
N4136 – C Concurrency Challenges Draft

2014-10-13

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon, Peter Sewell

This document was presented for discussion at the Redmond SG1 meeting on 2014-09-05. It is the

draft of an academic paper whose examples raise issues with the C and C++ memory models.

Draft

C Concurrency Challenges

Mark Batty Kayvan Memarian Kyndylan Nienhuis Jean Pichon Peter Sewell
University of Cambridge

first.last@cl.cam.ac.uk

Abstract
In this paper we investigate the concurrency semantics of C and
C++. We first give two positive results: we show that (for strongly
finite programs) the existing axiomatic model for C/C++11 satisfies
one of the core design goals, guaranteeing sequentially consistent
semantics for race-free programs that do not use low-level atomics,
and we develop an equivalent executable operational model. These
results are mechanised, in HOL4 and Isabelle respectively.

We then investigate the longstanding problem of thin-air execu-
tions, which are known to be a challenge for the semantics of high-
performance relaxed atomics. We first give a concise description of
the problem and show that it cannot be solved (without restricting
current compiler optimisations) with any per-candidate-execution
condition. We then show that the problem essentially recurs when
one attempts to integrate the concurrency model with more of C,
mixing atomic and nonatomic accesses; it is not confined to pro-
grams that use relaxed atomics. We explore how far one can go
with a semantics based on an explicit operational construction of
out-of-order execution; this gives the desired behaviour for thin-air
examples but exposes further difficulties.

We conclude by summarising the possible alternatives for the
semantics of C and C++. The remarkable and disturbing fact is that,
currently, there is no really satisfactory proposal for the semantics
of any general-purpose shared-memory concurrent programming
language.

1. Introduction
Context The design of satisfactory semantics for shared-memory
concurrent programming languages is a long-standing problem that
is still not fully understood. The basic tension is between imple-
mentability and usability: on the one hand, such a semantics must
admit the relaxed-memory behaviours that are permitted by multi-
processor architectures, and those that are introduced by compiler
optimisations, otherwise it would not be efficiently implementable,
but on the other hand, it must provide sufficiently strong guaran-
tees for concurrent algorithms to work correctly. Then there are
other important desiderata: the semantics must be mathematically
rigorous, as this is an area where informal reasoning is particularly
error-prone; it should be as intuitive as possible (though there will
inevitably be subtleties); it should support testing of implementa-
tions and of concurrent algorithms, and it should support composi-
tional reasoning.

There have been two major attempts to develop concurrency
semantics for mainstream languages, for Java and C/C++. For Java,
the original language specification [16] was shown by Pugh [25]
to be flawed in both directions: too strong to be implementable
and too weak for some concurrent programming idioms. A new
specification [20] was developed in JSR-133, and incorporated into
Java 5.0, but that too has been shown to be unsound with respect
to standard compiler optimisations, by Cenciarelli et al. [12] and
Ševčík and Aspinall [29]. This remains unresolved.

For C and C++, an effort as part of the C++0X standardisa-
tion process led to a specification incorporated into the C++11 and
C11 standards [1, 6]. The basic design was outlined by Boehm
and Adve [9], and Batty et al. [5] developed a formal semantics in
the latter stages of the standardisation process, identifying various
flaws in the draft standard and feeding back into the ratified stan-
dards and later defect reports. C/C++11 concurrency has been sup-
ported by GCC and Clang since versions 4.9 and 3.2 respectively,
and the model by Batty et al. has been used for many purposes,
including correctness proofs for compilation schemes to x86, by
Batty et al. [5], and to IBM Power, by Batty et al. [4] and Sarkar
et al. [27]; compiler testing via a theory of sound optimisations, by
Morisset et al. [22]; model checking, by Norris and Demsky [24];
compositional library abstraction, by Batty et al. [3]; and program
logics, by Vafeiadis and Narayan [31] and by Turon et al. [30].
Elements of the C/C++11 concurrency model have also been incor-
porated into OpenCL 2.0.

But despite all this, there remain major open questions, about
the metatheory of the model and about what the semantics should
be for “thin-air” executions. We resolve two of the former and dis-
cuss the latter, giving some precise constraints on possible solutions
and demonstrating that it is more important and more challenging
than previously recognised.

Contributions We make five contributions. First (§2), we de-
scribe a machine-checked proof, in HOL4 [17], that (for programs
without loops or recursion) the model of Batty et al. satisfies one
of the core design goals for C/C++11 concurrency: programs that
do not use the low-level atomics of the language, and that are race-
free in a sequentially consistent (SC) semantics, only exhibit se-
quentially consistent behaviour. This DRF-SC property gives a rel-
atively simple semantics for programmers using that fragment of
the language. Batty et al. observed that this property was false in
early drafts of the standard [5], and the description of the atomics
in later drafts changed as a result [13, 21].

Second (§3), we give a provably equivalent operational model.
The standard and the earlier mathematical model [5] are axiomatic
memory models (not to be confused with the traditional program-
logic notion of axiomatic semantics). In such a semantics one first
calculates the set of all candidate executions of a program: the sets
of memory access actions (and various partial orders over them)
that could be obtained in a complete run in which the values read
from memory are unconstrained. The memory model filters the
candidate executions, defining the consistent executions, and de-
fines which of those are race-free. The semantics of a program is
either the set of all consistent executions, if they are all race-free, or
undefined, otherwise. This style of semantics is both good and bad.
For very small litmus-test programs one can execute the semantics
to calculate the set of all their consistent executions, and to iden-
tify any races, but it does not support exploring (interactively or
randomly) some executions of a larger program. The consistency
and race predicates are in some sense mathematically simple (al-
beit intricate), expressed just with propositional logic and quan-

1 2014/7/17

tification over the actions in a complete candidate execution, but
this is very different to conventional operational or denotational se-
mantics, and one cannot reason about it using simple inductions on
trace length, operational derivation, or program syntax. We present
an executable operational model (covering C/C++11 memory ac-
cesses, fences, locks, and all memory orders except consume) that
(for finite executions) is proved equivalent to the formal semantics
of Batty et al., with a machine-checked proof in Isabelle/HOL [18].
A key property of this operational model is that it must execute
actions out of program order, but must be integrated with a thread-
local semantics that does respect program order.

Third (§4), we consider thin-air reads. This is a long-standing
open problem in the design of the semantics for C/C++11 relaxed
atomics: accesses for which races are permitted but where one does
not wish to pay the cost of any barriers or other hardware instruc-
tions beyond normal reads and writes. The question is how one
can define an envelope that permits current compiler optimisations
and hardware behaviour, while excluding particular example execu-
tions that it is agreed should be forbidden: those with self-satisfying
conditional cycles or values appearing out of thin air (this is also
closely related to the difficulties with Java). Here we give an in-
structive negative result: thin-air executions cannot be forbidden in
a per-execution way, by any adaptation of the C/C++11 definition
of consistent execution that uses the same notion of candidate exe-
cution.

Fourth (§5), we identify a new problem that arises when one
tries to integrate C/C++11 concurrency with a semantics for more
of the C language. Thin-air executions have been thought to be
a problem only for programs using the relaxed atomics (intended
only for expert use) of C/C++11, but that turns out not to be the
case. The model of Batty et al. presupposes an up-front distinction
between atomic and non-atomic locations, but that is not present
in C, where (for example) one should be able to reuse malloc’d
regions to store atomics and then nonatomics, or use char pointers
to read the representation bytes of an atomic. We show that the thin-
air problem essentially recurs in this setting, even in the absence of
relaxed atomics.

Finally (§6) we explore an out-of-order operational semantics
construction; this gives the desired behaviour for the thin-air exam-
ples of §4 but highlights other difficulties.

We conclude (§7) by summarising possible approaches for the
semantics of a shared-memory concurrent language. Details of our
formal developments are available in the supplementary material,
including definitions in Lem [23] and HOL4 and Isabelle proof
scripts. We introduce aspects of the C/C++11 model as required,
but for a full description we refer to [5].

2. DRF-SC: sequential consistency for race-free
programs

DRF-SC presents a simple concurrency model to programmers that
use a fragment of C/C++11: if a program uses no low-level atomics,
and all executions of the program in an SC semantics are race-free,
then the program exhibits no relaxed behaviour. The property was
introduced simultaneously by Adve and Hill [2] and Gharachorloo
et al. [15], and is explicitly described by Boehm and Adve [9] and
the C11 and C++11 standards [1, §5.1.2.4p26], [6, §1.10p21]. Here,
we formally establish DRF-SC for the full C/C++11 concurrency
model [5], mechanised in HOL4. Previous results along similar
lines have been given by Boehm and Adve [9], with a hand proof
for a preliminary model, and Batty et al. [4, Thm. 5], with a
hand proof based on an earlier version of Batty et al.’s formal
model, and using that model’s notion of races for the SC semantics
rather than the more straightforward SC notion of race based on
identifying two conflicting adjacent actions that we use here. The

latter exposes the user of the SC model to the relaxed model in
the calculation of races, negating much of the simplification aimed
for by DRF-SC. The intricacy of the semantics and significance of
the result make this a prime target for mechanised proof, to give
high confidence in the result. The proof script (approx. 23k lines,
including additional model equivalence results) is included in the
supplementary material.

To state DRF-SC, we first define a memory model for C/C++
executions, the total model, that is manifestly sequentially consis-
tent. While in C/C++11 candidate executions describe the dynamic
behaviour of memory with many partial orders (modification order,
lock order and SC order), the total model has only a single total
order over all memory accesses in the pre-execution. Reads must
read from the immediately preceding write to the same location in
the total order, and two accesses race if they access the same loca-
tion, at least one is a write, they are not both atomic, and they are
adjacent in the total order.

The theorem requires that the program ensures that atomic ini-
tialisation happens before all atomic accesses for each location. To
simplify the proof, we also restrict its statement to programs that
satisfy a strong finiteness condition: there must be a finite bound
on the size of the pre-executions allowed by the threadwise seman-
tics (this lets us use a simple form of induction). This means it does
not apply to programs with recursion or loops. However, intuitively
those are orthogonal to the concurrency semantics; we do not know
of any reason why including them might affect the truth of the the-
orem.

Theorem 1. For programs whose pre-executions (i) use only mu-
tex, non-atomic and SC-atomic accesses, (ii) have atomic initial-
isations ordered by sequenced-before and parent-to-child thread
synchronisation before all atomic accesses at the same location,
and (iii) are bounded in size by some N , either both the C/C++11
model and the total model give undefined behaviour, or the sets of
consistent executions in each, projected down to the pre-execution
and the reads-from relation, are equal.

PROOF OUTLINE The proof first involves several steps of simpli-
fying the C/C++11 model for programs that do not use low-level
atomics. The remaining proof can be split into one part for race-
free programs and another for racy ones. For race-free programs
there are two cases. Given a consistent execution in the C/C++11
model, we must construct a consistent execution in the total model
with the same pre-execution and reads-from relation. The union
of happens-before and SC order is acyclic, so we extend this to a
total order and show that that is consistent according to the total
model. In the other direction, given a consistent execution in the
total model, we project partial relations from the total relation that
serve as modification order, SC order and lock order in a C/C++11
candidate execution, and then show that it is consistent.

Given a racy execution in one model, we construct a (potentially
different) racy execution in the other. In this part of the proof, we
rely on several definitions and an assumption about the thread-
local semantics. We define a prefix as a part of an execution where
every sequenced-before or thread-synchronisation predecessor of
any action within the part is also in the part. A fringe action of
a prefix is an action that is not in the prefix, but is an immediate
sequenced-before or thread-synchronisation successor of an action
in the prefix. We must assume that the thread-local semantics is
receptive: for any read or lock in the fringe of a prefix of a pre-
execution, allowed by the thread-local semantics, and for every
other value or lock outcome, there exists a pre-execution with the
same prefix, but where the fringe action is changed accordingly.

Given a racy execution in the total model, we find the first
race according to the total relation, and take the prefix made up
of all predecessors of the later action in this race. The prefix is

2 2014/7/17

consistent and race free, so we can translate it to a consistent prefix
in the C/C++11 memory model with the same set of fringe actions.
We extend this to a consistent prefix containing the racy action in
the total model, appealing to receptiveness to change its value (if
necessary for consistency), and we show that there is a race in
the extended prefix. We then induct on the size of the prefix to
show that for each larger finite prefix size, n, either there exists a
racy consistent execution, or a racy consistent prefix with at least
n actions. Finally, we appeal to the boundedness of executions to
establish that there is a racy consistent execution of the program in
the C/C++11 memory model.

Given a racy execution in the C/C++11 model, the steps in-
volved in the proof are similar, but finding the first race differs. For
each race in the execution, we identify the set containing the racy
actions and all of their happens-before predecessors. The execution
is finite, so the set of all such sets is finite, and the subset relation
is acyclic over them, so we can find a subset-minimal set made up
of a pair of racing actions and their happens-before predecessors.
We identify one of the racy actions and the happens-before prede-
cessors of both as a race-free prefix. This prefix is consistent, so we
can translate it to a consistent prefix in the total model. We then add
the previously-racy fringe action to the prefix, and establish that it
is consistent and racy, appealing to receptiveness, if necessary for
consistency. In a similar fashion to the previous case, we complete
the consistent racy prefix to get a consistent racy execution in the
total model.

3. An operational C/C++11 concurrency model
C/C++11’s axiomatic concurrency model [5] does not support in-
cremental execution, making it difficult to explore execution paths
of nontrivial programs. This section introduces an equivalent ex-
ecutable operational semantics, covering all features of the ax-
iomatic model except the consume memory order. This is mecha-
nised in Isabelle/HOL; the definitions and proof script (approx. 5k
lines) is included in the supplementary material). To see why the
axiomatic concurrency model makes it difficult to explore execu-
tion paths, we first recall its structure.

3.1 Summary of the axiomatic concurrency model
To compute the behaviour of a progam using the axiomatic model,
one first calculates the set of all pre-executions using a thread-
wise semantics (this is a parameter of the concurrency model, not
a part of it). Each pre-execution corresponds to a particular com-
plete control-flow unfolding of the program and an arbitrary choice
of the values read from memory, with the values written to mem-
ory as determined by the threadwise semantics. The threadwise se-
mantics might calculate the set of all pre-executions inductively on
program syntax (in that sense, this part of the semantics is denota-
tional, though it involves no limit construction). Below we show an
example program and one of its many pre-executions.

atomic_int x=0
atomic_int y=0
r1 = loadrlx(x)
storerlx(y,42)

r2 = loadrlx(y)
storerlx(x,42)

a:Wna x=0

b:Wna y=0

sb

c:Rrlx x=42

asw

e:Rrlx y=42
asw

d:Wrlx y=42

sb

f:Wrlx x=42

sb

A pre-execution consists of a set of memory actions, which in
the example are all writes (W) or reads (R), and some relations

over them: program order (sb, “sequenced-before”) and thread cre-
ation (asw , “additional synchronises-with”). Reads and writes with
subscript NA are non-atomic reads and writes; others are atomic
and the subscript specifies the memory order (the synchronisation
strength of the action, not an order relation): SC, release, acquire,
consume, or relaxed. Write and read actions both include an address
and value. To keep the diagrams simple we suppress the memory
actions of thread-local variables ri. Threads are separated by lines.

Then for each pre-execution, one enumerates all possible ex-
ecution witnesses, each of which consists of a reads-from re-
lation (rf) over the actions that relates a read to the write
that it read from, a modification order (mo) which is a to-
tal order over atomic writes to the same location, an SC or-
der, and a lock order. A candidate execution is a pair of a
pre-execution and one of its execution witnesses. For example,
here is one of the candidate executions for the above program.

a:Wna x=0

b:Wna y=0

sb

f:Wrlx x=42

mo

c:Rrlx x=42

asw

d:Wrlx y=42

mo
e:Rrlx y=42

asw

sb
rf

sb
rf

The axiomatic model defines
predicates is_consistent and
is_undefined over candidate
executions. If one of the con-
sistent candidate executions is
undefined (e.g. if it contains a
race), then the program as a
whole is undefined. Otherwise,
the behaviour is the set of all
consistent executions. The ex-
ample on the left is consistent,
and in fact no consistent exe-
cution of this program is unde-
fined, so the program has well-
defined behaviour including this

execution (this execution is allowed on Power and ARM, so it must
be allowed in the language).

This structure makes the algorithmic difficulty of exploring sin-
gle executions apparent: the calculation of pre-executions and enu-
meration of execution witnesses takes place before one has any
constraint on the values read from memory, so there is no knowl-
edge about which paths are feasible. Moreover, for programs with
any loops or recursion, the set of pre-executions will be infinite,
and the action sets of some of them will also be infinite.

3.2 Challenges
An operational semantics should build executions incrementally.
The immediate challenge is that consistency is defined only for
complete candidate executions and is not closed under sb-prefixes:
the execution above is consistent, but if action d or f is removed,
then there is no execution witness that makes the pre-execution
consistent. To construct the execution while being consistent at
every step, the semantics would have to execute the actions c–f

in one step, but shapes like c–f can be arbitrarily large, both in
the number of threads and the intervening actions on each thread,
so this would defeat the operational goal. Instead, we execute
one action per step and we allow executions to be temporarily
inconsistent, proving that consistency is regained at termination
(see §3.4).

To be fully operational, we need both an operational threadwise
semantics (in contrast to that assumed by [5]) and an operational
concurrency model, linked together. A standard operational thread-
wise semantics generates pre-executions incrementally, in program
order, and a simple concurrency model can follow suit, building
corresponding (consistent) execution witnesses incrementally. For
example, a sequentially consistent concurrency model can provide
the value for a read request (and commit the read) based only on
the actions it has seen before in program order. But for C/C++11
this is impossible, for two reasons.

3 2014/7/17

First, if the threadwise semantics and the concurrency model
were to execute together in progam order, it would have the unde-
sirable consequence that established synchronisation could disap-
pear when executing a new action (happens-before would not grow
monotonically as the operational model takes transitions). To see
this, first consider the program below and one of its consistent ex-
ecutions. There is a cycle in mo [sb, so if the concurrency model
executed actions in program order, it would have to insert new ac-
tions in modification order before actions that are already executed.
While this is counterintuitive, it is not a problem in itself.

atomic_int x=0;
atomic_int y=0;
storerlx(x,1)
storerlx(y,2)
r1 = loadrlx(y)

storerlx(y,1)
storerlx(x,2)
r2 = loadrlx(x)

a:Wrel y=1

b:Wrel x=2

sb

f:Racq y=1

rf

c:Racq x=1

sb

d:Wrel x=1

mo

rf
e:Wrel y=2

sb
mo

sb

However, in the following example, inserting actions in the mid-
dle of mo causes synchronisation to disappear. Synchronisation is
expressed in the axiomatic model with the hb (happens-before) re-
lation, defined using the data of a candidate execution. In the first
execution, the writes a and b are part of a release sequence [5, §2.6],
and because the read c reads from a write in this sequence, it syn-
chronises with the first write in the sequence. In the second ex-
ecution however, a new write d is inserted in modification order
between the existing writes a and b, which breaks the release se-
quence. Therefore, there is no synchronisation between the read c

and write a anymore.

c:Racq x=2

a:Wrel x=1

hb

b:Wrlx x=2

sb

rf c:Racq x=2

a:Wrel x=1
no hb

b:Wrlx x=2

sb

d:Wrlx x=3

mo

rf mo

Such disappearing hb edges make it difficult to construct an
operational concurrency model that generates all consistent execu-
tions. An hb edge restricts consistent executions in many ways, for
example it restricts from which writes a read can read from, and it
forces modification order in certain directions. If the concurrency
model took those restrictions into consideration but at a later step
the hb disappeared, the concurrency model would have to recon-
sider all earlier steps. If on the other hand the concurrency model
already took into account that an hb edge might disappear when it
encounters an hb edge, the number of possibilities would blow up,
and furthermore many executions would turn out to be inconsistent
when the hb edge does not disappear after all.

We resolve this by committing writes in modification order, as
we describe in §3.4. The example with the cycle in mo [sb then
shows that we cannot always commit writes in program order.

For the second reason that the concurrency model cannot always
follow program order, when committing a read the concurrency
model must determine which write the read reads from (recall that
the reads-from (rf) relation is part of the execution witness), but in
C/C++11 there can be cycles in sb[rf , as we saw in §3.1. So if the
concurrency model were to follow program order, it would have to
let the read read from a write that has not been reached yet in order
to be complete.

We resolve this by making the threadwise semantics symbolic,
so that it can continue after such a read (see §3.6) and by letting the
concurrency model defer commitment of a read (and the choice of
which write it reads from) until later.

3.3 Overview
We deal with these challenges in three stages. In the first stage
(§3.4) we construct an incremental concurrency model.

For this stage we assume (as in the axiomatic concurrency
model) an axiomatic threadwise semantics that provides it with a
complete pre-execution; we define a transition relation that incre-
mentally commits the actions of that pre-execution and constructs
(partial) execution witness data for them, in an order consistent
with the constraints we saw above. A state consists of the subset
of actions of the pre-execution that the incremental concurrency
model has committed, and the (partial) execution witness that the
incremental concurrency model has constructed so far. In the figure
below on the left, we see the initial state: it consists of the com-
plete pre-execution generated by the axiomatic threadwise seman-
tics, where none of the actions have been committed (denoted by
their grey colour) and without any execution witness relations. In
the figure below on the right, we see a state where actions a, b, c
and f have been committed but d and e have not.

a:Wna x=0

b:Wna y=0

sb

c:Rrlx x=42

asw

e:Rrlx y=42

asw

d:Wrlx y=42

sb

f:Wrlx x=42

sb

a:Wna x=0

b:Wna y=0

sb

f:Wrlx x=42

mo

c:Rrlx x=42

asw

d:Wrlx y=42

mo
e:Rrlx y=42

asw

sb sb
rf

The transition relation of this model is still defined in an axiomatic
style: to compute the set of possible transitions, one has to generate
all states and filter them with the transition predicate, which is
infeasible for anything but tiny pre-executions. In the second stage
(§3.5) we solve this by constructing a more operational model
that explicitly defines how each relation in the partially generated
execution witness can change for each type of action (in this stage
we continue to assume an axiomatic threadwise semantics that
generates complete pre-executions). The state type is the same as in
the incremental concurrency model, and we prove that the former
can make a transition if and only if the latter can do that.

a:Wna x=0

b:Wna y=0

sb

f:Wrlx x=42

mo

c:Rrlx x=42

asw

e:Rrlx y=�

asw

sb
rf

In the third and last stage
(§3.6), we integrate the op-
erational concurrency model
with an operational threadwise
semantics that generates pre-
executions action by action.
Because the operational con-
currency model might not im-
mediately commit actions that
the operational threadwise se-
mantics executed, we made the
operational threadwise seman-
tics symbolic: in the case of un-
committed reads we use a fresh
symbol as its return value. This

is the case in the partial execution above, for example, where
the threadwise semantics has had to continue past an as-yet-
uncommitted read e. Whenever the concurrency semantics commits
a read, the symbol gets resolved.

We flesh these out in the remainder of this section (again refer-
ring to the supplementary material for the full definitions). This
necessarily involves more technical details of the C/C++11 ax-

4 2014/7/17

iomatic model, but these subsections are not necessary for the later
§4–7.

3.4 The incremental concurrency model
The incremental concurrency model commits the actions of a com-
plete pre-execution one by one, constructing execution witness data
(nondeterministically) along the way.

To show that it can generate all finite consistent executions, we
have to show that for each finite consistent execution the model
can take a path from the its initial state (consisting of the pre-
execution where none of the actions have been committed), to a
state containing the entire execution. Since actions are committed
one by one, this path amounts to the order in which the actions
of the execution are committed, with, for each step, the generated
(partial) execution witness.

In §3.2 we saw the need to commit actions in rf and in mo

order. To reduce unnecessary non-determinism, we want to follow
hb as much as possible (recall that happens-before (hb) is calcu-
lated from a candidate execution, and includes program order and
synchronisation). For a candidate execution ex , we define the com-
mitment order of ex to be

com_order(ex) =
�
ex .rf [ex .mo [ex .hb

��+

where ·+ is transitive closure and ex .hb

� is defined as

{(a, b) 2 ex .hb | b not an atomic write}.

Lemma 2. Let ex be a consistent execution, then the commitment
order of ex is indeed an order: it is transitive and irreflexive.

If we add either sc or lo to the commitment order, the resulting
relation is in general not an order.

Now that we have established the order, we look at what the
partially generated execution witnesses should look like. For a
candidate execution ex , let C be the set of actions that have been
committed in a certain state. We define restrict(ex , C) to be the
execution witness wit with

wit .rf = ex .rf \ C ⇥ C

wit .mo = ex .mo \ C ⇥ ex .actions

wit .sc = ex .sc \ C ⇥ C

wit .lo = ex .lo \ C ⇥ C

To explain why we restrict mo to C ⇥ ex .actions instead of
C ⇥ C, recall that the incremental concurrency model commits
actions in mo order, so even before we commit an action b, we
know that b will be modification-order after any action a to the
same location that has been committed. We want to include this
information as early as possible in the generated (partial) execution
witness, because it constrains some choices.

The orders sc and lo are not included in the commitment order,
so the incremental concurrency model needs to be able to insert new
actions in those orders before actions it already committed. Hence,
we only know how actions a and b are related to each other in those
orders when both of them have been committed, and therefore we
restrict the relations to C ⇥ C.

We restrict rf to C ⇥ C because we only want to create an
rf edge when we commit a read, and reads can only read from
committed writes.

The transition relation The incremental concurrency model can
transition from state s1 to s2 if:

1. s2.committed = s1.committed [{a}, where a is an action
with a /2 s1.committed (to ensure that a single, new action is
committed during the transition);

2. restrict(s2.wit , s1.committed) = s1.wit (in other words, s2
extends s1: all execution witness data present in s1 is present in
s2);

3. for every action b we require b 2 s1.committed ! (a, b) /2
com_order(s2) and (b, a) 2 com_order(s2) ! b 2
s1.committed (requiring that the transition respects the com-
mitment order we defined earlier in this section); and

4. s2 is consistent according to the incremental consistency pred-
icate is_consistent_inc that we define below.

The incremental consistency predicate The incremental consis-
tency predicate is_consistent_inc is the same as the predicate
is_consistent of the axiomatic model except for the following
seven conjuncts.

The predicate det_read requires that for every load r there
exists a visible side effect [5] if and only if r reads from somewhere.
The incremental predicate det_read_inc only requires that for
committed loads.

The predicate rmw_atomicity requires that every read-
modify-write reads from its immediate predecessor in modification
order if it exists, and does not read from anywhere otherwise. The
incremental predicate rmw_atomicity_inc only requires that for
committed read-modify-writes.

The predicate consistent_locks requires that for all successful
locks a and c with (a, c) 2 lo there exists an unlock b with (a, b)
and (b, c) 2 lo. The incremental predicate consistent_locks_inc
only requires that in the case that c has been committed.

The predicate well_formed_rf requires some properties of a
and b for every pair (a, b) 2 rf , for example that a is a write, b a
read and their values correspond. In addition to all the properties
of a and b that well_formed_rf requires, well_formed_rf _inc
requires that a and b are committed.

The predicates consistent_mo, consistent_sc and
consistent_lo have similar forms and need to be adapted in
similar ways. They define three conditions, say '

mo

, '
sc

and '

lo

,
over pairs of actions, and require that (a, b) or (b, a) 2 mo if and
only if '

mo

(a, b) holds (resp. sc and lo). The incremental variants
of those predicates change the conditions '. In the case of mo the
condition becomes “'

mo

(a, b) and either a or b is committed”. In
the case of sc the condition becomes “'

sc

(a, b) and both a and b

are committed”, and similarly for '
lo

. In addition to the change to
'

mo

, consistent_mo_inc also requires for every (c, d) 2 mo that
c is committed.

Theorem 3. Let ex be a finite candidate execution. Then ex is
consistent according to the axiomatic model if and only if it is a
reachable state of the incremental concurrency model in which all
the actions have been committed.

Recall from §3.2 that we have to allow partial executions to
be temporarily inconsistent. It is possible that a partial execution
has no (outgoing) transitions and can therefore not be extended
to a consistent execution. However, one direction of the theorem
(soundness) states that if there is a transition to a state where all
actions have been committed, then consistency is always regained.
The proof is straightforward: if all the actions have been committed,
then is_consistent_inc implies is_consistent. In the remainder
of this subsection we sketch the (mechanised) proof of the other
direction (completeness).

We identify the properties of hb that the completeness proof
depends on. There are three trivial properties: hb is a relation over
the actions of the pre-execution, we have sb ✓ hb, and pairs
(a, b) 2 lo with a an unlock and b a lock are in hb. Then there
are two nontrivial properties.

The first is that hb grows monotonically during transitions
of the incremental concurrency model. We prove something

5 2014/7/17

stronger, namely for every set C of actions that is mo-downclosed
(if (a, b) 2 mo and b 2 C then a 2 C), we have
restrict(ex , C).hb ✓ ex .hb. This is stronger because mo is in-
cluded in the commitment order.

The second is that hb is stable for certain prefixes: let c 2 C

with c not an atomic write, then no action a can retroactively
happen before c. Because hb does not need to be transitive, this
is expressed as follows: (a, b) 2 ex .hb with b = c_(b, c) 2 ex .hb

implies (a, b) 2 restrict(ex , C).hb. We proved that this holds for
all sets C that are downclosed in the commitment order.

(We conjecture that the above properties of hb remain true in
the presence of memory order consume. Because adding consume
only changes hb, this would mean that our incremental concurrency
model also covers the memory order consume correctly.)

To show that the incremental concurrency model can transition
along the commitment order, we prove the following.

Lemma 4. Let ex be a consistent execution and C a set of com-
mitted actions that is downclosed in the commitment order. Then
is_consistent_inc(restrict(ex , C)).

Lemma 5. Let ex be a finite consistent execution and C a prefix of
the commitment order. There is a finite number of transitions that
the incremental concurrency model can take and which result in a
state s with s.committed = C and s.wit = restrict(ex , C).

We prove this by induction on the size of C. In the induction
step we have to prove that the incremental concurrency model can
transition from the state given by the induction hypothesis to the
state with s.committed = C and s.wit = restrict(ex , C), so
we have to check all the conditions of the transition predicate as
defined earlier in this section. The most interesting condition is
that is_consistent_inc needs to hold for s.wit , which is what
Lemma 4 gives us.

3.5 The operational concurrency model
Rather than (conceptually) enumerating all of a large set of poten-
tial transitions and then filtering them, as above, we now define
a more precise transition relation that characterises how the gen-
erated (partial) execution witness can change during a transition,
which greatly reduces the number of possible transitions one has to
filter and therefore makes it feasible to compute the set of possible
transitions. There are opportunities for further optimisation which
we discuss at the end of this subsection.

To compute the set of possible transitions, we generate a set
of candidate execution witnesses and then filter them with the
is_consistent_inc predicate of the previous subsection. If the ac-
tion that is committed has sequential consistent memory order, we
generate a candidate execution witness for every insertion point in
the sc order. Otherwise, the sc order does not change. We describe
how the other relations rf , mo and lo change depending on the
type of the committed action.

Loads The consistency predicate requires that loads read from a
write if and only if there is a side effect visible to the load. Because
reading from a write can cause the write to become a visible side
effect, we cannot decide a priori whether the load r that is being
committed has to read from somewhere or not, so we consider both
possibilities: we generate a candidate witness where rf stays the
same, and for each write w that has been committed that has the
same location and value as r we generate a candidate witness where
(w, r) is added to rf . The relations mo and lo do not change.

Stores With w the store being committed, we generate only one
candidate witness: we add the mo-edges (w,w

0) for all writes w0 to
the same location that have not yet been committed (we explained
the reason for this when we defined restrict earlier in this section).
The relations rf and lo do not change.

Read-modify-writes We generate one candidate witness. The re-
lation mo changes in the same way as in the case of a store. If there
exists a write w that is immediately before (in mo order) the read-
modify-write rmw that is being committed, then we add (w, rmw)
to rf . Otherwise rf stays the same. The relation lo does not change.

Blocked read-modify-writes Blocked read-modify-writes model
a read-modify-write that is blocked indefinitely. All relations stay
the same.

Locks and unlocks We generate a candidate witness for all inser-
tions points in lo. The other relations stay the same.

Fences If the fence has sequential consistent memory order, sc
changes as described before. All other relations stay the same. Note
that a fence that is not sequential consistent does not change the
generated execution witness, but it does restrict future choices.

Theorem 6. The transition relations of the operational concur-
rency model and the incremental concurrency model of §3.4 are
identical.

Soundness is straightforward to show, because we filter the can-
didate executions with the same predicate as in the incremental con-
currency model. The completeness proof is more interesting and
depends on some subtleties of the is_consistent_inc predicate.

The semantics can be optimised further. Candidate execution
witnesses are filtered with the is_consistent_inc predicate, but we
conjecture that most conjuncts hold by construction. Furthermore,
the state of the operational concurrency model contains the execu-
tion up to that point so it grows at each step, but some actions are
irrelevant for future transitions (for example writes from which new
reads cannot read) so they could be pruned from the state.

We can operationally detect races in a single path, though of
course to find all races (and hence to determine whether a program
is well defined) we need to explore all paths; that is unfortunate but
intrinsic to the C/C++11 semantics.

3.6 Integration with an operational threadwise semantics
In §3.5 we described the use of our operational concurrency model
with an axiomatic threadwise semantics, which provides com-
plete pre-executions. We now integrate the operational concurrency
model with an operational threadwise semantics, to build execu-
tions incrementally.

As the front-end language, we use a small functional program-
ming language with explicit memory operations (Core). This is de-
veloped as an intermediate language in a broader project to give
semantics of the C programming language; as such, any C program
can be expressed as a Core program.

The integrated semantics starts with an empty pre-execution,
and then goes on to alternate between performing one step of the
Core dynamics and zero or more steps of the concurrency model,
all within a nondeterminism monad.

The Core dynamics is a step function: from a given Core pro-
gram state it returns the set of memory operations (and the resulting
Core program state should that operation be performed) that can be
performed at this point by the program. These operations (object
creation, load, store) are communicated to the concurrency model
by adding them to the pre-execution. For load operations, the result-
ing Core program state needs a read value. Since the concurrency
may choose not to provide a value immediately, we introduce, for
each load operation, a symbolic name for the value read, and use it
to build the resulting Core state.

As a result all value in Core programs must be symbolic. This
means in particular that the execution of control operator (Core has
a single if-then-else construct) is done symbolically. When a con-
trol point is reach, the threadwise semantics non-deterministically

6 2014/7/17

explores both branches, under corresponding symbolic constraints
for each branch.

When the concurrency model does give an answer for a read, at
some later point in the execution, the set of constraints is updated
by asserting an equality between the symbolic name created earlier
for the read and the actual value. In the case of execution branches
that should not have been taken, the constraint therefore becomes
unsatisfiable and the execution path is killed. Our C semantics
elaborates the many C integral numeric types into Core operations
on mathematical integers, so all constraints are simply over those.

While the interleaving execution of the threadwise semantics
and the concurrency model has the advantage of allowing the ex-
ploration of larger programs, for exhaustively finding all possible
executions of a program the explosion of nondeterminism it in-
troduces quickly becomes intractable. For validation purposes, we
therefore first run the threadwise semantics on the whole Core pro-
gram, to produce a complete pre-execution, and then invoke the
concurrency model on that.

We have exercised the semantics, integrated into an executable
as above, on the examples of §4 (translated into Core programs),
for which it gives the correct C/C++11 results. Time has not yet
permitted more extensive testing; we have tried a few other litmus
tests taken from cppmem [5], most of which give the correct results
but one reveals what appears to be a bug in the driver harness (the
operational concurrency model of §3.5 gives the correct results for
that test when integrated with cppmem).

To the best of our knowledge this is the first operational model
for C/C++11 concurrency. The most closely related work we are
aware of is the model-checker of Norris and Demsky [24]. This is
focussed on efficiency, but its relationship to the C/C++11 model is
not completely clear (they note that their CDSCHECKER “may not
explore all behaviors involving satisfaction cycles”, but it is unclear
what other executions are also excluded).

4. The thin-air problem has no
per-candidate-execution solution

The question of “thin-air” reads is a longstanding issue in the de-
sign of memory models for C and C++, specifically for C/C++11
relaxed atomics: accesses for which races are permitted but which
should be implemented with normal load and store instructions,
without the cost of additional barriers or synchronisation instruc-
tions. Related questions arise in the semantics of C as used in the
Linux Kernel (for ACCESS_ONCE accesses), and in Java [20].

The C++11 standard [6] included text intended to forbid thin-air
executions (29.3p9), and it says explicitly (29.3p10) that that text
forbids the LB+data example below, but the text was already recog-
nised as flawed: a non-normative note in the standard (29.3p11)
observed that “The requirements do allow [the LB+ctrldata+ctrl-
single example below]. However, implementations should not allow
such behavior.”. Batty et al. identified further problems [5, §4], and
their formal model does not attempt to capture that text or to ex-
clude thin-air executions in any other way. The current proposal [8]
for C++14 acknowledges difficulties with the C++11 version and
proposes a deliberately vague placeholder as an interim replace-
ment: “Implementations should ensure that no “out-of-thin-air”
values are computed that circularly depend on their own compu-
tation.”.

There is not a precise definition of what it means for a read to
be “out of thin air” (if there were, the problem would be solved, as
the semantics could simply exclude those). Rather, there are some
example executions for which there is a consensus that the lan-
guage should forbid them, and that current hardware and compiler
optimisations do not exhibit. This is a high-level-language specifi-
cation problem: there is no suggestion that thin-air executions oc-

cur in practice with current compilers and hardware; the problem
is rather how to exclude them without preventing desired compiler
optimisations.

In this section, we describe the thin-air problem via a series of
examples, and we show that thin-air executions cannot be forbid-
den without restricting current compiler optimisations by any per-
candidate-execution condition using the C/C++11 notion of candi-
date executions.

For each example we identify a particular execution by speci-
fying the values read, and discuss whether it should be allowed by
the semantics or not. Here all locations are initially 0.

Example LB (language must allow)

r1=loadrlx(x) //reads 42
storerlx(y,42)
r2=loadrlx(y) //reads 42
storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42

sb

sb

rfrf

Returning to the first example of the previous section, this ex-
ecution is permitted by the ARM and IBM POWER architectures
(presuming the code is compiled in the obvious way into machine
load and store instructions): the actions of the each thread are to
manifestly different addresses and so can be done out of order; it is
moreover experimentally observable on current ARM multiproces-
sors [28]. Hence, the language semantics must allow it for relaxed
atomics.

Example LB+datas (language can and should forbid)

r1=loadrlx(x) //reads 42
storerlx(y,r1)
r2=loadrlx(y) //reads 42
storerlx(x,r2)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42

rf

rf

sb,dd sb,dd

There are two paradigmatic kinds of thin-air execution, the thin-
air read value executions like this one, in which a value (here 42)
“appears out of thin air”, and the self-satisfying conditional exam-
ple we discuss below. This example is architecturally forbidden on
current hardware (x86, ARM, and IBM POWER), we do not ex-
pect future hardware to adopt the load-value prediction that would
be required to make it observable, and to the best of our knowl-
edge it cannot be exhibited by any reasonable current compiler op-
timisation combined with current hardware. Hence, the language
semantics could forbid it.

Moreover, it is clearly desirable to forbid it, to make the lan-
guage semantics as intuitive as possible. Boehm and Demsky [10]
give examples where programming with relaxed atomics that per-
mit thin-air values would be problematic, and in languages that aim
to preserve implementation invariants at some types (such as that
all pointer values point to allocated memory) it would be essential.

As for how it might be forbidden, the example suggests that
one might simply forbid candidate executions with cycles in the
union of the reads-from and dependency relations (the model has
a data dependency relation shown as dd above). But the next
two examples show that a combination of hardware behaviour and
compiler optimisations make that infeasible.

Example LB+ctrldata+po (language must allow)

r1=loadrlx(x) //reads 42
if (r1 == 42)
storerlx(y,r1)

r2=loadrlx(y) //reads 42
storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42

rf

rf

sb,dd sb

7 2014/7/17

This is architecturally allowed on ARM and Power (for the
same reason as LB), and likewise observable on ARM, hence the
language must allow it.

Example LB+ctrldata+ctrl-double (language must allow)

r1=loadrlx(x) //reads 42
if (r1 == 42)
storerlx(y,r1)

r2=loadrlx(y) //reads 42
if (r2 == 42)
storerlx(x,42)

else
storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42

rf

rf

sb,dd sb

This is forbidden on hardware if compiled naively, as the archi-
tectures respect read-to-write control dependencies, but in practice
compilers will collapse conditionals like that of the second thread,
removing the control dependencies from the read of y to the writes
of x and making the code identical to the previous example. As that
example is allowed and observable on hardware (and we presume
that it would be impractical to outlaw such optimisation for C or
C++), the language must also allow this execution. But this execu-
tion has a cycle in the union of reads-from and dependency, so we
cannot simply exclude all those.

Then one might hope for some other adaptation of the C/C++11
model, but the following example shows at least that there is no
per-candidate-execution solution.

Example LB+ctrldata+ctrl-single (language can and should for-
bid)

r1=loadrlx(x) //reads 42
if (r1 == 42)
storerlx(y,r1)

r2=loadrlx(y) //reads 42
if (r2 == 42)
storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42

rf

rf

sb,dd sb

This is the paradigmatic “self-satisfying conditional” example.
It is forbidden on hardware if compiled naively (both ARM and
POWER architectures prevent speculative writes becoming visi-
ble to other threads), and applying reasonable thread-local com-
piler optimisation does not change that. Hence, the language could
forbid it. Moreover, it is problematic for informal and formal com-
positional reasoning [3, 10, 31], so the language should forbid it.

But the candidate execution that we want to forbid here is iden-
tical to the execution of the previous example that we have to al-
low. Hence, we cannot do both simultaneously with any adaptation
of the C/C++11 per-candidate-execution definitions that uses the
same notion of candidate execution.

The basic point here is that compiler optimisations (such as the
collapse of the LB+ctrldata+ctrl-double conditional) are operating
over a representation of the program, covering all its executions,
while the C/C++11 definition of candidate execution and consis-
tency for those considers each candidate execution independently
(it ignores the set of all executions); it is not able to capture the fact
that the conditional is unnecessary because the two candidate ex-
ecutions corresponding to taking the two branches are equivalent.
We develop this observation in §6.

Restricting optimisation involving relaxed atomics? One might
think that it would be feasible to restrict just compiler optimisa-
tions involving relaxed atomics, e.g. requiring that the compiler
should respect all dependencies between relaxed atomic operations,
while permitting more optimisation elsewhere. But (as observed by
Boehm [7]) dependencies can be via functions in other compilation
units that only involve non-atomic accesses, e.g. as in the version

of LB+ctrldata+ctrl-double below, where the second thread’s con-
ditional is factored out into a function f() that does not involve
atomics and that is in a different compilation unit. When compiling
f() the compiler cannot tell whether it might be used in a depen-
dency chain between atomic accesses, and so it would have to pre-
serve all such dependencies. The cost of that is unknown, and worth
investigating experimentally, but we suspect it to be unacceptable.

// in one compilation unit
void f(int ra, int*rb) {

if (ra==42)

*rb = 42;
else

*rb = 42; }

// in another compilation unit
r1=loadrlx(x) //reads 42 r2=loadrlx(y) //reads 42
if (r1 == 42) f(r2,&r3)

storerlx(y,r2) storerlx(x,r3)

In practice, GCC (checked with 4.6.3 on x86) does optimise away
the control dependency in f(), at O1, O2, or O3.

5. Integrating non-atomics and atomics leads
back to thin air

We now show that the thin-air problem is not confined to relaxed
atomics.

The C++11 standard prose refers to “atomic objects” as if they
are quite different from non-atomic objects, and the mathematical
model of Batty et al. [5] for the C++11 and C11 concurrency prim-
itives followed suit by imposing a simple type discipline: a loca-
tion kind map in each candidate execution partitioned locations into
atomic, nonatomic, and mutex locations. The definition of consis-
tent execution permitted atomic accesses only at atomic locations,
and the only nonatomic accesses allowed at atomic locations were
atomic initialisations1.

However, when one considers generalising that semantics for
the concurrency primitives to cover more of C, it becomes clear
that an up-front location-kind distinction is unrealistic, for several
reasons:

1. In C it is permitted to reuse a region of allocated storage
(e.g. from malloc) at a new type, simply by overwriting the
bytes of memory with a new value. Restricting that to prevent
strong updates from atomic to nonatomic (or v.v.) would not
give a usable language.

2. In C one can inspect the representation bytes of a value by
casting a pointer to (char *), or by type-punning via a union.

3. In C one can copy a value by copying its representation bytes,
e.g. using memcpy. This could perhaps be deemed illegal for
structures containing atomic values (indeed, it would have to
be if atomic values had to be registered somewhere in the
implementation), but it would be preferable, and in keeping
with the rest of the language, to permit it.

4. In C11 one can construct atomic versions of structure and union
types (with _Atomic(type-name) or the _Atomic qualifier), but
their members can be accessed only via a non-atomic object
which is assigned to or from the atomic object, not directly [1,
6.5.2.3p5].

1 It is desirable to have nonatomic initialisations so that they do not require
fences, but then to obtain a DRF-SC result initialisation had to be limited to
be happens-before all other accesses, and without reinitialisation.

8 2014/7/17

Hence, contrary to [5], we have to allow mixtures of atomic
and nonatomic accesses at the same location, at least where the
nonatomic accesses do not race with each other or with any atomic
accesses.

But what should the semantics be for these? The standard text
does not address these mixtures, but for the entirely nonatomic and
entirely atomic cases it and the formal model [5] are clear:

• for a non-atomic read, the definition of consistent execution re-
quires, in consistent_non_atomic_rf , the read to read from
the most recent happens-before-visible write to the same loca-
tion; while

• for an atomic read, the analogous consistent_atomic_rf lets
the read read from any write that is not after it in happens-before
(subject to the other predicates of the model).

It is this second clause that permits LB and the related thin-air
executions for relaxed atomics that we saw earlier. If we allow
the mixing of non-atomics and atomic accesses, we can appeal to
consistent_atomic_rf to write programs that violate the essential
DRF-SC property, described in §1 and §2. Our first example pro-
gram uses memcpy to mix atomic and non-atomic accesses at the
same location. It is race-free in every SC execution, but it has racy
executions in the C/C++11 memory model as it stands:

// parent thread
size_t s = sizeof(atomic_int)
atomic_int x = 0
atomic_int y = 0
atomic_int a = 1

int r1 = loadsc(x)
if(r1 != 0)
memcpy(&y,&a,s)

int r2 = loadsc(y)
if (r2 != 0)
memcpy(&x,&a,s)

b:WNA y=1 d:WNA x=1

a:RSC x=1 c:RSC y=1

sb

sb

rfrf

sc

dr

dr

In the execution above, each atomic load reads from the non-atomic
write implicit in the memcpy of the other thread. The execution is
consistent, and has data races, making it a counterexample to DRF-
SC.

In C/C++11 the consistent_non_atomic_rf predicate gov-
erns the behaviour of reads from non-atomic objects. The example
below establishes that this predicate is not suitable for non-atomic
reads at locations that mix atomic and non-atomic accesses. In the
program below, there is a reading thread that spins until it sees the
other thread’s writes of z and y, and then reads from x twice: once
with acquire memory order and once with consume. After the loop,
there are two memcpys of location x:

// parent thread
size_t s = sizeof(atomic_int)
atomic_int n=0, x=0, y=0, z=0

storerlx(x,1)
storerel(z,1)
storerlx(x,2)
storerel(y,&x)
do { r1 = loadacq(z)

r2 = loadcon(y)}
while (r1!=0 && r2!=0)
memcpy(&n,r2,s)
memcpy(&n,&x,s)

a:WRLX x=1

b:WREL z=1

c:WRLX x=2

e:RACQ z=1

d:WREL y=x

g:RNA x=2

h:RNA x=1

f:RCON y=&x

sb

sb

sb

sb

sb

dob,rf

rf

dob

rf

sw,rf

rf

sb,dd

mo

In the candidate execution on the right above, the loop exits (we
elide the implicit write of the memcpys, and the initialisation
writes). The first memcpy happens after all atomic writes of x,
but before the write implicit in the second memcpy, so according

to consistent_non_atomic_rf , it must read write c. The second
memcpy reads a pointer provided by the consume read, creating
a dependency and forcing it to read a, but this execution, shown
above, contains a CoRR coherence violation between accesses a, c,
g and h, making the execution inconsistent, so the only behaviour
that the model allows of this program is spinning on the conditional
of the loop (similar executions arise if we swap atomics with non-
atomics and vice versa).

The consistency condition of that semantics cuts out executions
we need to allow: this can make reasonable executions of race-
free programs inconsistent and remove racy executions from racy
programs, making them race-free and well-defined. We explore
the possibility of using consistent_atomic_rf for governing the
behaviour of non-atomic reads of locations that are accessed with a
mixture of atomics and non-atomics. The following example shows
that this adjustment to the model also breaks the DRF-SC property:
// parent thread
size_t s = max(sizeof(atomic_int),sizeof(int))
atomic_int* x = calloc(1,s);
atomic_int* y = calloc(1,s);
int* r1 = calloc(1,s);
int* r2 = calloc(1,s);

memcpy(r1,x,s);
if (*r1 != 0)
atomic_init(*y,1)
storesc(*y,2)

memcpy(r2,y,s);
if (*r2 != 0)
atomic_init(*x,1)
storesc(*x,2)

c:RNA y=1

d:WSC x=1b:WSC y=1

a:RNA x=1

sb

sb

rfrf

dr

dr

sc

In the candidate execution above, where each memcpy reads
from the atomic store (a racy execution, with the initialisation
writes and implicit writes of the memcpys are elided), we use
consistent_atomic_rf to decide that the execution is consistent,
and the program has undefined behaviour. Contrast this with the
SC executions of the program: the program executes no atomic ac-
cesses, both conditionals fail in every execution, and the program
is race free. This discrepancy violates DRF-SC, even for programs
that do not use any atomic accesses in their SC executions.

We have seen that using consistent_nonatomic_rf to gov-
ern the behaviour of non-atomic reads at locations accessed
atomically removes too many behaviours. We cannot use
consistent_atomic_rf to govern such reads either: that would
break DRF-SC. It is not clear what the semantics of non-atomic
reads should be in C11.

6. An out-of-order operational construction
The examples of §4 showed that for relaxed atomics the language
semantics has to admit reorderings that are enabled by removals
of syntactic control dependencies that can be justified only by
examination of multiple control-flow paths (not just inspection
of a single candidate execution). For example, consider again the
second thread of LB+ctrldata+ctrl-double:

r2=loadrlx(x)
compiler����! r2=loadrlx(y)

h/w��! storerlx(x,42)
if (r2 == 42) storerlx(x,42) r2=loadrlx(y)

storerlx(x,42)
else

storerlx(x,42)

The key fact here is that the storerlx(x,42) is possible on all
control-flow paths of this thread, and a sufficiently “smart” com-
piler can detect that and then remove the control dependency from
the read of y. In this section we generalise this observation: we

9 2014/7/17

give a semantics for relaxed and nonatomic accesses (and locks
and fences) that correctly accounts for all the thin-air examples of
§4 in an interesting and reasonably clean way, though (as we ex-
plain in §6.2) this is not a magic bullet: extending it to cover more
optimisations reveals other difficulties.

6.1 The semantics for reorderings
We start from a standard labelled transition system (LTS) semantics
for each thread in isolation, describing its interactions with memory
by transitions labelled a:R x=v and b:Wx=v for a read or write of
value v at location x. This thread-local base semantics does not
constrain the values read from memory in any way; it simply has a
transition for each possible read value. For example2:

LB’s first thread LB+datas’s first thread
r1=loadrlx(x)
storerlx(y,42)

r1=loadrlx(x)
storerlx(y,r1)

a:R x=0 ... c:R x=42

 b:W y=42 ... d:W y=42

a:R x=0 ... c:R x=42

 b:W y=0 ... d:W y=42

In LB’s first thread, in all branches of the LTS, there is a write of 42
to y; and we will allow the thread to write 42 before reading, letting
both threads read 42. On the other hand, in LB+datas’s first thread,
it is not the case that a write of 42 is available in all branches, so it
will have to do the read first, preventing LB+datas from exhibiting
out-of-thin-air behaviour.

We capture this by constructing a derived out-of-order labelled
transition system for each thread. Its states are copies of the entire
base in-order LTS with some edges ticked. The initial state is the
base LTS with no edge ticked. For example, part of the out-of-order
LTS for LB’s first thread is shown below.

a:R x=0 c:R x=42

 b:W y=42 d:W y=42

a:R x=0 c:R x=42

 b:W y=42� d:W y=42�

a:R x=0� c:R x=42

 b:W y=42 d:W y=42

W y=42

{b,d}

R x=0

{a}

Its transitions are labelled with the same memory actions as the
base semantics; each transition of the derived LTS corresponds to
ticking a set of base transitions. But the base transitions can be
performed out-of-order, when they are not blocked (as we define
below) in any branch by coherence or fences. Specifically: a set of
edges can be ticked iff it forms a frontier, that is, it is non-empty, the
edges are not ticked, the edges have the same memory action label,
there is exactly one edge per non-discarded path that is not going
to be discarded by this ticking (this proviso is for reads: only one
sibling of each set of siblings induced by a read can be in a frontier),
and no edge is blocked (see below). Here an edge is discarded if it is

2 We only show the branches for the values 0 and 42; in reality there is one
branch per possible value, as we assume the base LTS is receptive.

has a ticked sibling, and a path is discarded if it contains a discarded
edge.

For example, the horizontal transition above is justified by the
frontier consisting of all the W y=42 edges (b, d, and all the similar
edges in elided paths), while the vertical transition is justified by
the frontier consisting just of a (and there is a similar transition, not
shown, for each base transition with a different read value).

a:R x=0 c:R x=42

 b:W y=42 d:W y=42

a:R x=0 c:R x=42

 b:W y=42 d:W y=42

To maintain coherence (the fact that execution respects a per-
location total order over writes to each location, consistent with
program order, as guaranteed by standard hardware and by C11 re-
laxed atomics), the definition of “blocked” ensures that an action
cannot be ticked before all the previous actions to the same loca-
tion have been ticked. Ticking also respects fences: all the actions
before the fence have to be ticked before the fence can be ticked;
moreover, all the actions before the fence and the fence itself have
to be ticked before actions after the fence can be ticked. Lock and
unlock actions block actions after and before them, respectively,
but not the other way around, to allow for roach motel reordering.

Handling nonatomics Non-atomic accesses can be executed out-
of-order, like relaxed accesses, but in addition, they can also cause
races. As non-atomic accesses can race with atomic accesses, all
accesses are logged to detect races.

Non-multi-copy-atomic memory For two-thread examples, one
can combine the derived LTS of each thread with an underlying
sequentially consistent shared memory (and that is what we have
done for the testing described below). But in general the language
semantics must also admit the lack of multi-copy atomicity per-
mitted by the Power and ARM architectures: writes to different
locations can be propagated to other threads in different orders.
For example, at the hardware level, in the test below the fact that
Thread 0’s write of x propagates to Thread 1 before its write of y

can be committed (due to the address dependency) does not guar-
antee that the write of x has propagated to Thread 2 before the write
of y does.

Test WRC+addrs: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
addr

rf
addrrf

This could be handled by combining the derived LTS of the threads
with a non-multi-copy-atomic storage subsystem semantics follow-
ing that of Sarkar et al. [28].

We have a precise definition of the out-of-order semantics con-
struction (available in the supplementary material), and built a tool
that lets one explore the semantics of small examples, based on
OCaml code generated by Lem from the semantics, and integrated
with an underlying SC memory. That confirms that it does give the
desired behaviour for each of the thin-air examples of §4: the se-
mantics is liberal enough to allow the reordering (introduced by
compiler or hardware) that gives rise to the “must be allowed” ex-
amples, and restrictive enough to prevent the “should be forbid-
den” examples, ruling out thin-air executions basically by execut-
ing along a totally ordered trace of the derived LTS, with reads

10 2014/7/17

reading from previous writes in that trace. At present it does not
cover non-relaxed atomic accesses, so we cannot discuss the exam-
ples of §5.

This out-of-order semantics has several good features:
• It is operational and relatively concrete, which makes it easier

to understand than (say) the C11 axiomatic memory model.
• The construction is independent from the language syntax and

thread-local operational semantics, which is highly desirable
for tackling a complex language like C. This is in contrast to
calculi with explicit speculation, e.g. Boudol and Petri [11] and
Jagadeesan et al. [19].

• It does not involve syntactic notions of dependency, which are
difficult for compilers to preserve.

However, looking at how to extend it to cover other optimisations
highlights some subtle issues that any semantics for C will have to
tackle. Rather than considering the syntactic optimisations that are
performed by compilers (GCC and Clang each have of the order
of 100 passes, and it is unclear exactly what each does) we focus
on the abstract classes of optimisations used by Ševčík [32] and
Morisset et al. [22].

6.2 Issues with other optimisations
X after Y elimination Read after read, read after write, write after
read, and overwritten write elimination consist in conflating actions
when the effect of one subsumes that of the others. We conjecture
that the notion of frontier can be relaxed to deal with these, e.g. with
extended frontiers as below.

a:R x=0 c:R x=1

 b:W y=1 d:W y=1

 e:W y=1

These optimisations need information about multiple paths, but
only in a limited way: they only need the existence of particular
actions (in a non-blocked path context) in each path, and read and
write introductions appear to have a similar character. However,
this is unfortunately not the case for all optimisations:

Irrelevant read elimination Intuitively, irrelevant read elimina-
tion consists in removing a read action when its result does not
affect the thread’s behaviour: for example, if the branches of a
read have identical subtrees, it is certainly irrelevant. But in gen-
eral a read is irrelevant if its subtrees are in some sense seman-
tically equivalent, and it is not clear what notion of equivalence is
appropriate here — in principle it should also allow reorderings, in-
troductions, and eliminations, suggesting a recursive construction,
but that would be difficult to use and reason about.

Inter-thread optimisations By requiring that the thread-local
LTS has a branch for every value of each read, the out-of-order
construction essentially builds in the assumption that there are no
inter-thread optimisations. This is to some extent reasonable for C,
and perhaps also Java, as compilers typically work per compilation
unit (though link-time optimisation is becoming more feasible). It
is in contrast with some of the examples considered in the JMM
design. But if any inter-thread analysis (such as alias analysis) de-
termines that a variable can only contain certain values, then that
might enable optimisations that the out-of-order construction does
not permit. Identifying a value restriction amounts to discarding

some “impossible” branches of the LTS, but this creates more valid
frontiers, and hence permits more out-of-order behaviour (which
can even invalidate the analysis). For example, in the LTS below,
if, by looking at all the writes to x by all the threads, the compiler
determines that x can only contain values 0 and 1, then it can dis-
card the branch where the value 2 is read, which makes {b, d} into
a frontier, which allows the write to y to be executed before the read
from x:

a:R x=0 c:R x=1 e:R x=2

 b:W y=1 d:W y=1 f:W y=0

a:R x=0 c:R x=1 e:R x=2

 b:W y=1 d:W y=1 f:W y=0

Moreover, as the value restrictions can vary during program exe-
cution, these inter-thread optimisations cannot be separated to an
initial phase, but have to be intertwined with the other optimisa-
tions. As a result, the memory model would have to be defined
recursively in yet another way.

Thread-local and shared variables The out-of-order semantics
is defined over a calculus that has a syntactic distinction between
thread-local variables and potentially-shared variables. This dis-
tinction is important, as the semantics does not need to consider
interference on thread-local variables, and thread-local optimisa-
tions on them are built into the base LTS construction. This might
be reasonable in some languages but C does not have such a dis-
tinction, and whether a variable behaves thread-locally depends on
the dynamic behaviour of the program.

Relation to the operational memory model of §3 Note that this
model has very different goals and properties to the operational
memory model of §3: that model is equivalent to the axiomatic
memory model of C11, and therefore does exhibit out-of-thin-
air behaviour; whereas the out-of-order operational semantics de-
scribed in this section aims at providing a semantics for relaxed
atomics without exhibiting out-of-thin-air behaviour, and at high-
lighting the problems faced by an operational memory model that
avoids out-of-thin-air behaviour.

7. Conclusion
The C/C++11 concurrency model remains the state of the art for
the semantics of a general-purpose shared-memory concurrent pro-
gramming languages; it is, to the best of our knowledge, sound
with respect to the compiler optimisation behaviour of implemen-
tations [22] (in contrast to the JMM [12, 29]), it is provably com-
pilable to relaxed hardware models [4, 5, 27], and our work here
establishes a machine-checked DRF-SC theorem and an equivalent
operational model. But the thin-air problem shows that it allows
too many behaviours, and we have shown here that that cannot be
solved in a simple per-candidate-execution way, that the problem
is not specific to relaxed atomics, and that, while an operational
solution for those examples is possible, it brings other difficulties.

We conclude by summarising the possible approaches to the se-
mantics of shared-memory concurrent languages that we are aware
of. Most seem problematic:

• One could restrict to sequentially consistent concurrency, ban-
ning low-level atomics, but the basic driver for multicore ma-
chines is performance; it seems unlikely that the cost would be
acceptable (e.g. for OS kernel code). Moreover, as we showed
in §5, in a C-like language with integrated nonatomics and
atomics, the difficulties would remain.

11 2014/7/17

• The semantics could ban all dependency cycles, but (per
Boehm, and as described in §4) that would rule out standard
compiler optimisations.

• Banning just the dependency cycles involving relaxed has the
difficulty that dependency cycles might go via other compila-
tion units that do not use atomics (also per Boehm and in §4).

• One might imagine changing the definition of consistent execu-
tion, but, as we showed in §4, that cannot suffice while admit-
ting the current compiler optimisations.

• One could declare programs with executions containing cycles
(or perhaps un-annotated cycles) in the dependency and reads-
from relations to have undefined behaviour, as proposed by
Batty and Sewell, effectively making it the programmer’s re-
sponsibility to avoid them, but that seems unlikely to be work-
able in practice.

• One could prevent all load-to-store reordering, as proposed by
Boehm and Demsky [8, 10], but that comes with a potentially
unpleasant performance cost that is difficult to justify for a
general-purpose language that aims to support systems code
(moreover, the §5 examples show that additional cost would be
needed).

• One could try to develop an explicit out-of-order semantics
along the lines of §6 or speculation calculi [11, 19], but irrel-
evant read elimination, inter-thread optimisation, and the ap-
parent need to distinguish thread-local and shared variables are
all challenging for a C-like language.

• One could lift a hardware memory model such as TSO to the
language level, as in the CompCertTSO verified compiler of
Ševčík et al. [33] and the BMM Java model of Demange et
al. [14], but this both limits compiler optimisations and (for
TSO) requires additional fencing on more relaxed architectures,
so (while interesting in some contexts) this seems unlikely to
be an acceptable general solution. It would be instructive to
characterise more precisely the compiler optimisations that are
not admissible in the ARM and Power architectural models.

The only remaining alternative that we see, short of regarding
the implementations as defining the semantics, is to enumerate
the abstract compiler optimisations, as used by Ševčík [32] and
Morisset et al. [22], and base the semantics on the transitive closure
of what they allow. This is broadly along the lines of the proposal
by Saraswat et al. [26]. That transitive closure will be awkward to
work with, but one might show that the current C/C++11 model is
sound above that, generalising results of [22, 32].

Disturbingly, 40+ years after the first relaxed-memory hardware
was introduced (the IBM 370/158MP), the field still does not have
a credible proposal for the shared-memory concurrency semantics
of any general-purpose high-level language that includes high-
performance concurrency primitives.

Acknowledgements We would like to thank Hans Boehm,
Jaroslav Ševčík, Ali Sezgin, Viktor Vafeiadis, and Francesco Zappa
Nardelli for discussions about parts of this work. We acknowledge
funding from EPSRC grants EP/H005633 (Leadership Fellowship,
Sewell) and EP/K008528 (REMS Programme Grant), and a Gates
Cambridge Scholarship (Nienhuis).

References
[1] Programming Languages — C. 2011. ISO/IEC 9899:2011. http:

//www.open-std.org/jtc1/sc22/wg14/docs/n1539.pdf.
[2] S. V. Adve and M. D. Hill. Weak ordering — a new definition. In

Proc. ISCA, 1990.
[3] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++

concurrency. In Proc. POPL, 2013.

[4] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying
and compiling C/C++ concurrency: from C++11 to POWER. In
Proc. POPL, 2012.

[5] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing
C++ concurrency. In Proc. POPL, 2011.

[6] P. Becker, editor. Programming Languages — C++. 2011. ISO/IEC
14882:2011. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2011/n3242.pdf.

[7] H.-J. Boehm. Memory model rationales. http://open-std.org/
jtc1/sc22/wg21/docs/papers/2007/n2176.html, March 2007.

[8] H.-J. Boehm. N3786: Prohibiting "out of thin air" results
in C++14. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2013/n3786.htm, September 2013.

[9] H.-J. Boehm and S.V. Adve. Foundations of the C++ concurrency
memory model. In Proc. PLDI, 2008.

[10] H.-J. Boehm and B. Demsky. Outlawing ghosts: Avoiding out-of-thin-
air results. In Proc. MSPC, 2014.

[11] G. Boudol and G. Petri. A theory of speculative computation. In Proc.
ESOP, 2010.

[12] P. Cenciarelli, A. Knapp, and E. Sibilio. The Java memory model:
Operationally, denotationally, axiomatically. In Proc. ESOP, 2007.

[13] L. Crowl. Recent concurrency issue resolutions. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3278.htm.

[14] D. Demange, V. Laporte, L. Zhao, S. Jagannathan, D. Pichardie, and
J. Vitek. Plan B: A buffered memory model for Java. In POPL, 2013.

[15] K. Gharachorloo, S. V. Adve, A. Gupta, J. L. Hennessy, and M. D.
Hill. Programming for different memory consistency models. Journal
of Parallel and Distributed Computing, 15:399–407, 1992.

[16] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.
Addison Wesley, 1996.

[17] The HOL 4 system. http://hol.sourceforge.net/.
[18] Isabelle. http://isabelle.in.tum.de/.
[19] R. Jagadeesan, C. Pitcher, and J. Riely. Generative operational seman-

tics for relaxed memory models. In Proc. ESOP, 2010.
[20] J. Manson, W. Pugh, and S.V. Adve. The Java memory model. In

Proc. POPL, 2005.
[21] A. Meredith. C++ standard library defect report list. http://www.

open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html. n3822.
[22] R. Morisset, P. Pawan, and F. Zappa Nardelli. Compiler testing via a

theory of sound optimisations in the C11/C++11 memory model. In
Proc. PLDI, 2013.

[23] D. P. Mulligan, S. Owens, K. E. Gray, T. Ridge, and P. Sewell. Lem:
reusable engineering of real-world semantics. In Proc. ICFP, 2014.

[24] B. Norris and B. Demsky. CDSchecker: Checking concurrent data
structures written with C/C++ atomics. In Proc. OOPSLA, 2013.

[25] W. Pugh. Fixing the Java memory model. In Proc. ACM 1999
Conference on Java Grande, 1999.

[26] V. A. Saraswat, R. Jagadeesan, M. M. Michael, and C. von Praun. A
theory of memory models. In Proc. PPOPP, 2007.

[27] S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell, L. Maranget,
J. Alglave, and D. Williams. Synchronising C/C++ and POWER. In
Proc. PLDI, 2012.

[28] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Under-
standing POWER multiprocessors. In Proc. PLDI, 2011.

[29] J. Ševčík and D. Aspinall. On validity of program transformations in
the Java memory model. In ECOOP, 2008.

[30] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating weak memory
with ghosts, protocols, and separation. In Proc. OOPSLA, 2014.

[31] V. Vafeiadis and C. Narayan. Relaxed separation logic: A program
logic for C11 concurrency. In Proc. OOPSLA, 2013.

[32] J. Ševčík. Safe optimisations for shared-memory concurrent programs.
In Proc. PLDI, 2011.

[33] J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and
P. Sewell. CompCertTSO: A verified compiler for relaxed-memory
concurrency. J. ACM, 60(3):22:1–22:50, June 2013.

12 2014/7/17

