
Document Number: N4185

Date: 2014-10-10

Project: Programming Language C++, Library Working Group

Reply-to: Matthias Kretz <kretz@compeng.uni-frankfurt.de>

SIMD Types: The Mask Type &
Write-Masking

ABSTRACT
This paper describes a template class for portable SIMD Mask types.
Most importantly it shows how conditional code can be expressed
with SIMD types. Different variants of a syntax for write-masking will
be discussed.

CONTENTS

1 About This Document 1
2 General Introduction to Conditionals 1
3 Conditionals in SIMD Context 2
4 The Vc::Mask<T> Class 5
5 Write-Masking 12
6 Masked Gather & Scatter 15
7 Conclusion 16
A Example: Mandelbrot 17
B Acknowledgements 17
C References 18

N4185 1 About This Document 1

1 ABOUT THIS DOCUMENT

This document is derived from a larger document about the Vc li-
brary. For the sake of simplicity I refrained from changing the naming
conventions of types/functions in this paper:

• I want to focus on functionality first. We can “correct” the
names later.

• It is easier to find the reference to an existing implementation.

Disclaimer: I did not get everything “right” in the Vc implementation
yet. Some details of the interface definitions I present here do not
fully reflect the current state of the Vc SIMD types.

1.1 shorthands in the document

• 𝒲T : number of scalar values (width) in a SIMD vector of type T
(sometimes also called the number of SIMD lanes)

1.2 relation to n4184

This document builds upon the Vector<T> type described in N4184.
Many design decisions are not discussed in this document because
they have been covered in N4184 before and can be applied analo-
gously to Mask<T> .

2 GENERAL INTRODUCTION TO CONDITIONALS

Conditional statements are some of the most important language ele-
ments in C++. if statements enable programs to follow different code
paths depending on arbitrary boolean conditions. In most cases an
if statement is translated as a branching instruction. These instruc-
tions can be expensive on modern processors, if the branch prediction
unit chooses the wrong branch. In such a case the pipeline has to be
flushed and execution must restart at the other branch. This can
incur penalties on the order of 100 cycles.

In order to overcome costly pipeline flushes on incorrect branch pre-
diction, conditional move instructions have been introduced. A con-
ditional move instruction typically executes a load or register copy
iff one or more specific flag(s) is/are set. Thus, an optimizing com-
piler might translate the code if (condition) { x = y; } into
a compare instruction and a subsequent conditional move instruction.

N4185 3 Conditionals in SIMD Context 2

Not every conditional jump results from if statements. Conditional
jumps are used for loop exit conditions in while or for statements.
Furthermore, switch statements describe jumps into one code sec-
tion out of several ones, where each one can be identified via one or
more integral value(s). Instead of a switch statement, the logic can
alternatively be expressed as several if statements. This is function-
ally equivalent, but often compilers optimize switch statements via
jump tables, while if cascades typically are translated as consecutive
compares and jumps.

3 CONDITIONALS IN SIMD CONTEXT

The SIMD types, as defined in N4184 do not return booleans from the
compare operators. Instead they return Vector<T>::MaskType ,
which is an alias for Mask<T> . This mask type is the equivalent of a
Vector<bool> type, but with additional type information about the
associated Vector<T>::EntryType . (The need for this additional
type information will be discussed in Section 4.) Thus, operations that
return a definitive true or false answer with scalar types, return
multiple true and/or false values in one return value with SIMD
types. Obviously, these mask types cannot work directly with the
builtin conditional statements in C++.

For SIMD code we have two principal choices for the semantics of
if , for , while , and switch .

1. By enhancing the language it is possible to overload the mean-
ing of conditional statements with operands of mask type. This
has been implemented in Cilk Plus for the array notation ex-
tension [1]. Conditional statements subsequently do not dis-
able a branch unless all entries of the mask are false (though
essentially this is an optional optimization). Instead, all code
branches are executed, but with some vector lanes implicitly
disabled. Consider the example code in Listing 1 on a sys-
tem with 𝒲int = 4 and a = {1, 2, 3, 4}, b = {7, 0,
7, 7} : The expression a < b then returns a mask with 4
boolean values: {true, false, true, true} . The com-
piler therefore has to translate the if-branch (line 3) into in-
structions that modify a only at the indexes 0, 2, and 3. Sub-
sequently, a will be a = {2, 2, 4, 5} . The else-branch
(line 5) then may only modify the SIMD vector entry at index 1.
Thus a must become a = {2, 1, 4, 5} , which is the return
value of the function f .

N4185 3 Conditionals in SIMD Context 3

1 int_v f(int_v a, int_v b) {
2 if (a < b) {
3 a += 1;
4 } else {
5 a -= 1;
6 }
7 return a;
8 }

Listing 1: Example code relying on overloaded semantics for if
statements with mask arguments.

2. The alternative keeps the semantics of the existing conditional
statements unchanged. Then, mask types can only be used for
conditional statements if a reduction function from a mask to
a single boolean value is used (see Section 4.7). Still, the func-
tionality described above (modifying a subset of a SIMD vector,
selected via a mask) can be implemented via write-masking
expressions (see Section 5).

3.1 consequences of implicit masking

Consider the implications of if statements that accept SIMD masks.
The code example in Listing 2 is a small modification of the example
in Listing 1 that would be equivalent for scalar types. But with SIMD
vector types both of the two return statements in the code must
be taken. It is certainly possible to define that this code blends the
SIMD vectors from the two return statements according to the im-
plicit masks in the if and else branches. But already a seemingly
small change, such as returning an int instead of int_v (Listing 3)
leads to unresolvable ambiguity: Should the function return +1 or
-1? Similar ambiguity issues occur with non-complementary masked
return statements and function calls inside the branches. Throw-
ing exceptions and locking/unlocking mutexes would even have to be
disallowed altogether.

1 int_v f(int_v a, int_v b) {
2 if (a < b) {
3 return a + 1;
4 } else {
5 return a - 1;
6 }
7 }

Listing 2: Code example that shows unclear return semantics: both
branches must execute but from where does the function
return and what is the return value?

N4185 3 Conditionals in SIMD Context 4

1 int f(int_v a, int_v b) {
2 if (a < b) {
3 return +1;
4 } else {
5 return -1;
6 }
7 }

Listing 3: Code example that shows unresolvable ambiguity: both
branches must execute but there can be only one return
value because the return type is a scalar int .

There is a more fundamental uncertainty resulting from implicit
masking via if statements on SIMD vector masks: How should differ-
ent SIMD vector types interact? An if statement from int_v com-
parison returns 𝒲int boolean answers. If the branch contains code
with short_v or double_v , should it be implicitly write-masked or
not? If yes, how? There is no natural and obvious behavior for apply-
ing write masks of different 𝒲T .

This shows that if statements with non-boolean arguments limit
the language features that are allowed in the if/else branches.
This makes the feature much less intuitive. The implicit mask con-
text changes the semantics significantly in different regions of the
source code. And the problem is aggravated if a developer requires
else if or switch statements.

3.2 design decision for vc

For the Vc library I therefore decided that the semantics of if , for ,
while , and switch must not change for explicit SIMD programming.1

Everything else would be too surprising and unintuitive to users, es-
pecially developers that read existing code without prior knowledge
about SIMD programming. This may sound obvious, but consider that
many developers will start from a scalar implementation of their algo-
rithm. In the scalar code the conditional statements correctly express
the logic of the algorithm. When a developer subsequently vectorizes
the code (s)he starts with replacing scalar types with the Vc vector
types. At this point it may appear like a logical simplification of the
vectorization process to keep the conditional statements unchanged
in order to minimize the effort for the user. But, as discussed above,
this comes at a considerable cost in consistency of semantics.2 Thus,

1 This is nice, because otherwise a pure library solution would not be possible.
2 There is not really a precedent in C++ for such differences in semantics / allowed

operations for certain code regions. The transactional memory extensions for C++

[N3999] may introduce local semantics where actions inside a transaction are re-

N4185 4 The Vc::Mask<T> Class 5

part of the issue is the question whether it is more important to ease
initial vectorization of an algorithm or whether maintenance effort is
more important. Even then, whether implicit write-masking via con-
ditional statements eases initial vectorization at all certainly depends
on the algorithm: The restricted semantics might lead to an even
larger effort required for converting a given scalar code to SIMD code.

4 THE Vc::Mask<T> CLASS

Analogous to the Vector<T> class discussed in N4184, there needs
to be a type that acts as a SIMD vector of booleans. This is neces-
sary for attaching the SIMD context only to types and never to some
implicit context. There are three main approaches:

• Reuse/Specialize the Vector<T> class (Vector<bool>).

• Define a new class (Mask<T>) with a type as template param-
eter.

• Define a new class (Mask<Size>) with a size as template pa-
rameter.

4.1 why Vc::Vector<bool> is not enough

The type bool is part of the integral types in C++. Since values of type
bool “participate in integral promotions” [2, §3.9.1] they can be used
in any expression where an int can be used.3 Therefore, it appears
as if the interface provided by Vector<T> is a good fit for boolean
values, too. The additional functionality a SIMD vector of booleans
should provide (such as the population count or reductions) could still
be defined as non-member functions.

But, considering that 𝒲T may be different for different T it follows
that 𝒲bool = max({𝒲T | ∀T}). Otherwise Vector<bool> would
only be usable for a (target-dependent) subset of Vector<T> types.
This definition of Vector<bool> implies that 𝒲bool may be greater
than 𝒲T for some types T . Consider an SSE target, where 𝒲short =
8, 𝒲float = 4, and 𝒲double = 2. Thus, 𝒲bool would need to be
8 (16 if Vc::Vector<signed char> were supported by Vc) and
store 50% or 75% unused data for masks interacting with float_v

stricted to reversible operations. Approaches like explicit SIMD loops or the Intel
Array Building Blocks framework also rely on restricted local semantics.

3 “A prvalue of type bool can be converted to a prvalue of type int, with false be-
coming zero and true becoming one.” [2, §4.5]

N4185 4 The Vc::Mask<T> Class 6

and double_v , respectively. Considering the implementation impli-
cations, this issue turns out to have serious efficiency implications, as
well: With the SSE instruction set boolean vectors are stored in the
128-bit SSE registers with 64/32/16/8 bits all set to either 0 or 1 for
every associated value in the value vector. Thus, the hardware gener-
ates and expects booleans in different bit representations, depending
on the SIMD vector type (or more accurately: sizeof(T)).

In addition to the size issue, there is good reason to use a single
bool return value for the equal and not-equal comparison operators
(see Section 4.6). Thus, Vector<bool> would need to specialize
these functions, which is certainly possible, but, to a certain degree,
defeats the purpose of using a generic class.

4.2 Vc::Mask<t> definition

As discussed in Section 4.1, it is beneficial to define several mask
types instead of a single boolean vector type. By looking at the SSE
instruction set, we have seen that Mask<Size> would suffice to de-
fine the minimal set of mask types for this target. But, consider that
the AVX instruction set uses 𝒲float = 8 and 𝒲double = 4 on top of
the SSE vector sizes. Using the SIMD vector size as template parame-
ter for the mask type thus would lead to subtle portability issues (this
is the same issue I discussed in N4184 for Vector<T, Size>): Con-
sider the return types of the expressions int_v() == int_v()
and float_v() == float_v() . With the SSE target they would
both return the same type Mask<4> , whereas with AVX the types
would differ: Mask<4> and Mask<8> respectively. The general solu-
tion (Mask<T>) therefore uses a different mask type for every SIMD
vector type Vector<T> .4 That way the types are different for every
target and the user will be forced to use explicit type conversions.

Listing 4 shows the definition of the SIMD mask type. Except for
the EntryType member type all member types in Listing 4 are im-
plementation-defined. This is analogous to the definition of the Vec-
tor<T> class in N4184. The different types are used for abstracting
the following concepts:

VectorType (line 8) This is the type that the implementation
uses to store a SIMD vector of booleans. For some implemen-
tations this type may be equal to Vector<T>::VectorType
but there is no such requirement.

4 Implicit and explicit conversions between Mask<T> and Mask<U> can be a no-op
whenever sizeof(T) = sizeof(U) ∧ 𝒲T = 𝒲U .

N4185 4 The Vc::Mask<T> Class 7

1 namespace Vc {
2 namespace target_dependent {
3 template <typename T> class Mask
4 {
5 implementation_defined data;
6

7 public:
8 typedef implementation_defined VectorType;
9 typedef bool EntryType;

10 typedef implementation_defined EntryReference;
11

12 static constexpr size_t MemoryAlignment = implementation_defined;
13 static constexpr size_t Size = implementation_defined;
14 static constexpr size_t size() { return Size; }
15 // ... (see below)
16 };
17 template <typename T> constexpr size_t Mask<T>::MemoryAlignment;
18 template <typename T> constexpr size_t Mask<T>::Size;
19

20 typedef Mask< float> float_m;
21 typedef Mask< double> double_m;
22 typedef Mask< signed long long> longlong_m;
23 typedef Mask<unsigned long long> ulonglong_m;
24 typedef Mask< signed long> long_m;
25 typedef Mask<unsigned long> ulong_m;
26 typedef Mask< signed int> int_m;
27 typedef Mask<unsigned int> uint_m;
28 typedef Mask< signed short> short_m;
29 typedef Mask<unsigned short> ushort_m;
30 typedef Mask< signed char> schar_m;
31 typedef Mask<unsigned char> uchar_m;
32 } // namespace target_dependent
33 } // namespace Vc

Listing 4: SIMD mask class definition

N4185 4 The Vc::Mask<T> Class 8

EntryType (line 9) This is an alias for bool . The member
type is defined for generality/interface compatibility with Vec-
tor<T> . This type signifies the conceptual entry type. The
actual entries in VectorType may use a different binary rep-
resentation than bool .

EntryReference (line 10) This type is used as the return type of
the non-const subscript operator. It is therefore used to refer-
ence a single boolean entry in the internal mask representation.
Note that the most compact binary representation for a SIMD
vector of booleans uses a single bit per boolean value. In this
case there cannot be a type that represents the actual bits of
the boolean value of a single mask entry.5 Thus, EntryRef-
erence can also be a wrapper type that can access (read and
write) individual bits of such a mask via the assignment opera-
tors and cast-to-bool operator.

The Mask<T> type needs a single data member of an implemen-
tation-defined type (line 5). This member defines the size and align-
ment of the Mask<T> type.

The number of entries in the SIMD vector, in general, is different
from sizeof(Mask<T>), which is why the Size constant (line 13)
defines this value. For compatibility with STL containers, Mask<T>
contains the size() member function, which also returns the num-
ber of scalar entries in the SIMD vector.

The Mask<T> type also defines a MemoryAlignment static data
member, just as Vector<T> does. Analogously, its value is the align-
ment requirement of pointers to EntryType (i. e.bool) in aligned
load and store calls (Section 4.4). Implementation experience tells
that in most cases the alignment of Mask<T> will not be equal to
Mask<T>::MemoryAlignment . This is due the SIMD mask register
either using several Bytes or only a single bit per boolean entry.

Finally, analogous to the type aliases for Vector<T> , the mask
types that the Vc library implements are aliased to the type names
float_m , double_m , … (lines 20–31).

N4185 4 The Vc::Mask<T> Class 9

1 Mask();
2 explicit Mask(bool);
3 template <typename U> Mask(const Mask<U> &);
4 template <typename U> explicit Mask(const Mask<U> &);

Listing 5: Declaration of the Mask<T> copy and cast constructors.

4.3 constructors

The constructors for the Mask<T> class need to replicate the seman-
tics of the bool type as much as possible. The necessary declara-
tions are shown in Listing 5.

The default constructor of Mask<T> initializes the value of all en-
tries in the mask to false . This is required for compatibility with the
expression bool() , which constructs a bool with the value false .

The copy and move constructors and operators are omitted for the
same reason as for Vector<T> [N4184].

The constructor on line 2 initializes a mask object with all values set
to the boolean value passed in the argument. Therefore, this con-
structor implements a broadcast from one scalar value to all entries
in a SIMD vector. Note that, in contrast to the broadcast constructor
from Vector<T> , the broadcast constructor of Mask<T> is declared
as explicit . This is a deviation from the behavior of the scalar
bool type. But, for boolean vectors the usefulness of a broadcast is
mostly limited to initialization of mask objects. If a developer really
needs to use a mask with all entries set to either true or false ,
then it is very likely that a scalar control-flow statement (such as if)
is much better suited for the task. On the other hand, if implicit con-
versions from scalar bool to Mask<T> were possible, a user might
fail to notice that an expression produces a bool instead of the in-
tended mask object.

Finally, the two constructor functions in lines 3 and 4 implement im-
plicit and explicit (static_cast) conversions betweenmask objects.
The two functions, as declared in Listing 5, are ambiguous. They need
to be adjusted, such that the implicit constructor only participates in
overload resolution iff 𝒲U = 𝒲T for all possible targets. According
to the discussion of implicit conversions in N4184 this can be decided
via the following enable_if expression:
enable_if<differs_only_in_signedness<U, T>::value>

The explicit constructor then simply requires the inverse condi-
tion to enable_if .

5 The object representation of any type in C++ takes up 𝑁 bytes, where 𝑁 is integral.
This is also evident from the sizeof operator which returns a size_t denoting
the number of bytes in the object representation of the type.

N4185 4 The Vc::Mask<T> Class 10

4.4 loads and stores

Mask types can implement load and store functions, reading from /
writing to arrays of EntryType (which is bool). These functions
can be useful to write code that is independent of the SIMD register
width and to interface with non-SIMD code (or I/O in general). Listing 6

1 explicit Mask(const bool *mem);
2 template<typename Flags> explicit Mask(const bool *mem, Flags f);
3

4 void load(const bool *mem);
5 template<typename Flags> void load(const bool *mem, Flags);
6

7 void store(bool *) const;
8 template<typename Flags> void store(bool *mem, Flags) const;

Listing 6: Declaration of the Mask<T> load and store functions.

shows the declaration of the necessary functions. The Flags argu-
ment is analogous to the one for the Vector<T> load/store func-
tions. The default uses unaligned loads and stores and can be set to
aligned loads and store via the second argument.

4.5 logical and bitwise operators

1 Mask operator!() const;
2

3 Mask &operator&=(Mask);
4 Mask &operator|=(Mask);
5 Mask &operator^=(Mask);
6

7 Mask operator&(Mask) const;
8 Mask operator|(Mask) const;
9 Mask operator^(Mask) const;

10

11 Mask operator&&(Mask) const;
12 Mask operator||(Mask) const;

Listing 7: Declaration of logical and bitwise operators for Mask<T> .

Listing 7 shows the declaration of the operators for logical and bit-
wise operations. Each operator simply applies the operation component-
wise. There is no need for non-member overloads as was required
for Vector<T> , because the conversion rules are much simpler for
different vectors of booleans. The implicit and explicit conversion
constructors fully suffice.

N4185 4 The Vc::Mask<T> Class 11

4.6 comparison operators

Listing 8 shows the declaration of comparison operators that I imple-
mented for Vc::Mask . Note, that the return type is a scalar bool
and not a SIMD type. Returning another mask type would make the
compare operator basically an alias for the xor operator. Typically, it
is more interesting to determine whether two given mask are equal
(or not) and this requires a single boolean.

1 bool operator==(Mask rhs) const;
2 bool operator!=(Mask rhs) const;

Listing 8: Declaration of the Mask<T> comparison operators.

It is certainly possible to define a meaning for relational compare
operators (less/greater). The most obvious definition would be an
interpretation of the boolean entries as bits of an integer and then
compare the integers. Up to now I did not come across a use case for
such operators, though. I am looking for input from the community
on this question.

4.7 reduction functions

In order to use a mask object in an if statement or loop condition
there needs to be a reduction function from the multiple boolean val-
ues in the mask to a single bool . There are four useful reduction
functions:

all_of : Returns true iff all entries in the mask are true .

any_of : Returns true iff at least one entry in the mask is true .

none_of : Returns true iff all entries in the mask are false .

some_of : Returns true iff there is at least one entry that is true
and at least one entry that is false (note that this is always
false for Vc::Scalar::Mask<T>).

The usefulness of the first three functions should be obvious. The
some_of reduction, on the other hand, is not used that often. It is a
useful check for knowing whether some conditions in the SIMD lanes
diverged, though. For example, it could signify that a program still
needs to continue iterating, but at least one vector lane is idle and a
reorganization of the data vectors might increase the throughput.

The template functions that reduce a mask object need to be de-
clared in such a way that they do not participate in overload resolution

N4185 5 Write-Masking 12

1 namespace Vc {
2 template <typename Mask> bool all_of(const Mask &m);
3 template <typename Mask> bool any_of(const Mask &m);
4 template <typename Mask> bool none_of(const Mask &m);
5 template <typename Mask> bool some_of(const Mask &m);
6

7 inline bool all_of(bool b) { return b; }
8 inline bool any_of(bool b) { return b; }
9 inline bool none_of(bool b) { return !b; }

10 inline bool some_of(bool) { return false; }
11

12 namespace target_dependent {
13 using Vc::all_of;
14 using Vc::any_of;
15 using Vc::none_of;
16 using Vc::some_of;
17 } // namespace target_dependent
18 } // namespace Vc

Listing 9: Declaration of the Mask<T> reduction functions.

unless the template argument actually is a Mask<T> type (from any
internal namespace).

In addition to the declarations for the Vc::Mask types, the reduc-
tion functions are also declared for bool arguments. That way the
functions can be used in generic code where scalar types and Vc::
Vector types can be used at the same time.

5 WRITE-MASKING

The term write-masking is used to denote the expression that dis-
ables an arbitrary set of vector lanes for writes to the destination
register (or memory location). This is equivalent to the conditional
move operation for scalars, applied to several values in parallel. Hard-
ware support for write-masking requires a rather simple operation:
instead of writing all bits from some temporary buffer to the destina-
tion register, some lanes are disabled, thus keeping the old value in
the destination register unchanged. But, from the language side, this
operation has only been implemented via implicit masking (such as
the masked if statements in Cilk Plus [1]) or blend functions, which
essentially implement the SIMD equivalent of the C++ ternary operator
(conditional operator).

5.1 conditional operator

For SIMD blend operations, the conditional operator (a < b ? 1 :
-1) would be a very natural solution. It is straightforward to translate
this conditional expression from scalar context into SIMD context. The

N4185 5 Write-Masking 13

operator expresses, that for a given condition, its result should be the
value of either the first or the second expression after the question
mark. In the SIMD case, where a boolean is replaced by a vector of
booleans, the conditional operator states that the results of the first
expression must be blended with the results of the second expres-
sion according to the mask in the conditional expression before the
question mark.

But with the current C++ standard, overloading the conditional oper-
ator is not allowed [2, §13.5]. According to Stroustrup [5] “there is no
fundamental reason to disallow overloading of ?:”. Therefore, until
C++ gains this ability, conditional operators have to be replaced by a
function call for supporting SIMD types.

For the Vc library, I defined the function
Vector<T> iif(Mask<T>, Vector<T>, Vector<T>) .

The name iif is an abbreviation for inline-if. To allow generic use of
this function, Vc provides the overload

T iif(bool, T, T) .
Thus iif can be used in template functions where both bools and
Vc mask types may be used as the first argument to iif . Listing 10

void filter(/*...*/) {
// ...
float_t sigma2 = measurementModel.sigma2;
float_t sigma216 = measurementModel.sigma216;
float_t hch = measurementModel * F.slice<0, 2>();
float_t denominator = Vc::iif (hch < sigma216, hch + sigma2, hch);
// ...

}

Listing 10: Part of the Kalman-Filter code that uses iif . The
float_t type can be defined as either float or float
_v

shows how iif is used inside the Kalman-Filter. The float_t type
can be defined to anything that returns either a boolean or a Vc mask
on operator< . Thus the implementation of the algorithm is gener-
ically usable for SIMD and scalar types.

5.2 write-masked assignment operators

The iif function would suffice to translate any scalar conditional
code to a vectorized code. But it is neither a good general interface,
nor does it properly express intention of the code, hiding behind un-
necessarily complex expressions. Therefore, I created a new syntax
for the Vector<T> types to express conditional assignment with any
assignment operator:

N4185 5 Write-Masking 14

x(x < 0) *= -1;

This line of code reads as: multiply x with -1 where x is less than
0 . The general syntax is vector-object (mask-object) assignment-
operator initializer-clause. The Vector<T> class template therefore
declares the function call operator as shown in Listing 11. This oper-

1 WriteMaskedVector<T> operator()(MaskType);

Listing 11: Declaration of the function call operator for write-masking
support in Vector<T> .

ator returns a temporary object which stores a (non-const) lvalue-
reference to the Vector<T> object and a copy of the mask ob-
ject. The WriteMaskedVector class template overloads all assign-
ment operators which implement the write-masked assignment to
the Vector<T> object.

In addition to assignment operators the WriteMaskedVector can
also implement the increment and decrement operators.

5.2.1 alternative: Vc::where

The function call operator syntax has a significant downside: It is
impossible to write generic functions with conditional assignment that
work with SIMD vector types and fundamental types. It would require
an operator overload for fundamental types, or rather a change to the
language specification. Therefore, I worked on alternative solutions:
Vc::where(x < 0, x) *= -1; // variant (1)
Vc::where(x < 0) | x *= -1; // variant (2)
Vc::where(x < 0) (x) *= -1; // variant (3)

The goal was to have a function/expression that can return a Write-
MaskedVector object for vector types and fundamental types.

• The first variant uses less “magic” but does not have such an
obvious connection between the modified variable x and the
assignment operator.

• The second variant states more clearly that an assignment to
x is executed. But it requires an operator between the where
function and the assignee that has lower precedence than as-
signment operators. In any case, this operator will be deprived
of its normal semantics, which is a potentially confusing solu-
tion.

• The third variant is a compromise of the first two variants. It
uses the function call operator of the return type of the where

N4185 6 Masked Gather & Scatter 15

function to make it clearer that assignment is applied to the x
variable.

All three variants of the where function can be overloaded with fun-
damental types.

All four solutions for write-masking (where and Vector<T> ::op-
erator()) can be translated to optimal SIMD code and thus only
differ in syntax and semantics. I am looking for feedback from the
community on the preferred solution for an interface for write-masking.

5.2.2 return type of masked assignment operators

The assignment operators that are declared in the WriteMasked-
Vector type can return either:

• A reference to the Vector<T> object that was modified.

• A temporary Vector<T> object that only contains the entries
where the mask is true .

• The WriteMaskedVector object.

• Nothing (void).

The most sensible choice seems to be a reference to the modified
Vector<T> object. But then the statement (x(x < 0) *= -1)
+= 2 may be surprising: it adds 2 to all vector entries, independent
of the mask. Likewise, y += (x(x < 0) *= -1) has no obvious
interpretation anymore because of the mask in the middle of the ex-
pression.

If we consider that a write-masked assignment is used as a replace-
ment for an if-statement, using void as return type is a more fitting
choice. An if-statement has no return value. By declaring the return
type as void the above expressions become ill-formed, which seems
to be the best solution for guiding users to write maintainable code
and express intent clearly.

6 MASKED GATHER & SCATTER

Finally, let us look at masked gather and scatter operations. (Gath-
er/scatter was introduced in N4184.) A gather expression creates a
temporary Vector<T> object that can be assigned to an lvalue. If
the user wants to assign only a masked subset of the gathered val-
ues, the write-masked assignment as described in Section 5 suffices.

N4185 7 Conclusion 16

But write-masked gather is special in that there are memory reads
which are unnecessary (and thus should be omitted for performance
reasons) and potentially even invalid, out-of-bounds accesses. There-
fore, we rather want write-masked assignment from a gather opera-
tion to propagate to the gather function itself. Then the gather func-
tion can use the mask to omit loads for the SIMD lanes that will not
be used on assignment.

The scatter function, called from a scatter expression, must use the
mask information for the same reasons: it should avoid unnecessary
stores and must omit out-of-bounds stores. But for scatters the scat-
ter expression is on the left hand side of the assignment operator and
thus basically follows the same logic as normal write-masking.

To support masked gathers, the WriteMaskedVector class de-
clares an assignment operator for an rvalue-reference to Subscrip-
tOperation :

template <typename T, typename I, typename S>
void operator=(SubscriptOperation<T, I, S> &&);

The operator will call gatherArguments on the SubscriptOper-
ation object and use that information to execute a masked gather
and assign the result to the referenced Vector<T> object.

Note that this only allows direct assignment from the gather ex-
pression. The user can not execute operations in addition (though
this could be supported via expression templates).

7 CONCLUSION

I have presented the Mask<T> class and associated functions and
operators that can be used to vectorize conditional statements with
little effort and in an understandable and intuitive syntax. There are
still a few open questions on how to create the best write-masking
syntax. Also there are some useful functions that I have implemented
in Vc, such as population count, index of first true value, subscript
operator for reading and setting individual mask entries, and a few
more that are not described here. This document is a work in progress
on the mask type, as I am looking for guidance how to proceed.

N4185 A Example: Mandelbrot 17

A EXAMPLE: MANDELBROT

1 typedef SimdArray<int, float_v::Size> IV;
2 for (int y = 0; y < imageHeight; ++y) {
3 const float_v c_imag = y0 + y * scale;
4 for (IV x = IV::IndexesFromZero(); any_of(x < imageWidth);
5 x += float_v::Size) {
6 const std::complex<float_v> c(x0 + x * scale, c_imag);
7 std::complex<float_v> z = c;
8 IV n = 0;
9 auto inside = norm(z) < 4.f;

10 while (any_of(inside && n < 255)) {
11 z = z * z + c;
12 where(inside) | n += 1;
13 inside = norm(z) < 4.f;
14 }
15 IV colorValue = 255 - n;
16 colorizeNextPixels(colorValue);
17 }
18 }

Listing 12: A Vc implementation of the Mandelbrot algorithm.

0 100 200 300 400 500 600 7000

2

4

6

8

u�u�u�u�ℎ
3 = ℎu�u�u�ℎu�

2 [pixels]

sp
ee

du
p

Vc::AVX
Vc::SSE (ternary)
Vc::SSE (binary)

Vc::Scalar

Figure 1: Runtime of the Vc implementation of the Mandelbrot al-
gorithm normalized to an optimized implementation using
float and int .

B ACKNOWLEDGEMENTS

• This work was supported by GSI Helmholtzzentrum für Schwe-
rionenforschung and the Hessian LOEWE initiative through the
Helmholtz International Center for FAIR (HIC for FAIR).

N4185 C References 18

• Thanks to all the useful and encouraging feedback from Vc
users in the community.

C REFERENCES

[1] Intel Corporation. Tutorial: Array Notation | Cilk Plus. URL https:
//www.cilkplus.org/tutorial-array-notation .

[2] ISO/IEC JTC1/SC22/WG21. ISO International Standard ISO/IEC
14882:2011(E) – Programming Language C++, 2011. URL http:
//isocpp.org/ .

[3] Matthias Kretz. N4184: SIMD Types: The Vector Type
& Operations. ISO/IEC C++ Standards Committee Paper,
2014. URL http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2014/n4184.pdf .

[4] Victor Luchangco, Jens Maurer, Michael Wong, et al. N3999:
Standard Wording for Transactional Memory Support for
C++. ISO/IEC C++ Standards Committee Paper, 2014. URL
http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2014/n3999.pdf .

[5] Bjarne Stroustrup. Stroustrup: C++ Style and Technique FAQ,
2013. URL http://www.stroustrup.com/bs_faq2.html#
overload-dot .

https://www.cilkplus.org/tutorial-array-notation
https://www.cilkplus.org/tutorial-array-notation
http://isocpp.org/
http://isocpp.org/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4184.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4184.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3999.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3999.pdf
http://www.stroustrup.com/bs_faq2.html#overload-dot
http://www.stroustrup.com/bs_faq2.html#overload-dot

	1 About This Document
	2 General Introduction to Conditionals
	3 Conditionals in SIMD Context
	4 The Vc::Mask<T> Class
	5 Write-Masking
	6 Masked Gather & Scatter
	7 Conclusion
	A Example: Mandelbrot
	B Acknowledgements
	C References

