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ABSTRACT
This paper describes a template class for portable SIMD Vector types.
The class is portable because its size depends on the target system
and only operations that are independent of the SIMD register size
are part of the interface.
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1 ABOUT THIS DOCUMENT

This document is derived from a larger document about the Vc li-
brary. For the sake of simplicity I refrained from changing the naming
conventions of types/functions in this paper:

• I want to focus on functionality first. We can “correct” the
names later.

• It is easier to find the reference to an existing implementation.

Disclaimer: I did not get everything “right” in the Vc implementation
yet. Some details of the interface definitions I present here do not
fully reflect the current state of the Vc SIMD types.

1.1 shorthands in the document

• 𝒲T : number of scalar values (width) in a SIMD vector of type T
(sometimes also called the number of SIMD lanes)

1.2 relation to n3759

N3759 presented the main idea but skippedmany details and features
in order to focus on the concept. This document extends the types
presented in N3759 and discusses interface decisions and expected
behavior in detail.

2 INTRODUCTION

2.1 simd registers and operations

Since many years the number of SIMD instructions and the size of
SIMD registers have been growing. Newer microarchitectures intro-
duce new operations for optimizing certain (common or specialized)
operations. Additionally, the size of SIMD registers has increased and
may increase further in the future.

The typical minimal set of SIMD instructions for a given scalar data
type comes down to the following:

• Load instructions: load 𝒲T successive scalar values starting
from a given address into a SIMD register.

• Store instructions: store from a SIMD register to 𝒲T successive
scalar values at a given address.



N4184 2 Introduction 2

• Arithmetic instructions: apply the arithmetic operation to each
pair of scalar values in the two SIMD registers and store the
results back to a SIMD register.

• Compare instructions: apply the compare operation to each
pair of scalar values in the two SIMD registers and store the
results back to a SIMD mask register.

• Bitwise instructions: bitwise operations on SIMD registers.

The set of available operations can differ considerably between
different microarchitectures of the same CPU family. Furthermore
there are different SIMD register sizes. Future extensions will certainly
add more instructions and larger SIMD registers.

2.2 motivation for simd types

There is no need to motivate explicit SIMD programming. It is very
much needed. The open question is only: “How?”.

There have been several approaches to vectorization. I’d like to
only discuss the merits of SIMD types here.

SIMD registers and operations are the low-level ingredients to SIMD
programming. Higher-level abstractions can be built on top of these.
If the lowest-level access to SIMD is not provided, users of C++ will be
constrained to work within the limits of the provided abstraction.

In some cases the compiler might generate better code if only the
intent is stated instead of an exact sequence of operations. There-
fore, higher-level abstractionsmight seem preferable to low-level SIMD
types. In my experience this is not an issue because programming
with SIMD types makes intent very clear and compilers can optimize
sequences of SIMD operations just like they can for scalar operations.
SIMD types do not lead to an easy and obvious answer for efficient
and easily usable data structures, though. But, in contrast to vector
loops, SIMD types make unsuitable data structures glaringly obvious
and can significantly support the developer in creating more suitable
data layouts.

One major benefit from SIMD types is that the programmer can gain
an intuition for SIMD. This subsequently influences further design of
data structures and algorithms to better suit SIMD architectures.

There are alreadymany users of SIMD intrinsics (and thus a primitive
form of SIMD types). Providing a cleaner and portable SIMD API would
provide many of them with a better alternative. Thus, SIMD types in
C++ would capture and improve on widespread existing practice.
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The challenge remains in providing portable SIMD types and oper-
ations.

2.3 problem

C++ has no means to use SIMD operations directly. There are indirect
uses through automatic loop vectorization or optimized algorithms
(that use extensions to C/C++ or assembly for their implementation).

All compiler vendors (that I worked with) add intrinsics support to
their compiler products to make SIMD operations accessible from C.
These intrinsics are inherently not portable and most of the time very
directly bound to a specific instruction. (Compilers are able to stati-
cally evaluate and optimize SIMD code written via intrinsics, though.)

3 SIMD VECTOR TYPE REQUIREMENTS

A thin abstraction on top of intrinsic or builtin types can provide the
following desired properties:

• The value of an object of Vector<T> consists of 𝒲T scalar
values of type T .

• The sizeof and alignof of Vector<T> objects is target-
dependent.

• Scalar entries of a SIMD vector can be accessed via lvalue ref-
erence.

• The number of scalar entries (𝒲T ) is accessible as a constant
expression.

• Operators that can be applied to T can be applied to Vec-
tor<T> with the same semantics per entry of the vector.

• The result of each scalar value of an operation on Vector<T>
does not depend on 𝒲T .

1

• The syntax and semantics of the fundamental arithmetic types
translate directly to the Vector<T> types. There is an ad-
ditional constraint for implicit type conversions, though: Vec-
tor<T> does not implicitly convert to Vector<U> if 𝒲T ≠ 𝒲U

for any conceivable target system.

1 Obviously the number of scalar operations executed depends on 𝒲T . But the re-
sulting value of each scalar operation that is part of the operation on Vector<T>
is independent.
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1 namespace Vc {
2 namespace target_dependent {
3 template <typename T> class Vector
4 {
5 implementation_defined data;
6

7 public:
8 typedef implementation_defined VectorType;
9 typedef T EntryType;

10 typedef implementation_defined EntryReference;
11 typedef Mask<T> MaskType;
12

13 static constexpr size_t MemoryAlignment = implementation_defined;
14 static constexpr size_t Size = implementation_defined;
15 static constexpr size_t size() { return Size; }
16

17 // ... (see the following Listings)
18 };
19 template <typename T> constexpr size_t Vector<T>::MemoryAlignment;
20 template <typename T> constexpr size_t Vector<T>::Size;
21

22 typedef Vector< float> float_v;
23 typedef Vector< double> double_v;
24 typedef Vector< signed long long> longlong_v;
25 typedef Vector<unsigned long long> ulonglong_v;
26 typedef Vector< signed long> long_v;
27 typedef Vector<unsigned long> ulong_v;
28 typedef Vector< signed int> int_v;
29 typedef Vector<unsigned int> uint_v;
30 typedef Vector< signed short> short_v;
31 typedef Vector<unsigned short> ushort_v;
32 typedef Vector< signed char> schar_v;
33 typedef Vector<unsigned char> uchar_v;
34 } // namespace target_dependent
35 } // namespace Vc

Listing 1: SIMD vector class definition

• The compiler can recognize optimization opportunities and ap-
ply constant propagation, dead code elimination, common subex-
pression elimintation, and all other optimization passes that ap-
ply to scalar operations.2

4 THE VC::VECTOR<T> CLASS

The boilerplate of the SIMD vector class definition is shown in List-
ing 1. There are several places in this listing where the declaration
says “target-dependent” or “implementation-defined”. All of the fol-
lowing listings, which declare functions of the Vector<T> class (to
insert at line 17), do not require any further implementation-specific
differences. All these differences in Vector<T> are fully captured by
the code shown in Listing 1.

2 So much for the theory. In practice, there still are many opportunities for compilers
to improve optimization of SIMD operations.
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The only data member of the vector class is of an implementation-
defined type (line 5). This member therefore determines the size and
alignment of Vector<T> . Obviously, the SIMD classes may not con-
tain virtual functions. Otherwise a virtual table were required and
thus objects of this type would be considerably larger (larger by the
minimum of the pointer size and the alignment of VectorType).

4.1 member types

The member types of Vector<T> abstract possible differences be-
tween implementations and ease generic code for the SIMD vector
types.

VectorType
(line 8) is the internal type for implementing the vector class.
This type could be an intrinsic or builtin type. The exact type
that will be used here depends on the compiler and compiler
flags, which determine the target instruction set. Additionally,
if an intrinsic type is used it might not be used directly (in line
5) but indirectly via a wrapper class that implements compiler-
specific methods to access scalar entries of the vector.

The VectorType type allows users to build target- and imple-
mentation-specific extensions on top of the predefined func-
tionality. This requires a function that returns an lvalue ref-
erence to the internal data (line 5). See Section 13 for such
functions.

EntryType
(line 9) is always an alias for the template parameter T . It is the
logical type of the scalar entries in the SIMD vector. The actual
bit-representation in the SIMD vector register may be different
to EntryType , as long as the observable behavior of the scalar
entries in the object follows the same semantics.

EntryReference
(line 10) is the type returned from the non-const subscript oper-
ator. This type should be an lvalue reference to one scalar entry
of the SIMD vector. It is not required for EntryReference to
be the same as EntryType & . Consider an implementation
that uses 32-bit integer SIMD registers for Vector<short> ,
even though a short uses only 16 bits on the same target.
Then EntryReference has to be an lvalue reference to int .
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If EntryReference were declared as short & then sign ex-
tension to the upper 16 bits would not work correctly on assign-
ment.

MaskType
(line 11) is the mask type that is analogous to bool for scalar
types. The type is used in functions that have masked over-
loads and as the return type of compare operators. A detailed
discussion of the class for this type is presented in [N4185].

4.2 constants

The vector class provides a static data member (Size) and static
member function (size()) which both identify the number of scalar
entries in the SIMD vector (lines 14 and 15). This value is determined
by the target architecture and therefore known at compile time. By
declaring the Size variable constexpr , the value is usable in con-
texts where constant expressions are required. This enables template
specialization on the number of SIMD vector entries in user code. Also
it enables the compiler to optimize generic code that depends on the
SIMD vector size more effectively. The additional size() function
makes Vector<T> implement the standard container interface, and
thus increases the reusability in generic code.3

The MemoryAlignment static data member defines the align-
ment requirement for a pointer passed to an aligned load or store
function call of Vector<T> . The need for a MemoryAlignment
static data member might be surprising at first. In most cases the
alignment of Vector<T> will be equal to MemoryAlignment . But
as discussed in Section ??, implementations are free to use a SIMD
register with different representation of the scalar entries than En-
tryType . In such a case, the alignment requirements for Vec-
tor<T> will be higher than 𝒲T × sizeof(T) for an aligned load
or store. Note that the load and store functions allow converting
loads (Section 6.1). These functions need a pointer to memory of a
type different than EntryType . Subsequently the alignment require-
ments for these pointers can be different. Starting with C++14 it may
therefore be a good idea to declare MemoryAlignment as:

template <typename U>
static constexpr size_t MemoryAlignment = implementation_defined;

3 It would suffice to define only the size() function and drop Size . Personally, I
prefer to not use function calls in constant expressions. Additionally, a 50% differ-
ence in the number of characters makes Size preferable because it is such a basic
part of using SIMD types.
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4.3 namespace

Line 2 defines a namespace that is not part of the standard interface.
A user should be able to access the natural SIMD registers and oper-
ations via the Vector<T> type and its typedefs float_v , double
_v , …. But consider the case of compiling two translation units with
different target compiler flags. In that case Vector<T> could map to
different SIMD widths even though they had the same type. Thus, the
code would compile, link, and possibly even run—but not correctly—
. The namespace turns the Vector<T> types into different sym-
bols and thus ensures correct linkage of different translation units.
An implementation may choose to document the target-dependent
namespaces, as discussed below (Section 12.2).

4.4 simd type aliases

The code on lines 22–33 declares handy aliases for the Vector<T>
class template. The intent of these aliases is to make SIMD vector
code more concise and recognizable.

There is a design decision here: whether to use the types char ,
short , int , long , and long long or the int8_t , int16_t , int
32_t , and int64_t typedefs. The problem with the latter list is that
these types are optional. Thus, the definition of int32_v (≡ Vec-
tor<int32_t> is optional, too. Since the intN _t typedefs must
map to one of the fundamental types in the first list of types, defini-
tion of the SIMD Types with the fundamental types of the first list is
more general.

It is a sensible choice to additionally declare typedefs for intN _v
in the presence of intN _t typedefs.

5 SIMD VECTOR INITIALIZATION

The interface for initialization—excluding loads (Section 6) and gath-
ers (Section 11)—is shown in Listing 2. The Vc vector types are not
POD types because we want to have full control over the implicit and
explicit initialization methods (also because there is currently no guar-
antee about the POD-ness of VectorType). The decision for what
constructors to implement follows from syntactical and semantical
compatibility with the builtin arithmetic type EntryType . Thus the
expressions in Listing 3 must compile and “do the right thing”.
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1 // init to zero
2 Vector();
3

4 // broadcast with implicit conversions
5 Vector(EntryType);
6

7 // disambiguate broadcast of 0 and load constructor
8 Vector(int); // must match exactly
9

10 // implicit conversion from compatible Vector<T>
11 template <typename U>
12 requires ImplicitConversionAllowed<U, EntryType>()
13 Vector(Vector<U>);
14

15 // static_cast from vectors of possibly (depending on target)
16 // different size (dropping values or filling with 0 if the size is
17 // not equal)
18 template <typename U>
19 requires ExplicitConversionAllowed<U, EntryType>()
20 explicit Vector(Vector<U>);

Listing 2: Initialization and conversion constructors for Vector<T>

1 double_v a0{}, a1(); // zero-initialized
2

3 float_v b = 0, c = 2.f;
4 short_v d = -1; // -1
5 ushort_v e = -1; // numeric_limits<unsigned short>::max()
6 int_v f = short(-1); // -1
7 uint_v g = short(-1); // numeric_limits<unsigned int>::max()
8

9 ushort_v h = d; // numeric_limits<unsigned short>::max()
10 int_v i = g; // implementation-defined value for i
11

12 float_v j = static_cast<float_v>(a);
13 double_v k = static_cast<double_v>(d);

Listing 3: A few statements that are valid initialization expressions,
if the builtin scalar types were used. They should work
equally well with the Vector<T> types (as shown).
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default cons tr uctor The default constructor in line 2 creates a
zero-initialized object. The constructor may not keep the object unini-
tialized. Because, if the expression T() is used with a fundamental
type, a “prvalue of the specified type, which is value-initialized” [6,
§5.2.3] is created. The term “value-initialized” implies “zero-initial-
ized” for fundamental types.

des tr uctor or copy/move cons tr uctor There is no need for
a destructor and explicitly declared copy and/or move constructors
as long as the vector type does not use external storage.4 There
might be a need for these functions if the Vector<T> type is used
as a handle to remote data, for instance on an accelerator card. Such
an implementation needs to be able to add the destructor and copy-
/move constructors and assignment operators, though.

5.1 broadcasts

The constructor on line 5 declares an implicit conversion from any
value of a type that implicitly converts to EntryType . This means
that in places where a variable of type Vector<T> is expected, a
variable of type T works as well. The constructor then broadcasts
the scalar value to all entries of the SIMD vector. This kind of implicit
conversion makes it very easy and natural to use numeric constants
in SIMD code.

The constructor on line 8 is a special case of the preceding broad-
cast constructor on line 5. This constructor is required because initial-
ization with the literal 0 is ambiguous otherwise. The load constructor
(see Section 6 line 8 of Listing 7) and the Vector(EntryType) con-
structor match equally well, with just a single implicit type conversion.
If EntryType is int , then this extra constructor overload on line 8
must be removed from overload resolution, because otherwise the
signatures of the constructors on lines 5 and 8 are equal. For all the
other Vector<T> types the Vector(int) constructor must not
participate in overload resolution except when the argument to the
constructor is exactly an int . Otherwise the expression short_v
v(1u) would be ambiguous. This can be implemented with a tem-
plate parameter which must be deduced to exactly be an int using
an additional enable_if parameter:

4 Implementation experience: With the Linux ABI, a non-trivial copy constructor
changes parameter passing. Using a trivial copy constructor, a Vector<T> pa-
rameter passed by value is passed in a single SIMD register. Using a non-trivial
copy constructor, the same code is translated to pass the parameter via the stack.
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1 template <typename A, typename B>
2 concept bool ImplicitConversionAllowed() {
3 return is_integral<A>::value && is_integral<B>::value &&
4 is_same<conditional_t<is_signed<A>::value,
5 make_unsigned_t<A>, make_signed_t<A>>,
6 B>::value;
7 }

Listing 4: Possible implementation of the ImplicitConversion-
Allowed concept.

template <typename U>
Vector(U a, typename enable_if<is_same<U, int>::value &&

!is_same<U, EntryType>::value,
void *>::type = nullptr);

5.2 simd vector conversions

The fundamental arithmetic types implicitly convert between one an-
other. (Not every such conversion is value-preserving, which is why
some compilers emit warnings for type demotions.) For SIMD types
conversions should work in the same manner. However, there is no
guarantee that the number of scalar entries in a SIMD vector type
is equal to the number of entries in a different type. Therefore, the
conversions between Vector<T> types are split into implicit and ex-
plicit conversions. The idea is expressed with requires expressions
[N3819].

It is important that code written with the Vector<T> types is
as portable as possible. Therefore, implicit casts may only work if
𝒲T = 𝒲U holds on every possible target system. There is no real
guarantee for this to work with any type combination. It is a rea-
sonable assumption, though, that 𝒲T = 𝒲make_signed_t<T> for any
unsigned integral type T (since make_signed_t<T> “occupies the
same amount of storage” as T [6, §3.9.1]). Therefore, the Implicit-
ConversionAllowed concept (line 12) must check for both types
to be integral and to differ only in signedness (Listing 4).

If only these implicit casts were allowed, then the interface would
be too restrictive. The user needs to be able to convert between
SIMD vector types that possibly have a different number of entries.
The constructor in line 20 therefore allows all remaining conversions
not covered by the preceding constructor. Since the constructor is
declared explicit it breaks with the behavior of the builtin arith-
metic types and only allows explicit casts (such as static_cast or
explicit constructor calls).
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1 float_v f(float_v x) {
2 float_v r;
3 for (size_t i = 0; i < float_v::Size; i += double_v::Size) {
4 r = r.shiftIn(
5 double_v::Size,
6 static_cast<float_v>(g(static_cast<double_v>(x.shifted(i)))));
7 }
8 return r;
9 }

Listing 5: Sample code that portably calls the function g(double_-
v) on a full float_v .

starting with an
empty return vector:

0
0
0
0

0
0
0
𝑟0

0
0
𝑟0
𝑟1

0
𝑟0
𝑟1
𝑟2

𝑟0
𝑟1
𝑟2
𝑟3

shifting results in
from the right:

<< << << <<
𝑟0
0
0
0

𝑟1
0
0
0

𝑟2
0
0
0

𝑟3
0
0
0

Figure 1: Vector filling algorithm used in Listing 5

It would certainly be possible to define additional guaranteed 𝒲T

relations by requiring implementations to implement some vector
types with multiple registers. As a matter of fact, this is how I initially
implemented Vc: 𝒲int = 𝒲float was guaranteed. This was easy to
support with only SSE and Larrabee (now Xeon Phi) implementations,
but required two SSE int vectors to implement the AVX target. This
is due to the initial AVX revision not including instruction support for
integer vectors of 256 bits. However, conversions between different
integer types and floating-point types are very important to many
algorithms and therefore must be supported.

The conversion constructor in line 20 converts 𝑛 = min(𝒲T , 𝒲U)
values for a conversion from Vector<T> to Vector<U> . The re-
maining 𝑛0 = max(0, 𝒲U − 𝑛) entries in the target variable are set
to zero. This implies that user code that wants to portably implement
an algorithm, which needs to convert between vectors of possibly
different widths, must employ a pattern such as shown in Listing 5.

The idea of the code in Listing 5 is visualized in Figure 1. How-
ever, this code does not qualify as an intuitive solution. A developer
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1 float_v f(float_v x) {
2 float_v r;
3 for (size_t i = 0; i < float_v::Size; i += double_v::Size) {
4 r[{i, double_v::Size}] = static_cast<float_v>(
5 g(static_cast<double_v>(x[{i, double_v::Size}])));
6 }
7 return r;
8 }

Listing 6: Possible syntax for implementing Listing 5 via the subscript
operator.

will rather think of the subscript operator for accomplishing the task.
Subscripting for a target-dependent number of entries in the vector
requires an even more awkward and non-obvious interface. Listing 6
shows a possible syntax for a portable subscripting solution. It thus
becomes clear that a better solution for the cast issue needs to be
provided. One possible solution uses a new cast function (simd_-
cast) that can cast from multiple Vector<T> to one Vector<U> or
from one Vector<U> to multiple Vector<T> . An even more con-
venient solution builds upon these casts and the Vector<T> type
to create a SimdArray<T, N> abstraction for composing multiple
Vector<T> into one type (see Document on SIMD Arrays—still to be
written—).

6 LOADS AND STORES

The vector types need an interface for loading and storing SIMD vec-
tors from/to memory. In contrast to the primary motivation of provid-
ing the same syntax and semantics as for fundamental types, these
functions have no equivalent in their underlying fundamental types T .
The load & store functions are required because they are a portable
and efficient interface for converting between arrays of a fundamen-
tal scalar type and vector types. Without load & store functions, data
could not reasonably be converted in a portable fashion: All input
and output of data to a vectorized algorithm would be required to
exclusively use the Vector<T> types. Obviously, this would be an
unrealistic requirement for the majority of applications.

Nevertheless, loads and stores are an unfortunate requirement that
should rather be eliminated from the set of required operations user
code has to call. There are different ideas to hiding loads and stores
behind abstractions on top of SIMD types and standard containers.
These abstractions still build upon the load & store functions in the
Vector<T> interface, though. Appendix A describes one of the
ideas.
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1 // load member functions
2 void load(const EntryType *mem);
3 template <typename Flags> void load(const EntryType *mem, Flags);
4 template <typename U, typename Flags = UnalignedT>
5 void load(const U *mem, Flags = Flags());
6

7 // load constructors
8 explicit Vector(const EntryType *mem);
9 template <typename Flags>

10 explicit Vector(const EntryType *mem, Flags flags);
11 template <typename U, typename Flags = UnalignedT>
12 explicit Vector(const U *mem, Flags flags = Flags());
13

14 // store functions
15 void store(EntryType *mem) const;
16 void store(EntryType *mem, MaskType mask) const;
17 template <typename Flags>
18 void store(EntryType *mem, Flags flags) const;
19 template <typename Flags>
20 void store(EntryType *mem, MaskType mask, Flags flags) const;
21 template <typename U, typename Flags = UnalignedT>
22 void store(U *mem, Flags = Flags()) const;
23 template <typename U, typename Flags = UnalignedT>
24 void store(U *mem, MaskType mask, Flags = Flags()) const;

Listing 7: Declaration of the load and store functions.

Listing 7 shows the interface for loads and stores for the Vec-
tor<T> types. These functions convert 𝒲T consecutively stored
scalar objects of type T to one object of type Vector<T> and back.
Thus, the start address (pointer to the first scalar object) and the type
of the scalar objects are sufficient to fully characterize the required
load or store operation. (The case of randomly distributed scalars
is handled by gather and scatter functions, which are described in
Section 11.)

6.1 converting loads and stores

Some SIMD hardware can convert between different data types with-
out extra runtime overhead when executing a load or store instruction
[4]. Therefore, and because it is very convenient for writing portable
conversion code, the load & store functions provide a generic variant
that can access arrays of different scalar types. Semantically, these
functions behave as described in Listing 8. Thus, 𝒲T values of type U
are converted with load/store functions in Vector<T> , independent
of 𝒲U , in contrast to the converting constructor in Section 5.2.

Not all conversions are equally efficient in terms of hardware sup-
port. But for reasons of portability, the full set of conversions between
fundamental arithmetic types is made available through these func-
tions.
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1 void Vector<T>::load(const U *mem) {
2 for (size_t i = 0; i < Size; ++i) {
3 (*this)[i] = static_cast<T>(mem[i]);
4 }
5 }
6 void Vector<T>::store(U *mem) const {
7 for (size_t i = 0; i < Size; ++i) {
8 mem[i] = static_cast<U>((*this)[i]);
9 }

10 }

Listing 8: The semantics of a converting load.

6.2 load/store flags

SIMD hardware makes a difference between aligned and unaligned
vector loads and stores. Additionally, most algorithms can be opti-
mized if the developer can hint at the temporal usage of the data.
The alignment can, in theory, be determined from the start address,
and thus would not require additional specification in the function call.
But, since the alignment can only be determined from the pointer
value at runtime, such a check would incur a penalty. Using unaligned
load/store instructions unconditionally would be more efficient than
checking the alignment of the pointer. An unaligned load/store in-
struction in hardware can do the alignment test much more efficiently.
Therefore, per default, the load/store functions translate to unaligned
load/store instructions.

6.2.1 alignment

If the user can guarantee alignment, a tag type can be used as last
argument to select the optimized load/store instructions at compile
time, without any runtime overhead. It is important that the API is
built via a template and tag type, rather than a boolean (or enum)
function argument. A boolean function argument cannot guarantee
compile-time optimization. Especially, such an API would allow pass-
ing a non-constant expression as flag variable which cannot be opti-
mized at all. Via the tag type the user of the API is required to provide
a constant expression and thus decide between aligned or unaligned
memory access when he writes the code.

6.2.2 non-temporal access

Loads and stores can be further optimized for non-temporal accesses.
Many data-parallel algorithms use a streaming pattern, where the
input and/or output memory locations are used only once. Therefore,
this data should not evict other data, which might be used repeatedly
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in the algorithm, from the CPU caches. The load/store functions in Vc
can therefore be called with the Vc::Streaming tag type. This tag
hints to the Vector<T> implementation that the data can be moved
past the caches. (Most CPUs can use specialized load and store buffers
for streaming loads and stores.) If the requested load/store operation
cannot be executed as a streaming variant, the implementation will
silently fall back to a non-streaming variant.

Streaming stores executed with the Vc::Streaming tag may use
non-globally ordered stores if the target CPU supports this. Thus, two
stores to the samememory location, where at least one is a streaming
store, have undefined behavior unless a memory fencing operation
is called between the stores. This allows to reach the highest store
throughput, but requires a good understanding of the implications
when used by a developer.

6.2.3 prefetching

A last flag that I implemented for the load/store functions makes
prefetching in loops significantly simpler. By adding the Vc::Pre-
fetchDefault tag type, the Vector implementation is asked to
emit software prefetch instructions for a target-dependent prede-
fined stride. Thus, a call to

float_v(memory, Vc::Aligned |
Vc::PrefetchDefault)

may result in up to three instructions being called, one of which is
the load instruction. In addition, prefetch instructions for the low-
est level cache and second lowest level cache may be called. These
prefetches are called with a predefined offset to the memory address
that is passed to the load function.

The prefetch flag is therefore a shorthand to prefetching explicitly
in many loops. But not all loops were created equal, which is why
instead of the predefined strides the user may also set the strides
explicitly. In almost all cases, a developer adds prefetches after the
program or component is already working and is only modified for
speed optimizations. The developer then determines the prefetch
strides through intuition and/or trial and error.

Note that prefetches only need to be called once for any address
inside one cache line. Thus, two subsequent loads/stores to neigh-
boring SIMD vectors may result in more software prefetch instructions
than necessary. This depends on the ratio of the cache line size to the
vector register size. As this ratio is target dependent, the API appears
to introduce a portability issue in this case. There is no easy solution
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1 Vector &operator++();
2 Vector operator++(int);
3 Vector &operator--();
4 Vector operator--(int);
5

6 MaskType operator!() const;
7 Vector operator~() const;
8 Vector operator+() const;
9 Vector operator-() const;

Listing 9: Declaration of unary operators.

from the load/store interface side. But the compiler is, in theory, able
to drop the superfluous prefetch instructions.5

7 UNARY OPERATORS

The unary operators (increment, decrement, logical negation, one’s
complement, unary +, and unary -) behave as 𝒲T applications of the
operator to the scalar values in the vector. But, there is an API issue
that results from integral promotion, which is applied to the operand of
unary +, unary -, and one’s complement. Integral promotion leads to
operands of builtin integral types smaller than int/unsigned int
getting promoted to int or unsigned int before the operator is
applied. This implies that ushort_v and short_v would have to
return int_v from unary +, unary -, and one’s complement. But
since 𝒲short = 𝒲int does not hold for most targets, this is not pos-
sible (except if the return type were SimdArray<int, short_v
::Size > [Document on SIMD Arrays—still to be written—]). For
the fundamental integral types, the integral promotion to int nor-
mally does not cause a performance hit because int is defined to
be the natural integer type of the target CPU. But for vector types,
integral promotion may require more overhead than is acceptable.
Therefore the SIMD vector types do not perform integral promotion.
This is also the case for binary operators (see Section 8). On the other
hand, integral promotion makes much more sense for the simdar-
ray types.

The declaration of the interface for the unary operators is shown
in Listing 9. As discussed above, the return types of the functions in
lines 7–9 do not follow the integral promotion rules. These operators
can therefore lead to subtle differences to scalar code as the example

5 This is possible if the relative difference between prefetch instructions is considered
by the compiler. It could apply an algorithm that keeps the first prefetch call and
drops every subsequent prefetch call that would reference the same cache line as
a previous call.
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1 unsigned short a = 40000;
2 auto b = -a; // decltype(b) == int
3

4 ushort_v v = 40000;
5 auto w = -v; // decltype(w) == ushort_v
6

7 assert(b == w[0]); // this fails

Listing 10: Subtle differences between scalar code and vector code,
because of differences in integer promotion.

in Listing 10 demonstrates. The assertion in line 7 fails because the
builtin compare operator performs integral promotion, promoting the
right hand side of the comparison to int . But while b holds the value
−40000, w holds 𝒲short values of 216 − 40000 = 25536. Conversion
of one value in w to int does not change that value. Thus, line 7
compares -40000 == 25536 .

8 BINARY OPERATORS

Binary operators provide arithmetic, comparison, bitwise, and shift
operations. They implement the central part of the SIMD functional-
ity by executing 𝒲T operations in parallel on the SIMD vector entries.
If the EntryType is not of integral type, the binary, shift, and mod-
ulo operators need to be disabled. They would certainly be imple-
mentable, but since the builtin non-integral types do not implement
these operators, the SIMD types follow the same semantics.

The interface for these operators is shown in Listing 11. In this form
of declaration, the compiler will allow the right-hand operand to be
implicitly converted via a non-explicit conversion constructor. Thus,
conversions from integer-vectors of differing signedness and broad-
casts from scalars would be possible. But the resulting type would
solely be determined by the type of the left-hand operand. Thus int
_v() + uint_v() would result in an int_v , whereas uint_v()
+ int_v() would result in a uint_v . Also int_v() + 1.f would
compile and result in an int_v , whereas any operation with a scalar
value on the left-hand side (such as 1.f + float_v()) would not
compile at all. Thus, there is a need for further refinement of the
binary operators, which can be done via non-member operators.

8.1 generic non-member binary operators

The definition of two of the non-member binary operators (one arith-
metic and one comparison operator) is shown in Listing 12. There is
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1 Vector operator* (Vector x) const;
2 Vector operator/ (Vector x) const;
3 Vector operator+ (Vector x) const;
4 Vector operator- (Vector x) const;
5 Vector operator% (Vector x) const {
6 static_assert(std::is_integral<EntryType>::value,
7 "the modulo operator can only be used with Vectors "
8 "of integral type");
9 }

10

11 MaskType operator==(Vector x) const;
12 MaskType operator!=(Vector x) const;
13 MaskType operator>=(Vector x) const;
14 MaskType operator<=(Vector x) const;
15 MaskType operator> (Vector x) const;
16 MaskType operator< (Vector x) const;
17

18 Vector operator& (Vector x) const {
19 static_assert(std::is_integral<EntryType>::value,
20 "bitwise operators can only be used with Vectors of "
21 "integral type");
22 }
23 Vector operator| (Vector x) const { ... }
24 Vector operator^ (Vector x) const { ... }
25 Vector operator<<(Vector x) const {
26 static_assert(std::is_integral<EntryType>::value,
27 "shift operators can only be used with Vectors of "
28 "integral type");
29 }
30 Vector operator>>(Vector x) const { ... }
31 Vector operator<<(int x) const { ... }
32 Vector operator>>(int x) const { ... }

Listing 11: Declaration of binary operators.
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1 template <typename L, typename R>
2 inline TypesForOperator<L, R> operator+(L &&x, R &&y) {
3 using V = TypesForOperator<L, R>;
4 return V(std::forward<L>(x)) + V(std::forward<R>(y));
5 }
6 // ...
7

8 template <typename L, typename R>
9 inline typename TypesForOperator<L, R>::MaskType operator==(L &&x,

10 R &&y) {
11 using V = TypesForOperator<L, R>;
12 return V(std::forward<L>(x)) == V(std::forward<R>(y));
13 }
14 // ...

Listing 12: Non-member operators for the Vc SIMD vector types.

only a slight difference in the return type between comparison oper-
ators and the remaining binary operators. Compares obviously must
return a mask type and therefore require the Vector<T> ::Mask-
Type return type. The operator’s implementation simply forwards
to the member operators using the same type for the left and right
operands. The evaluation of this type does all the magic. Especially
important is the fact that if TypesForOperator<L, R> leads to
a substitution failure no error is emitted, but the operator is silently
removed from the candidate list (SFINAE). Thus, TypesForOpera-
tor<L, R> determines every aspect of which binary operators are
supposed to compile or throw an error and which implicit conversions
are involved.

The TypesForOperator<L, R> type in Vc is defined as an alias
template (see Listing 13, line 56) for the TypesForOperatorIn-
ternal struct . The alias template simplifies the implementation
of TypesForOperatorInternal by swapping the types L and R
if L is a non-vector type. Therefore, the first template argument is
guaranteed to be a SIMD vector type, unless neither L nor R is a SIMD
vector type. The third template argument (a boolean) provides a sim-
ple mechanism to specialize the struct for type combinations where
a substitution failure should result (and thus inhibit the binary opera-
tor to participate in overload resolution). The conditions for this are
simply that the non-member operators may only participate in over-
load resolution for type combinations that involve at least one vector
type and where L and R are not equal, in which case the operator
would lead to an ambiguity with the member operator in the vector
class.

The struct in line 48 defines an empty type for operands where
the operators are not supposed tomatch. Note that the struct does
not contain the member type type , thus leading to the intended
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1 template <typename T, bool> struct MakeUnsignedInternal;
2 template <typename T> struct MakeUnsignedInternal<Vector<T>, true> {
3 using type = Vector<typename std::make_unsigned<T>::type>;
4 };
5 template <typename T> struct MakeUnsignedInternal<Vector<T>, false> {
6 using type = Vector<T>;
7 };
8 template <typename Test, typename T>
9 using CopyUnsigned = typename MakeUnsignedInternal<

10 T, isIntegral<T>() && isUnsigned<Test>()>::type;
11

12 template <typename From, typename To>
13 constexpr bool isNarrowingFloatConversion() {
14 return is_floating_point<From>::value &&
15 (is_integral<To>::value || (is_floating_point<To>::value &&
16 sizeof(From) > sizeof(To)));
17 }
18

19 template <typename T> static constexpr bool convertsToSomeVector() {
20 return is_convertible<T, double_v>::value ||
21 is_convertible<T, float_v>::value ||
22 is_convertible<T, int_v>::value ||
23 is_convertible<T, uint_v>::value ||
24 is_convertible<T, short_v>::value ||
25 is_convertible<T, ushort_v>::value;
26 }
27

28 template <typename V, typename W>
29 constexpr bool participateInOverloadResolution() {
30 return isVector<V>() && !is_same<V, W>::value &&
31 convertsToSomeVector<W>();
32 }
33

34 template <typename V, typename W>
35 constexpr enable_if<isVector<V>(), bool> isValidOperandTypes() {
36 using type = CopyUnsigned<W, V>;
37 return isVector<W>() ? (is_convertible<V, W>::value ||
38 is_convertible<W, V>::value)
39 : (is_convertible<W, type>::value &&
40 !isNarrowingFloatConversion<
41 W, typename type::EntryType>());
42 }
43

44 template <
45 typename V, typename W,
46 bool VectorOperation = participateInOverloadResolution<V, W>() &&
47 isValidOperandTypes<V, W>()>
48 struct TypesForOperatorInternal {};
49

50 template <typename V, typename W>
51 struct TypesForOperatorInternal<V, W, true> {
52 using type = CopyUnsigned<W, V>;
53 };
54

55 template <typename L, typename R>
56 using TypesForOperator = typename TypesForOperatorInternal<
57 decay_t<conditional_t< isVector<L>(), L, R>>,
58 decay_t<conditional_t<!isVector<L>(), L, R>>>::type;

Listing 13: The traits the non-member binary operators need for SFI-
NAE and return type evaluation.
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1 template <
2 typename V, typename W,
3 bool IsIncorrect = participateInOverloadResolution<V, W>() &&
4 !isValidOperandTypes<V, W>()>
5 struct IsIncorrectVectorOperands {};
6 template <typename V, typename W>
7 struct IsIncorrectVectorOperands<V, W, true> {
8 using type = void;
9 };

10

11 template <typename L, typename R>
12 using Vc_does_not_allow_operands_to_a_binary_operator_which_can_have_\
13 different_SIMD_register_sizes_on_some_targets_and_thus_enforces_\
14 portability =
15 typename IsIncorrectVectorOperands<
16 Traits::decay<Conditional<isVector<L>(), L, R>>,
17 Traits::decay<Conditional<!isVector<L>(), L, R>>>::type;
18

19 template <typename L, typename R>
20 Vc_does_not_allow_operands_to_a_binary_operator_which_can_have_\
21 different_SIMD_register_sizes_on_some_targets_and_thus_enforces_\
22 portability<L, R> operator+(L &&, R &&) = delete;

Listing 14: Declaration of explicitly deleted operators for improved
diagnostics on incorrect usage.

substitution failure. The struct in line 51 specializes for the case
where V is a SIMD vector type, the operand types are different, W
is convertible to a SIMD vector type, and the combination of types
yields valid implicit conversions. Since not all conversions to SIMD
vector types or between vector types are implicit, the binary operator
may not invoke such a conversion and turn an explicit conversion to
an implicit one. This is determined via the isValidOperandTypes
function defined in line 35. For all allowed type combinations V and W
the member type type in line 52 determines the SIMD vector type to
use as return type and for conversion of the operands before calling
the member operator.

By additionally declaring operator overloads that are !isValid-
OperandTypes as deleted, the interface catches incorrect use and
gives some hint to the user why the code does not compile (List-
ing 14). Currently C++ only allows to encode an explanation in the type
name. N4186 describes the issue of custom diagnostics for ill-formed
function overloads in more detail and suggests a simple extension to
the standard to improve the diagnostic output.6

6 Using a static_assert for improved error messages is also possible here and
it can be used to explain the error directly, thus making correcting errors in the
usage of the interface easier. On the other hand, with a static_assert , a trait
that checks whether a binary operator for two given operands is defined will return
a positive answer even though an actual call would fail to compile because of the
static assertion. (see [N4186] for the details)
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The isValidOperandTypes function ensures that the following
type combinations for the operands are invalid:

• If both operands are SIMD vectors, at least one of them must
be implicitly convertible to the other type.

• If one operand is a scalar type, then an implicit conversion from
the scalar type to the return type must be possible.

• Furthermore, a conversion from scalar type to vector type may
not lead to a narrowing conversion from a floating point type.
This essentially forbids float_v × double because the dou-
ble operand would have to be converted to the narrower sin-
gle-precision float type. On the other hand double_v ×
float does not require a narrowing conversion and therefore
works.

The return type is determined via the CopyUnsigned<Test, T>
alias template in line 9. The rules are as follows:

• The return type is the unsigned variant of T if T is integral and
Test is an unsigned type.

• Otherwise the return type is T .

Thus, if one operand is an unsigned integer vector or scalar and the
other operand is a signed integer vector or scalar, then the operands
are converted to the corresponding unsigned integer vector. But,
in contrast to the semantics of builtin integer types, no full integer
promotion is applied, leaving sizeof(T) of the vector entries, and
thus 𝒲T unchanged. It follows that int_v × unsigned int yields
uint_v and short_v × unsigned int yields ushort_v . The
latter implicit conversion from unsigned int to ushort_v is un-
fortunate, but since short_v + 1 should be valid code and return
a short_v , it is more consistent to also convert unsigned int
implicitly to short_v or ushort_v .

The non-member operators were explicitly designed to support op-
erator calls with objects that have an implicit conversion operator to
a SIMD vector type. This is possible by leaving W less constrained
than V .

8.2 optimizing vector × scalar operations

Note the shift operator overloads for an argument of type int on
lines 31–32 in Listing 11. This touches a general issue that is not fully
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1 Vector &operator*= (Vector<T> x);
2 Vector &operator/= (Vector<T> x);
3 Vector &operator%= (Vector<T> x);
4 Vector &operator+= (Vector<T> x);
5 Vector &operator-= (Vector<T> x);
6

7 Vector &operator&= (Vector<T> x);
8 Vector &operator|= (Vector<T> x);
9 Vector &operator^= (Vector<T> x);

10 Vector &operator<<=(Vector<T> x);
11 Vector &operator>>=(Vector<T> x);
12 Vector &operator<<=(int x);
13 Vector &operator>>=(int x);

Listing 15: Declaration of assignment operators.

solved with the Vc binary operators interface, yet: Some operations
can be implemented more efficiently if the operator implementation
knows that one operand is a scalar or even a literal. A scalar operand
would be converted to a SIMD vector with equal values in all entries
via the non-member binary operators (which Vc therefore does not
define for the shift operators).

The issue is certainly solvable. One solution could be to not call
V::operator⋯(V) from the non-member operators but a tem-
plate function such as
template <typename V, typename L, typename R>
V execute_operator_add(L &&, R &&)

. This function can then be overloaded such that one overload imple-
ments Vector + Vector and the other overload implements Vector +
Scalar.

9 COMPOUND ASSIGNMENT OPERATORS

Apart from simple assignment, C++ supports compound assignment
operators that combine a binary operator and assignment to the vari-
able of the left operand. The standard defines the behavior “of an
expression of the form E1 op = E2 […] equivalent to E1 = E1 op E2
except that E1 is evaluated only once.” [6, §5.17] Thus, the simplest
implementation calls the binary operator and the assignment opera-
tor.

But compound assignment operators can, in principle, do more than
the combination of binary operator and assignment operator. The ad-
ditional constraint of the compound assignment operators, that the
result of the binary operator needs to be converted back to the type
of the left operand makes it possible to allow any scalar arithmetic
type as operand. This may be best explained with an example. Con-
sider
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1 EntryReference operator[](size_t index);
2 EntryType operator[](size_t index) const;

Listing 16: Declaration of the subscript operators for scalar access.

short_v f(short_v x) {
return x *= 0.3f;

}

with SSE where 𝒲short = 2𝒲float . In this case Vector<short>::
operator*=(float) can be implemented as two float_v multi-
plications with the low and high parts of x . For binary operators this
is not implemented because the return type would have to be some-
thing like std::array<float_v, 2> or std::tuple<float_v
, float_v> . But for compound assignment operators this return
type problem does not exist because the two float_v objects will
be converted back to a single short_v .

At this point only the more restrictive compound assignment oper-
ators are implemented in Vc.

10 SUBSCRIPT OPERATORS

Subscripting SIMD vector objects is a very important feature for adapt-
ing scalar code in vectorized codes. Subscripting makes mixing of
scalar and vector code intuitively easy (though sometimes at a higher
cost than intended).

But while subscripting is desirable from a users point of view, the
C++ language standard makes it close to impossible. The issue is that
the non-const subscript operator needs to return an lvalue reference
to the scalar type (EntryReference) and assignment to this lvalue
reference needs to modify the SIMD vector, which is of type Vec-
torType . This requires aliasing two different types onto the same
memory location, which is not possible with standard C++. Even a
union does not solve the issue because aliasing via unions is only
well-defined for layout-compatible types.

Therefore, the return type of the non-const subscript operator uses
the EntryReference member type (see Listing 16), which is an
implementation-defined type. Most compilers provide extensions to
standard C++ to work around the aliasing restriction. One popular ex-
tension is explicit aliasing via unions. But there are also other ways
of allowing explicit aliasing, such as GCC’s may_alias attribute. If
Vc is compiled with GCC then the return type of the non-const sub-
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1 EntryType operator[](size_t index) const {
2 EntryType mem[Size];
3 store(mem);
4 return mem[index];
5 }

Listing 17: The offset in a SIMD register via operator[] is defined
by the memory order.

script operator will be EntryType with the may_alias attribute
attached.

The const subscript operator intentionally returns a prvalue and not
a const lvalue reference. With a reference, read-only access would
require the compiler to also violate the strict aliasing rules. And it
is a very rare use-case to store a reference to the return value from
the const subscript operator and then modify the object through a
non-const reference. If the user wants to have a (mutable or im-
mutable) reference to an entry in the SIMD vector he can (and must)
use the non-const subscript operator. Finally, as noted in Section 4.1,
the EntryReference type is not necessarily the same as EntryType & .
Therefore, in order to actually return EntryType, the generic definition
of the const operator needs to return a prvalue.

The effect of the const subscript operator is shown in Listing 17.
Most importantly, this defines the indexing order of the values in the
SIMD vector: Access to the value at offset i via the subscript operator
yields the same value a store and subsequent array access at offset
i produces. Of course, the same indexing order must be used for
non-const subscript operator.

11 GATHER & SCATTER

A gather operation in SIMD programming describes a vector load from
a given base address and arbitrary (positive) offsets to this address.
The scatter operation is the reverse as a vector store.

11.1 prior art

Portable and intuitive gather & scatter API in terms of function calls
does not have an obvious solution. There is little prior art that is of
much use.

IEEE and The Open Group [2] specify readv and writev in POSIX
1003.1 - 2004 (Listing 18). readv can be used to scatter from a file
descriptor into a given number of arbitrarily sized buffers. writev
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1 struct iovec {
2 void *iov_base; // Pointer to data
3 size_t iov_len; // Length of data
4 };
5 ssize_t readv (int fildes, const struct iovec *iov, int iovcnt);
6 ssize_t writev(int fildes, const struct iovec *iov, int iovcnt);

Listing 18: Scatter/gather functions in POSIX [2].

does the reverse of readv . Note that the functions are not type-
safe (the void* erases the type information), which is fine for file
descriptor I/O but not for a C++ API for SIMD vector types.

Much closer in functionality to the requirements of Vc’s API are the
SIMD gather/scatter intrinsic functions that Intel introduced with their
compiler for the MIC architecture (Listing 19). In its simplest form
the gather takes an int index vector, multiplies the values with the
scale parameter (which may be 1, 2, 4, or 8) and uses these as
Byte-offsets in the memory pointed to by addr to load 16 values.
Thus v = _mm512_i32gather_ps(index, addr, scale) is equivalent to:
for (int i = 0; i < 16; ++i) {
v[i] = *reinterpret_cast<const float *>(

reinterpret_cast<const char *>(addr) + index[i] * scale);
}

In contrast to the POSIX functions, the memory regions that are read
(buffers) are of fixed size (sizeof(float)). Instead of one pointer
per memory location, here a single pointer with a fixed number of off-
sets is used. Thus, the _mm512_i32gather_ps intrinsic resembles
a subscript operator applied to a pointer of floats (v = addr[in-
dex]). But note that the MIC intrinsics are not type-safe: they pass
the pointer as void * and require the caller to determine the scaling
factor.

The remaining gather functions provide additional features:

• Masked gathers allow to load fewer values from memory as
determined by the corresponding bits in the mask. This allows
addr + index[i] * scale to point to an invalid address for all i
where mask[i] is false .

• The extended variants accept a parameter to do type conver-
sions in addition to the load. For example, a float vector can
be gathered from random shorts in an array.

• The hint parameter is used to do cache optimizations, possibly
marking the affected cache lines as LRU.

The scatter functions do the reverse of the gather functions. They
store a (masked) set of scalar values from a vector register to memory
locations determined by the index and scale parameters.
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1 __m512 _mm512_i32gather_ps(__m512i index, void const *addr,
2 int scale);
3 __m512 _mm512_mask_i32gather_ps(__m512 v1_old, __mmask16 k1,
4 __m512i index, void const *addr,
5 int scale);
6 __m512 _mm512_i32extgather_ps(__m512i index, void const *mv,
7 _MM_UPCONV_PS_ENUM conv, int scale,
8 int hint);
9 __m512 _mm512_mask_i32extgather_ps(_m512 v1_old, __mmask16 k1,

10 __m512i index, void const *mv,
11 _MM_UPCONV_PS_ENUM conv, int scale,
12 int hint);
13

14 void _mm512_i32scatter_ps(void *mv, __m512i index, __m512 v1,
15 int scale);
16 void _mm512_mask_i32scatter_ps(void *mv, __mmask16 k1, __m512i index,
17 __m512 v1, int scale);
18 void _mm512_i32extscatter_ps(void *mv, __m512i index, __m512 v1,
19 _MM_DOWNCONV_PS_ENUM conv, int scale,
20 int hint);
21 void _mm512_mask_i32extscatter_ps(void *mv, __mmask16 k1,
22 __m512i index, __m512 v1,
23 _MM_DOWNCONV_PS_ENUM conv,
24 int scale, int hint);

Listing 19: The gather/scatter intrinsics for the Intel MIC architecture
[4].

A third important interface is array notation, which is available as
an extension to C/C++ with Cilk Plus [3]. With this extension the user
can expression operations on whole arrays with very little code. For
instance A[:] = B[:] + 5 is equivalent to for (i = 0; i < 10; i++) A[i]

= B[i] + 5. With this extension a gather is written as C[:] = A[B[:]]

and a scatter accordingly as A[B[:]] = C[:]. The interface requires a
single new concept (which is the central concept of array notation) to
be type-safe, concise, and intuitively clear. This syntax also naturally
expresses converting gather/scatters. Masking is possible as well by
the generic masking support in the array notation syntax [5, §5.3.6],
which extends the semantics of if/else statements.7

Finally, the standard library provides related functionality in the std
::valarray and std::mask_array classes.

11.2 initial vc interface

The initial approach to gather and scatter interfaces in the Vc SIMD
vector classes was done via member functions, and for gathers addi-
tionally via constructors. A simple gather and scatter example, using
this interface, is shown in Listing 20. A tricky issue were gather and

7 In Cilk Plus if/else statements are extended to accept arrays of booleans. Thus,
both the if and else branches can be executed. I discuss this topic in depth in
N4185.
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1 void maskedArrayGatherScatter(float *data, int_v indexes) {
2 const auto mask = indexes > 0;
3 float_v v(&data[0], indexes, mask);
4 v.scatter(&data[1], indexes, mask);
5 }
6

7 struct S { float x, y, z; };
8

9 void structGatherScatter(S *data, int_v indexes) {
10 float_v v(data, &S::x, indexes, indexes > 0);
11 v.scatter(data, &S::y, indexes, indexes > 0);
12 ...
13 }

Listing 20: Example usage of the first generation gather/scatter in-
terface in Vc.

scatter operations on an array of a non-fundamental type, such as
a struct, union, or array. In the case of an array of struct, the user
needs to specify the member variable of the struct that he wants to
access. A possible interface for this is shown at the bottom of the
example in Listing 20.

This interface can certainly support all features of the underlying
hardware, or emulate such features on SIMD hardware that does not
have the respective instruction support. But the interface is hardly
intuitive. The order of parameters does follow a logical pattern (outer
array, possibly struct members, indexes, and optionally a mask as the
last parameter), but even then I often looked up the interface in the
API documentation. A more intuitive interface needs to relate closer
to known C++ syntax, which is something the array notation in Cilk
Plus nicely demonstrates.

Furthermore, the necessary overloads to support arbitrary nest-
ing of structs and arrays quickly get out of hand. For every possi-
ble composition of structs, unions, and arrays two (unmasked and
masked) gather and scatter function overloads are required. In some
situations it may be necessary to supply more than one index vector:
The first indexes subscript an outer array and the offsets in the inner
array are not equal for all entries but require another index vector.
The gather/scatter function approach simply does not scale in that
respect.

11.3 overloading the subscript operator

The problems discussed above do not exist for scalar types because
the subscript operator and the member access operations support
arbitrary access of members in such nested data structures. Thus,
the question is whether the syntax that works for scalars can bemade
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1 template <typename I>
2 inline auto operator[](I &&i)
3 -> decltype(subscript_operator(*this, std::forward<I>(i))) {
4 return subscript_operator(*this, std::forward<I>(i));
5 }
6

7 template <typename I>
8 inline auto operator[](I &&i)
9 const -> decltype(subscript_operator(*this, std::forward<I>(i))) {

10 return subscript_operator(*this, std::forward<I>(i));
11 }

Listing 21: Generic subscript member operator that forwards to a
non-member function.

to work for SIMD vector types as well. It is possible to overload the
subscript operator with one parameter of arbitrary type, and thus
also with a parameter of SIMD vector type. But, it is not possible to
overload the subscript operator of existing types, though, because
C++ does not support non-member subscript operators. Thus, in or-
der to implement gathers and scatters via the subscript operator, the
array/container class needs to specifically have support for the SIMD
types. On the other hand, adding a gather subscript operator directly
to all container classes would make all of them depend on the decla-
rations of the SIMD types. Luckily, there is a clean way around it that
effectively creates opt-in non-member subscript operators.8 A class
simply needs the two subscript operators defined in Listing 21. Then,
if the subscript_operator function is declared later (or before),
the subscript operator can be used with the types the subscript_-
operator functions implement.

As long as the C++ standard library does not implement such a sub-
script operator, the container classes in the std namespace cannot
support SIMD vector subscripting. Therefore, only a new type can
implement these subscript operators. It is possible to adapt exist-
ing container classes with the AdaptSubscriptOperator class in
Listing 35 and thus create a Vc::vector type that implements std
::vector with the additional subscript operator.9

11.4 a subscript operator for simd gather and scatter

Once we have container classes that support subscripting with arbi-
trary, user-defined types, subscripting with Vc’s vector types can be

8 For implementing the gather and scatter subscript operator overloads it would, of
course, be better if non-member subscript operators were possible.

9 The exception is std::array and other container classes that need to be POD or
aggregates. Vc::array therefore needs to be a verbatim copy of std::array
plus the new subscript operator.
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implemented (Listing 22). The requirements for the subscript_-
operator function are the following:

• It must accept only a specific subset of container classes, specifi-
cally those that use contiguous storage for its entries.

• The container may use storage on the free store. But nested
containers are constrained: Only the outermost container may
use the free store.

• The container and/or its entries may be arbitrarily cv-qualified.

• It must accept a specific set of types for the index parameter.

– Any type that implements the subscript operator and con-
tains as many entries as the gathered vector will contain
/ the vector to scatter contains.

– SIMD vectors of integral type and Size equal for the value
vector and index vector.

The enable_if statement allows to implement the function such
that it only participates in overload resolution iff …

… the has_subscript_operator type trait finds a usable sub-
script operator in the IndexVector type.

… the has_contiguous_storage type trait determines that the
Container type is implemented using contiguous storage for
the entries in the container.10

… the is_lvalue_reference type trait determines that derefer-
encing the first iterator of the Container type returns a type
that can be used to determine a pointer to the first element of
the contiguous storage of the container.

Whether the subscript_operator function participates in over-
load resolution directly determines whether the generic forwarding
member subscript operators in Vc::array and Vc::vector par-
ticipate in overload resolution. This follows from the return type of
these subscript operators, which lead to substitution failure (which is
not an error) iff subscript_operator is not usable.

10 Such a trait cannot really be implemented for all I know. But it is possible to define
a list of classes and class templates that will work as expected.
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1 template <typename Container, typename IndexVector,
2 typename = enable_if<
3 Traits::has_subscript_operator<IndexVector>::value &&
4 Traits::has_contiguous_storage<Container>::value &&
5 std::is_lvalue_reference<decltype(
6 *begin(std::declval<Container>()))>::value>>
7 inline SubscriptOperation<
8 typename std::remove_reference<
9 decltype(*begin(std::declval<Container>()))>::type,

10 typename std::remove_const<
11 typename std::remove_reference<IndexVector>::type>::type>
12 subscript_operator(Container &&c, IndexVector &&indexes) {
13 return {std::addressof(*begin(c)),
14 std::forward<IndexVector>(indexes)};
15 }

Listing 22: Generic subscript_operator function that passes the
context for a gather/scatter operation to the SubscriptOp-
eration class.

11.5 a proxy type for gather/scatter

The subscript_operator function then returns an object of type
SubscriptOperation that contains a pointer to the beginning of
the container storage and a const reference to the index vector. A
naïve approach would return Vector<T> directly, where T is deter-
mined by the type of the entries in the container. But then converting
gathers, nested subscripting, as well as any scatter operation would
not be possible. Returning a proxy object allows to implement fur-
ther subscript operators and delayed gather and scatter invocations
to determine the SIMD vector entry type from the assignment oper-
ator.

The SubscriptOperation (Listing 23) class needs three tem-
plate parameters: Obviously the type of the memory pointer and
the type of the index vector/array/list need to be parameters. The
third template parameter is needed for efficient implementation of
the subscript operators in SubscriptOperation . This will be ex-
plained below.

11.6 simple gather/scatter operators

The proxy type implements the conversion operator for gathers (line
14) and the assignment operator for scatters (line 15). Both of these
functions may only participate in overload resolution if the memory
pointer type is an arithmetic type and the template parameter type
V is a SIMD vector type. The gather and scatter operations are then,
together with the template parameter type V , fully defined and thus
support type conversion on load/store. The conversion is defined by
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the entry type of the SIMD vector type and the type of the memory
pointer. At this point the number of entries in the SIMD vector is
known and therefore the size of the index vector can be checked.
If the size of the index vector is encoded in the type, then this will
be used to additionally determine participation of the functions in
overload resolution.11

Since scatter is implemented via an assignment operator in Sub-
scriptOperation we need to consider whether compound assign-
ment should be supported as well. In Vc I decided against doing so,
because compound assignment implies that an implicit gather oper-
ation needs to be executed. Since gather/scatter are rather expen-
sive operations I believe the user should see more clearly that the
memory access patterns of the code are sub-optimal. Not allowing
compound assignment forces the user to explicitly execute a gather,
thus making the memory accesses more obvious.

The two operators implement unmasked gather and scatter. Masked
gather scatter will be discussed in N4185. The functions in lines 17
and 18 provide an interface to extract the necessary information in a
minimal interface.

11.7 the nested scalar subscript operator

The SubscriptOperation class implements three subscript oper-
ators. The scalar subscript operator on line 24 allows to use gath-
er/scatter for nested containers. The second operator on line 31
implements gather/scatter operations for different offsets in nested
containers.12 The third operator on line 37 enables gather/scatter to
use arrays of structs.

11.7.1 return type

Semantically, the scalar subscript operator (line 24) implements the
same behavior as scalar subscripting. Thus, the expression
data[int_v::IndexesFromZero()][3]

references the elements
data[0][3], data[1][3], data[2][3], ...

11 An alternative to removing a function from overload resolution are diagnostics via
static_assert statements. (Compare footnote 6 on page 21.) If the suggestion
from [N4186] is incorporated in the standard the best solution will be to use deleted
functions with custom diagnostics.

12 Basically, only nested arrays will work because of the requirement that only the
outer container may allocate the data on the heap.
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1 template <typename T,
2 typename IndexVector,
3 typename Scale = std::ratio<1, 1>>
4 class SubscriptOperation {
5 const IndexVector m_indexes;
6 T *const m_address;
7

8 using ScaledIndexes = implementation_defined;
9

10 public:
11 constexpr SubscriptOperation(T *address,
12 const IndexVector &indexes);
13

14 template <typename V> operator V() const;
15 template <typename V> SubscriptOperation &operator=(const V &rhs);
16

17 GatherArguments<T, ScaledIndexes> gatherArguments() const;
18 ScatterArguments<T, ScaledIndexes> scatterArguments() const;
19

20 SubscriptOperation<
21 std::remove_reference_t<decltype(m_address[0][0])>, IndexVector,
22 std::ratio_multiply<
23 Scale, std::ratio<sizeof(T), sizeof(m_address[0][0])>>>
24 operator[](std::size_t index);
25

26 template <typename IT>
27 SubscriptOperation<
28 std::remove_reference_t<
29 decltype(m_address[0][std::declval<const IT &>()[0]])>,
30 ScaledIndexes>
31 operator[](const IT &index);
32

33 template <typename U>
34 SubscriptOperation<
35 std::remove_reference_t<U>, IndexVector,
36 std::ratio_multiply<Scale, std::ratio<sizeof(T), sizeof(U)>>>
37 operator[](U T::*member);
38 };

Listing 23: The SubscriptOperation proxy type that implements con-
version to/from SIMD vector types via gather/scatter calls
and additional subscript operators.
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. Obviously, the operator must use different template arguments for
the SubscriptOperation return type:

• The memory pointer previously pointed to an array of arrays.
The new pointer must point to the beginning of the first array
in the outer array. Thus, the type changes from array of U to U .

• The IndexVector type does not change at this point, also
because its value is not modified.

• Because of the above, the index vector would now contain in-
correct offsets. Consider the expression (as above)
data[int_v::IndexesFromZero()][3]

and assume data is of type
Vc::array<Vc::array<float, 100>, 100>

. Then data[int_v::IndexesFromZero()] returns an ob-
ject of type
SubscriptOperation<Vc::array<float, 100>, int_v, ratio<1, 1>>

. The subsequent call to the nested scalar subscript opera-
tor (operator[](std::size_t)) determines the memory
pointer type to be float and retains the index vector as {0,
1, 2, …} . Since &data[1] − &data[0] =
sizeof(Vc∶∶array<float,100>)

sizeof(float) = 100, the correct offsets to the new
float-pointer are {0, 100, 200, …} . The pointer differ-
ence expression (&data[1] - &data[0]) is not a constant
expression, but the sizeof fraction obviously is. Therefore,
the std::ratio template argument is scaled with these two
sizeof values (line 22).

By using a template parameter, this fraction is built up in sub-
sequent subscript operator calls and the division is evaluated
at compile time inside the cast and assignment operators or
the gatherArguments and scatterArguments functions.
Thus, the multiplication of the index vector is delayed as far as
possible. This is not only an optimization. It is necessary to de-
lay the division to implement the member subscript operator
(Section 11.10) correctly.

11.7.2 participation in overload resolution

The scalar subscript operator (line 24) may not be instantiated with
the SubscriptOperation<T, I, S> class if T does not imple-
ment the subscript operator for arguments of std::size_t . This
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1 template <typename U = T>
2 auto operator[](enable_if_t<(has_no_allocated_data<T>::value &&
3 has_subscript_operator<T>::value &&
4 is_same<T, U>::value),
5 size_t> index)
6 -> SubscriptOperation<
7 remove_reference_t<decltype(m_address[0][index])>,
8 IndexVector,
9 ratio_multiply<

10 Scale, ratio<sizeof(T), sizeof(m_address[0][index])>>>;

Listing 24: The complete declaration of the nested scalar subscript
operator as used in Vc.

can be implemented via a dummy template parameter (U) to the sub-
script operator and modifying the subscript expression in the de-
cltype expression such that it becomes a dependent type on U ,
while at the same time requiring U to be equal to T . In addition to
delayed instantiation, the operator shall not participate in overload
resolution if T does not implement the subscript operator or if T is
a container that does not store its data inside the object. This last
requirement is important to make the offset calculation work as de-
scribed above. See Listing 24 for a possible declaration.

11.7.3 nested container requirements

A container class that can be dynamically resized typically stores its
data in an array outside of the container object. The object itself
typically has only two or three member variables: pointers to be-
gin and end of the data, and possibly a pointer to the end of the
allocated memory. A well known example is std::vector . Con-
sider what Vc::array<std::vector<int>, N> implies for SIMD
gather and scatter operations, which require a single pointer to mem-
ory and a list of offsets to that pointer. In general, there is no guaran-
tee about the dynamically allocated memory, thus the pointers could
possibly cover the whole range of addressable memory.13 On a sys-
tem with a pointer-size of 64 bits, the index vector would be required
to use 64-bit integers or risk pointing to incorrect addresses. Es-
pecially for SIMD vector gathers and scatters this is a very limiting
requirement. The gather and scatter instructions in the MIC instruc-
tion set and the AVX2 gather instructions only support 32-bit integer
offsets. In addition, these instructions assume unsigned integers and
thus only positive offsets. The base pointer would therefore have to
be the numerically smallest one. Overall, these constraints and com-
plications show that an interface to gather/scatter for these kinds of

13 or worse: different segments of memory
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nested container types is not worth the effort. The user would be
much better served with writing a loop that assigns the scalar values
sequentially.14

11.8 type of the index vector

As mentioned above (and more below), at some point the index vec-
tor values must be scaled with the ratio stored in the std::ratio
template parameter. But when the multiplication is executed, the in-
dex vector type must be able to store these larger values. It would
be easiest if the scaled index vector type were equal to the type
used for the initial subscript. But the scale operation of the indexes
is implicit and not at all obvious to the user, who did not study the
implementation of nested subscripting. The user only sees the need
for the type of subscript argument to be able to store the offsets for
the outer subscript. Thus, a vector of 16-bit integers may appear to
be sufficient.

Obviously, a 16-bit integer can quickly overflow with the scale oper-
ations involved for nested arrays.15 Therefore, the index vector type
needs to be promoted transparently before applying the scale oper-
ation. The safest type for promotion would be a std::size_t . But
as discussed before, we would rather not use 64-bit offsets, since
they cannot be used for gather/scatter instructions on at least one
major platform. Thus, integral promotion to int or unsigned int
is the most sensible solution.

The promoted index vector type is captured in the ScaledIn-
dexes member type (line 8). The discussion showed that there is no
definite answer on the type promotion. Since the type is only used
internally, the implementation may choose the exact rules.

For Vc I chose the following logic for the ScaledIndexes member
type:

• If IndexVector is Vector<T> or SimdArray<T, N> and
sizeof(T) ≥ sizeof(int), then ScaledIndexes is set to
IndexVector .

14 Or even better: The API limitation uncovers the flaw in the data structure and leads
to a redesign and better data structures.

15 Consider Vc::array<Vc::array<float, 1000>, 1000> data : The first
subscript operator only works with values from 0–999, which easily fit into a 16-bit
integer. But with the second subscript those indexes must be scaled by 1000, thus
exceeding the representable range.
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• If IndexVector is a Vector<T> or SimdArray<T, N> and
sizeof(T) < sizeof(int), then ScaledIndexes is set to
SimdArray<int, IndexVector::Size > .

• If IndexVector is an array with known size (std::array ,
Vc::array , or fixed-size C-array), then ScaledIndexes is
set to SimdArray<promoted_type<T>, N> (where T is the
value type of the array).

• If IndexVector is an initializer_list<T> , then Sca-
ledIndexes is set to vector<promoted_type<T>> .

• If IndexVector is a vector<T> , then ScaledIndexes is
set to vector<promoted_type<T>> .

11.9 the nested vector subscript operator

The second subscript operator on line 31 also implements gather and
scatter on nested arrays. But, in contrast to the above, it allows
to use different offsets on all nesting levels. Thus, data[i][j] ref-
erences the values {data[i[0]][j[0]], data[i[1]][j[1]],
…} . The second subscript’s offsets therefore need to be added to
the scaled original offsets. This is why the return type of the sub-
script operator is SubscriptOperation<U, ScaledIndexes,
ratio<1, 1>> .

As for the scalar subscript operator, the vector subscript opera-
tor may not be instantiated together with the SubscriptOper-
ation<T, I, S> class unless T implements the scalar subscript
operator. Since the subscript operator is declared as a template
function and the subscript expression in the deduction of type U
of the return-type SubscriptOperation<U, ScaledIndexes>
depends on the template type, this requirement is already fulfilled. In
addition, the operator may only participate in overload resolution iff
…

… T implements the subscript operator.

… T is a container that stores its data inside the object. (compare
Section 11.7.3)

… the operators function parameter type implements the subscript
operator. This requirement fully disambiguates the function
with the scalar subscript operator.
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… the number of values in IndexVector and the function parame-
ter type IT are equal or at least one of them cannot be deter-
mined as constant expression.

11.10 the nested struct member subscript operator

The third subscript operator on line 37 in Listing 23 enables gather
and scatter for arrays of structs. The API defined here does not have
a direct counterpart in scalar code. The reason for this is that the
dot-operator is not overloadable in C++ (yet).

Consider a Vc::vector<S> of a simple struct for the following dis-
cussion: struct S { float x, y, z; } . Then, to access S::x
of a given array element with offset i , the required scalar code is
data[i].x . The data member access via .x is not overloadable
in a generic proxy-class returned from data[indexes] (where in-
dexes is a vector/array of indexes). Therefore, with C++14, the only
way to implement a vectorized struct gather requires data[indexes]
to return a struct of proxy objects that are named x , y , and z . It fol-
lows that such an implementation must know the members of the
struct before template instantiation. Such a return type therefore is
not generically implementable with C++14.

11.10.1 emulating member access

Member access is too important to postpone its use with Vc until
some future C++ standard provides the capabilities, though. Therefore,
consider an alternative that, at least when seen in code, is suggestive
enough to a developer that (s)he can understand intuitively what it
does and how it can be used in new code.

The solution I chose in Vc therefore had to rely on a different op-
erator overload or member function. The subscript operator is the
semantically closest relative to accessing member variables via the
dot operator. But instead of an integral argument, the subscript
operator needs to know the member variable offset in the struct,
which can be expressed with pointers to members. Thus, data[in-
dexes][&S::x] in Vc expresses the equivalent of data[index].x
in scalar code.

11.10.2 participation in overload resolution

The nested struct member subscript operator may only participate in
overload resolution if the template parameter T of the Subscrip-
tOperation class template is a class or union type. Otherwise,
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1 template <typename U>
2 SubscriptOperation<
3 std::remove_reference_t<U>, IndexVector,
4 std::ratio_multiply<Scale, std::ratio<sizeof(S), sizeof(U)>>>
5 operator.(U T::*member);

Listing 25: A possible operator.() overload that can capture the
requirements of SubscriptOperation .

the pointer to member type in the function parameter list would be
an ill-formed expression.

11.10.3 return type

The return type of operator[](U S::*) follows the same consid-
erations as the return type for operator[](std::size_t) (com-
pare Section 11.7.1). But, now the importance of using a fraction tem-
plate parameter instead of immediate scaling or a single integer for
the scaling parameter becomes clear. Consider a struct that con-
tains an array: struct S2 { float x[4]; float y; } . The
index scale factor for &S2::x thus would be sizeof(S2)

sizeof(float[4]) = 20
16 ,

which is not an integral value. In order to access a scalar element
the user must call another subscript operator for the S2::x array,
which will result in the scaling fraction sizeof(float[4])

sizeof(float) = 16
4 . The final

scaling that is applied in e.g. SubscriptOperation::operator
V() thus becomes 20⋅16

16⋅4 = 5.

11.10.4 digression: implications for operator.()

The SubscriptOperation class is a use case for an overloadable
operator.() that needs to do more than just forward to an object
returned by the operator (i.e. the current operator->() cannot be
used either). A possible operator.() declaration for Subscrip-
tOperation could look like the one in Listing 25. For a container
of type Vc::vector<S> , the code data[indexes].x would thus
call data[indexes].operator.(&S::x) The type S could be
deduced from the parameter type of the operator.() declaration.

12 SELECTING THE DEFAULT SIMD VECTOR TYPE

In Section 4, I showed that the Vector<T> class is defined inside a
target-dependent namespace. Thus, the class (and its type aliases)
need to be imported into a public namespace. The Vc namespace
therefore must import all vector types from one of the target-depen-
dent namespaces with using declarations (Listing 26). The default
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1 namespace Vc {
2 using target_dependent::Vector;
3 using target_dependent:: float_v;
4 using target_dependent::double_v;
5 using target_dependent:: int_v;
6 // ...
7 }

Listing 26: Declaration of the default SIMD vector type(s).

choice is very important to the idea of a portable SIMD vector type
because it allows using a different target-dependent implementation
of Vector<T> with just a recompilation (using a different compiler or
compiler flags).

12.1 the scalar Vector<t> implementation

In addition to the vector types in the Vc namespace, the Vc::Scalar
namespace is always defined. The Vc::Scalar::Vector<T> class
is implemented with T as VectorType member type, thus storing a
single scalar value. But in contrast to the fundamental type T , Vc::
Scalar::Vector<T> implements the complete SIMD types inter-
face and thus is always available as a drop-in replacement for Vc::
Vector<T> .

The scalar implementation is especially useful for

• making debugging a vectorized algorithm easier.

• testing that a given code works with a different vector width.

• targets without SIMD registers/instructions.

• implementing generic algorithms that need to be able to pro-
cess chunks of data that are smaller than the native SIMD width
(compare Appendix A).

12.2 several simd generations in one translation unit

For some target architectures it is possible to support more than one
SIMD register width. This can be supported by using documented
namespace names for the different SIMD targets. Then a user that
knows that he targets this architecture can explicitly use SIMD regis-
ters and operations that are not declared as the default type.

As an example consider a x86 target with AVX instruction support.
In addition to 256-bit SIMD registers the target supports also supports
128-bit SIMD registers (SSE). Thus the types Vc::AVX::float_v
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and Vc::SSE::float_v as well as Vc::Scalar::float_v are
available to the user. (The type Vc::float_v would then be an
alias for Vc::AVX::float_v .)

For a problem where only 4 entries in a single-precision float SIMD
vector are needed Vc::SSE::float_v will perform better than
Vc::AVX::float_v because it requires half of the memory band-
width and because not all instructions on the CPU work equally fast
for AVX vectors as for SSE vectors. As we will see later (Document on
SIMD Arrays—still to be written—), the different vector types can be
abstracted into a higher level type, alleviating the need for #ifdefs
checking for a specific target architecture.

Experience has shown that it is useful to forward declare all user-
visible types from target-specific namespaces even in case they are
incompatible with the target system of the current compilation unit.
This makes it easier for users to write target-specific code without
using the preprocessor, only relying on template instantiation rules.

13 INTERFACE TO INTERNAL DATA

The Vc::Vector class does not implement all operations that a user
might want to use. Most importantly, there exist specialized instruc-
tions for specific application domains that are not easy to capture in a
generic interface. Thus, if the Vc types should be usable also for such
special application domains it must be possible to access internal and
implementation-dependent data.

The Vc::Vector class therefore defines the data() member
function and a constructor that converts from a VectorType object:

Vector(VectorType);
VectorType &data();
const VectorType &data() const;

A user might want to use the SSE intrinsic _mm_adds_epi16 16 with
Vc::SSE::short_v and can thus write his own abstraction:
Vc::SSE::short_v add_saturating(Vc::SSE::short_v a,

Vc::SSE::short_v b) {
return _mm_adds_epi16(a.data(), b.data());

}

The choice of the data() function is rather arbitrary. Alterna-
tively, the VectorType could also be returned via a conversion oper-

16 This intrinsic adds 16-bit integers with signed saturation, thus returning SHRT_-
MIN/SHRT_MAX if the addition would underflow/overflow. This functionality may
certainly be abstracted for the Vc::Vector types, but currently this is not the
case.



N4184 14 Design Alternatives 42

1 namespace SSE {
2 template <typename T> class Vector;
3 }
4 namespace AVX {
5 template <typename T> class Vector;
6 }
7 namespace ...
8 #if DEFAULT_IS_SSE
9 using SSE::Vector;

10 #elif DEFAULT_IS_AVX
11 using AVX::Vector;
12 #elif
13 ...
14 #endif
15 template <typename T, std::size_t N> class SimdArray;

Listing 27: The Vector<T> Design

ator (operator VectorType &()) or a non-member friend func-
tion such as (VectorType &internal_data(Vector &)). The
conversion operator seems very convenient, and possibly too con-
venient as the type can implicitly convert to VectorType then. But
if the conversion operator is declared as explicit then it is more
convenient to use the data() member function.

I believe it is useful to have such a function in a standardized SIMD
vector interface. But at this point I am looking for feedback from the
community. In Vc the function exists, but has never been documented
as a public function.

14 DESIGN ALTERNATIVES

There is no obvious natural choice for the class that provides the SIMD
types. The choices I considered are:

1. Declaremultiple Vector<T> class templates in separate names-
paces for each possible SIMD target (Listing 27). This design has
been discussed in Section 4 in detail and is the class design used
in the Vc library.

2. Declare a single Vector<T, SimdInterface> class tem-
plate (Listing 28).

3. Declare a single Vector<T, Width> class template (Listing 29).

At first glance the choices appear equivalent. It is possible to ad-
ditionally provide the other two interfaces with any of the above
choices. But there are important differences: not every interface
adaption can be done transparently. Vector<T, SimdInterface>
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1 namespace Common {
2 enum class SimdInterface {
3 ...
4 };
5 template <typename T, SimdInterface I> class Vector;
6 }
7 template <typename T>
8 using Vector = Common::Vector<T,
9 #if DEFAULT_IS_SSE

10 Common::SimdInterface::SSE
11 #elif DEFAULT_IS_AVX
12 Common::SimdInterface::AVX
13 #elif
14 ...
15 #endif
16 >;
17 template <typename T, std::size_t N> class SimdArray;

Listing 28: The Vector<T, SimdInterface> Design

1 template <typename T> constexpr std::size_t defaultWidth();
2 template <typename T, std::size_t N = defaultWidth<T>()> class Vector;

Listing 29: The Vector<T, Width> Design

can be declared as an alias template for SimdNamespace::Vec-
tor<T> . In this case the types are equal.

The Vector<T> types in the different namespaces in design 1
are different types. Therefore they cannot be unified in an equal
type Vector<T, SimdInterface> . This means, if a Vector<T,
SimdInterface> type is desired, it must be a new type and does
not match objects of type Vector<T> (though providing implicit con-
version is easy). The implication is that template argument deduction
may be less convenient to use (see below).

The Vector<T, Width> type can easily be aliased to Vector<T>
in different namespaces. Equally, it can be aliased to or from Vec-
tor<T, SimdInterface> (see Listing 30). Still, Vector<T, Width>
and Vector<T, SimdInterface> are not equivalent: Consider
the type Vector<float, 8> . It is the same type irrespective of
the target system supporting vectors of 𝒲float = 8 or not. Thus, a
symbol (such as the function void f(Vector<float, 8>) which
is compiled for SSE and AVX would link, but crash or simply fail to
work as expected at runtime. (This is due to Vector<float, 8>

1 template <typename T, std::size_t Width>
2 using Vector2 = Vector<T, simdInterfaceForWidth<T, Width>()>;
3

4 template <typename T, SimdInterface I>
5 using Vector2 = Vector<T, widthForSimdInterface<T, I>()>;

Listing 30: Possible aliasing of Vector<T, Width> to or from Vec-
tor<T, SimdInterface>



N4184 14 Design Alternatives 44

1 template <typename T> void f(Vector<T> v);
2 void g() {
3 f(float_v()); // compiles
4 f(double_v()); // compiles
5 f(AVX::double_v()); // only compiles if AVX is the
6 // compile-time default anyway
7 }
8

9 // with Concepts-Lite:
10 template <typename T> requires IsSimdVector<T>() void f2(T v);
11 // alternative:
12 template <typename T> enable_if_t<is_simd_vector<T>::value> f2(T v);
13

14 void g2() {
15 f2(SSE::float_v());
16 f2(Scalar::double_v());
17 f2(AVX::double_v());
18 }

Listing 31: Generic Function with Vector Parameter for design 1

using two __m128 member objects for SSE and for AVX using a single
__m256 member.) The type Vector<T, Width> therefore does
not ensure type safety and either needs a third template parame-
ter to identify the SIMD architecture, or needs to be placed into a
namespace as was done for Vector<T> . Therefore, the Vector<T,
Width> type is a bad choice for the fundamental SIMD vector type.
It is still a useful interface, though. I will discuss the details of a Vec-
tor<T, Width> class template in [Document on SIMD Arrays—still
to be written—].

In design 2, the fundamental SIMD vector class is more generic than
in design 1. This is relevant for generic functions that are supposed
to work for any possible SIMD vector type, independent of the cur-
rent compile-time default. On the other hand, most code should only
use the compile-time default SIMD vector type, therefore alleviating
the issue. With design 1, a generic function that wants to accept any
vector type, including from different namespaces, needs to use an
unconstrained template parameter as function parameter type. In
order to ensure that the generic function only works with a SIMD vec-
tor type parameter, std::enable_if can be used (see Listing 31).
It is expected that a future C++ revision will introduce concepts, a so-
lution that allows expressing requirements for template parameters
[N3819]. Listing 32 shows that such a generic function can be ex-
pressed more naturally with the current C++ standard with design 2.
(If, on the other hand, a fully generic function wants to support both
fundamental scalar types and SIMD vector types, std::enable_if
or a concept are needed anyway.)

As a minor downside, design 2 can make compilation errors more
verbose, because of the SimdInterface template parameter. The
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1 template <typename T, SimdInterface I> void f(Vector<T, I> v);
2 void g() {
3 f(SSE::float_v());
4 f(Scalar::double_v());
5 f(AVX::double_v());
6 }

Listing 32: Generic Function with Vector Parameter for design 2 (de-
sign 3 is equivalent)

SimdInterface parameter could also be implemented as a tag
type, in which case the additional template argument in the diag-
nostic output will be more readable than the numerical value of the
enumeration.

Concluding, designs 1 and 2 appear like equally good design choices.
I am looking for feedback from the community on this issue.

15 CONCLUSION

I have presented a SIMD vector class template and some of the oper-
ations for this type. The interface is declared in a way that it facilitates
portable SIMD code. The set of presented operations is not complete
but at this point a useful start.

I am looking for guidance how far a first revision of possible wording
should go. I.e. what features are a must-have and which ones should
be considered lower priority.
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1 std::vector<int> data = ...;
2 for_each(par_vec, data.begin(), data.end(), [](auto &x) {
3 x = x * x + 3;
4 });

Listing 33: Example use of the for_each algorithm with the
std::vec policy.

A VECTORIZED STL ALGORITHMS

N4071 “describes requirements for implementations of an interface
that computer programs written in the C++ programming language
may use to invoke algorithms with parallel execution”. As such, it
deals with parallelization in terms of multi-threading and SIMD. The
specification of the std::par_vec policy requires the compiler to
treat code called from such algorithms special in such a way that
“multiple function object invocations may be interleaved on a single
thread”. Therefore the library does not actually vectorize the code, it
only annotates code so that the compiler might do it.

There is an alternative approach using vector types, which works
nicely with generic lambdas and is a useful abstraction to hide load
and store functions of the vector types. Consider the example use of
for_each in Listing 33. The implementation of for_each can call
the lambda with any type that implements the required operators.
Therefore, we can use the int_v type and a scalar type. The scalar
type could be Vc::Scalar::int_v to always have the full Vc in-
terface available when the lambda is called. The need for using both
types arises from the possibility that data.size() is not a multiple
of 𝒲int . In that case there will be a number of entries in data that
cannot be loaded or stored as a full SIMD vector without risking an
out-of-bounds memory access. Additionally an implementation may
choose to do a prologue that processes initial elements as scalars if
they are not aligned on the natural alignment of SIMD objects.

With this solution for implementing the vectorization policy of STL
algorithms the restrictions on lock usage and throwing exceptions
become unnecessary.

Listing 34 shows a possible implementation of a vectorized for_-
each . The implementation can be generalized further to support
containers that do not store their values in contiguous memory. In
the same manner support for the restrictive InputIterator class
of iterators can be implemented. Obviously, memory access would
not use efficient vector loads and stores anymore.

Note that vectorization of composite types becomes possible with
the simdize<T> work which I will describe in a future document.
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1 template <typename It, typename UnaryFunction>
2 inline enable_if<
3 is_arithmetic<typename It::value_type>::value &&
4 is_functor_argument_immutable<
5 UnaryFunction, Vector<typename It::value_type>>::value,
6 UnaryFunction>
7 simd_for_each(It first, It last, UnaryFunction f) {
8 typedef Vector<typename It::value_type> V;
9 typedef Scalar::Vector<typename It::value_type> V1;

10 for (; reinterpret_cast<uintptr_t>(addressof(*first)) &
11 (V::MemoryAlignment - 1) &&
12 first != last;
13 ++first) {
14 f(V1(addressof(*first), Vc::Aligned));
15 }
16 const auto lastV = last - (V::Size + 1);
17 for (; first < lastV; first += V::Size) {
18 f(V(addressof(*first), Vc::Aligned));
19 }
20 for (; first != last; ++first) {
21 f(V1(addressof(*first), Vc::Aligned));
22 }
23 return move(f);
24 }
25

26 template <typename It, typename UnaryFunction>
27 inline enable_if<
28 is_arithmetic<typename It::value_type>::value &&
29 !is_functor_argument_immutable<
30 UnaryFunction, Vector<typename It::value_type>>::value,
31 UnaryFunction>
32 simd_for_each(It first, It last, UnaryFunction f) {
33 typedef Vector<typename It::value_type> V;
34 typedef Scalar::Vector<typename It::value_type> V1;
35 for (; reinterpret_cast<uintptr_t>(addressof(*first)) &
36 (V::MemoryAlignment - 1) &&
37 first != last;
38 ++first) {
39 V1 tmp(addressof(*first), Vc::Aligned);
40 f(tmp);
41 tmp.store(addressof(*first), Vc::Aligned);
42 }
43 const auto lastV = last - (V::Size + 1);
44 for (; first < lastV; first += V::Size) {
45 V tmp(addressof(*first), Vc::Aligned);
46 f(tmp);
47 tmp.store(addressof(*first), Vc::Aligned);
48 }
49 for (; first != last; ++first) {
50 V1 tmp(addressof(*first), Vc::Aligned);
51 f(tmp);
52 tmp.store(addressof(*first), Vc::Aligned);
53 }
54 return move(f);
55 }
56

57 template <typename It, typename UnaryFunction>
58 inline enable_if<!is_arithmetic<typename It::value_type>::value,
59 UnaryFunction>
60 simd_for_each(It first, It last, UnaryFunction f) {
61 return for_each(first, last, move(f));
62 }

Listing 34: A possible implementation of a vectorized std::for_-
each .
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1 template <typename Base> class AdaptSubscriptOperator : public Base {
2 public:
3 using Base::Base;
4

5 // explicitly enable Base::operator[] because the following would
6 // hide it
7 using Base::operator[];
8

9 // forward to non-member subscript_operator function
10 template <
11 typename I,
12 typename = typename std::enable_if<
13 !std::is_arithmetic<typename std::decay<I>::type>::value>::
14 type // arithmetic types should always use Base::operator[]
15 // and never match this one
16 >
17 auto operator[](I &&arg)
18 -> decltype(subscript_operator(*this, std::forward<I>(arg))) {
19 return subscript_operator(*this, std::forward<I>(arg));
20 }
21

22 // const overload of the above
23 template <typename I,
24 typename = typename std::enable_if<
25 !std::is_arithmetic<
26 typename std::decay<I>::type>::value>::type>
27 auto operator[](I &&arg) const
28 -> decltype(subscript_operator(*this, std::forward<I>(arg))) {
29 return subscript_operator(*this, std::forward<I>(arg));
30 }
31 };

Listing 35: Generic adaptor class to add the forwarding subscript op-
erator to existing container classes.

B THE ADAPTSUBSCRIPTOPERATOR CLASS

Listing 35 shows an adaptor class template to easily add non-member
subscript functionality to an existing class.
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