say the following for the third paragraph
(now using execution agents as discussed in this paper). . . :

The invocations of element access functions in parallel algorithms invoked
with an execution policy object of type parallel execution policy will be
executed using parallel execution agents. [Note: It is the caller’s responsibil-
ity to ensure correctness, for example that the invocation does not introduce
data races or deadlocks. — end note]

. . . and the fourth paragraph:

The invocations of element access functions in parallel algorithms invoked
with an execution policy of type parallel vector execution policy will
be executed using weakly parallel execution agents.

Since certain, for example certain uses of mutexes, risk deadlock when run by
weakly-parallel execution agents, synchronization with parallel vector execution policy
is restricted as follows:

A standard library function is vectorization-unsafe if it is specified to syn-
chronize with another function invocation, or another function invocation is

N4439 18

specified to synchronize with it, and if it is not a memory allocation or deal-
location function. Vectorization-unsafe standard library functions may not
be invoked by user code called from parallel vector execution policy
algorithms.

[Note: Implementations must ensure that internal synchronization inside
standard library routines does not prevent forward progress when those rou-
tines are executed by weakly parallel execution agents. This can be achieve
by either avoiding synchronization incompatible with those agents, or by
executing these routines differently. — end note]

This may not constitute a large improvement when just considering the current Par-
allelism TS, but should improve clarity when also considering a future Concurrency TS,
the executor proposals, and the Networking TS — all of which will have to specify
forward progress requirements and constraints.

6 Acknowledgements

I thank Jonathan Wakely for his input on Section 4 and review of earlier revisions of this
paper. Jared Hoberock proposed to represent progress requirements in the type system.

7 Revision history

Changes between N4439 and N4156:

• Added Section 5 (suggested wording for version 2 of the Parallelism TS).

• Clarified that this paper assumes that a thread of execution is a dynamic entity.

• Clarified that main is supposed to be executed by an EA semantically equivalent
to those created by std::thread.

• Mention “execution context” as another naming alternative to execution agent.

• Clarified that boost-blocking only applies to the set of execution agents that have
not yet finished execution. Clarified that the boosting is only temporary and not
persistent for the rest of the lifetime of the boosted EA. Added a note that boost-
blocking can boost progress transitively.

• Slightly expanded the note on the definition of parallel EAs regarding not having
a requirement when the EA gets started, and that this typically would be specified
by the entity that launches such an EA.

• Applied non-controversial definition changes suggested in Urbana.

Changes between N4156 and N4016:

N4439 19

• Added Section 4 on interfaces and EA types.

• Revised discussion of thread-specific features; added levels of potential TLS re-
quirements.

• Added “boost-blocking” definition, refined other progress definitions. Added more
examples.

• Removed section on strict SIMD execution.

• Removed discussion why lighter-weight-than-OS-thread EAs are useful.

• Removed overview of other proposals containing light-weight EAs.

• Removed open questions: Settle on EAs being primarily a conceptual entity, re-
move thread compatibility mode and OS thread std::thread question.

Changes between N3874 and N4016:

• Added underlying progress definition based on implementation steps and scheduler
guarantees.

• Refined forward progress classes: Base definitions on implementation steps instead
of blocking; merge SIMD+Parallel with the weaker variant of Parallel and rename
to Weakly Parallel; refine safety guarantee description of SIMD and rename to
Strict SIMD.

• Added discussion of semantics of spawning and blocking on EAs.

• Added a more detailed overview of related proposals.

N4439 20

	Introduction
	Forward progress requirements
	Basic forward progress definitions
	Execution agent progress requirements
	Boosting progress

	std::thread-specific state and features
	A simple interface to schedule execution agents
	Suggested wording for version 2 of the Parallelism TS
	What if we consider just forward progress?

	Acknowledgements
	Revision history

