
Document Number: N4025
Date: 2014-05-23

Reply to: jeff-isocpp@caffeinated.me.uk,
richard@metafoo.co.uk

Exploring classes of runtime size

Jeff Snyder and Richard Smith

May 23, 2014

1 Introduction

During the Chicago meeting, several options were discussed for Arrays of Runtime Bound. These alternatives
were summarised by Bjarne Stroustrup in N3810 [1]. One of the alternatives discussed, dubbed Array Con-
structors, was to introduce a core language feature that would allow types such as dynarray and bs array to be
written without special compiler support.

At the Issaquah meeting, J. Daniel Garcia proposed such a language feature, called Run-time bound array
data members, in N3875 [2]. There was much discussion of this proposal, and of runtime-size types in general,
with an overall feeling that it was worth pursuing a core language feature in this area.

This paper proposes an alternative way of allowing classes with runtime-bound array data members (aka
runtime-size types) in C++ that aims to avoid various issues that were discussed at the Issaquah meeting, as
well as exploring the impact that adding runtime-size types would have on the rest of the C++ language.

2 Problems addressed

2.1 Overview

With the introduction of C99 [3], the C language gained Variable-Length Arrays (VLAs) of automatic storage
duration. These were not adopted into C++11 [4], in part due to concerns over the impact on C++’s type
system.

Several attempts have been made to introduce a similar facility in the C++ programming language. A
solution was incorporated in the working draft of C++14 in the Bristol meeting (N3691 [5]), along with a
corresponding standard library container called dynarray (N3532 [6]), but both were then removed from the
working draft at the Chicago meeting (N3797 [7]).

At the Issaquah meeting the committee discussed N3875, which proposed a core language feature that
required constructors of runtime-size types to be inline. N3875 also acknowledged that this may be seen as very
restrictive and proposed a second syntax (sized constructors) which included the computation of array data
member bounds and initialization of runtime-size subobjects in the constructor’s declaration.

Several questions were raised during the discussion of runtime-size types in Issaquah, including:

• Whether requiring constructors to be inline was acceptable or not

• Whether having the implementation resort to heap allocation in some scenarios is acceptable and/or
desirable

• Whether being able to place runtime-size types on the heap is necessary, or whether allowing their use
only by variables of automatic storage duration is sufficient

1

2.2 Hard abstraction boundaries

“At present, programmers can allocate a substructure behind a hard (i.e. non-inline or externally
compiled) abstraction boundary. Proposals must be clear about what happens at hard boundaries, and
why that does or does not make programming difficult.” —Lawrence Crowl [8]

Today’s C++ ABIs make the assumption that the size of a class is fixed, in that the size of a class is
baked into all code that creates an object of that class type. For example, when a call to ‘new T ’ is compiled,
sizeof(T) will be determined by the compiler and a call to malloc will be emitted with the result of sizeof(T) as
its argument. No part of determining the class’ size is left until runtime.

This style of ABI cannot work for runtime-size types unless the implementations of the constructors for
those types are available when creating new objects, i.e. unless those constructors are inline. To avoid such a
restriction on constructors of runtime-size classes, we need a 3-phase approach to creating objects of runtime-size
type:

1. Determine how much space the object requires, possibly by making a function call into the translation
unit where the constructor is defined

2. Allocate memory

3. Call the constructor

This proposal aims to give the compiler enough information to emit a minimal size-function alongside
each constructor of each runtime-size type. This would make such an ABI possible, allowing all of the size-
determination and construction code to reside behind a hard abstraction boundary.

We believe that this approach minimises the difference between fixed-size and runtime-size types for pro-
grammers, making programming with runtime-size types as easy as can reasonably be expected.

2.3 Double-evaluation of expressions not used in size computation

Given the three-phase approach to object creation outlined above, we have to consider what expressions may
end up being compiled into the size-function as well the constructor, and may therefore be evaluated twice
during object creation instead of once.

Ideally, only expressions that are used in the computation of the object size will be evaluated when the
size-function is invoked. This would give users the same behaviour they see today for expressions that are not
used in size computation, i.e. they are only evaluated once.

The sized-constructors proposal does not distinguish constructor parameters that are required for size com-
putation from those that are not. This forces the parameter list of the size-function to be the same as the
parameter list of the full constructor, which in turn forces the evaluation of expressions used as arguments for
those parameters during size computation.

// N3875 sized constructors syntax

struct A {
A(int n, double d) sizeof(v[n]);
// ...
};

struct B {
// do the side effects of get d() occur before or after the memory allocation?
// is an implementation allowed to evaluate get d() twice?
B() sizeof(a{4, get d ()});
A a;
};

2

3 Design Goals

This proposal aims to maximise integration of runtime-size types with existing language features, and maximise
the amount of control the user has over the storage of array bounds and offset computations.

The major differences between this and the sized-constructors proposal from N3875 are as follows:

• Members used to store the bound of a variable-length array data member must be explicitly declared

• Constructor parameters that are involved in size computation must be marked with extra syntax

• No part of the constructors for runtime-size types need to be inline

• Objects of runtime-size type are not limited to having automatic storage duration

• The operator sizeof can be applied to variables of runtime-size type, and can be used to determine how
large an object would be for a specific set of constructor arguments

• A proposal for how we could support unions and placement new with runtime-size types has been included

This proposal does not include any way to have a trailing array of unspecified bound in a struct, c.f. C99
flexible array members. We consider this to be a distinct feature, which is not mutually exclusive with the
feature proposed here.

4 Proposal

4.1 Syntax

We describe a possible syntax below in order to facilitate discussion; we do not wish to spend significant time
on syntax discussions at this early stage.

4.2 Declaration of array data members of runtime bound

Declaring a runtime-bound array data member differs from declaring a normal array data member only in that
the bound of the array is not a constant expression. Instead, a bound expression must be provided. The content
of bound expressions is subject to some restrictions.

struct A {
// ... constructors ...
double d array[bound expression];

};

A member variable that is used to store the bound of a runtime-bound array data member (or other
information from which the bound can be derived) is called an array bound data member, and must be marked
with the sizeof keyword. Typically, a bound expression will just reference an array bound data member:

struct B {
// ... constructors ...
const int d array bound sizeof;
double d array[d array bound];

};

Bound-expressions and array bound data members are subject to the following restrictions:

• Array bound data members must be of const qualified type or of reference type

• The values of data members other than array bound data members may not be used in a bound expression

3

• Member functions of the containing object may not be used in a bound expression

• If the bound expression for a runtime-bound array data member M1 uses the value of an array bound
data member M2 from the same complete object, and &M2 > &M1, then the program is ill-formed, no
diagnostic required

• If the bound expression for a runtime-bound array data member M1 refers (possibly indirectly, through
the initializer of an array bound data member) to the address of a subobject M2 of the same complete
object, and &M2 > &M1, then the program is ill-formed, no diagnostic required

• After all array bound data members referenced in a bound expression have been initialized, and before any
of those array bound data members have been destroyed, the result of evaluating that bound expression
must not change, otherwise behaviour is undefined

• If a bound expression is evaluated for the purposes of size computation “as-if” all referenced array bound
data members had been initialized to the values that they will be initialized to during construction, then
the result of that evaluation must be the same as the result of evaluating the bound expression during the
lifetime of the object, otherwise behaviour is undefined

• Whilst array bound data members and bound expressions may make use of the ‘this’ pointer and the
addresses of some data members, if the bound of any runtime-bound array data member depends upon
the absolute value of ‘this’ (i.e. constructing two objects of the same type with the same arguments
at two different addresses can produce two objects with different bounds for one or more of the type’s
runtime-bound array data members), then the program is ill-formed, no diagnostic required

struct C {
// ... constructors ...
const int a;
int b sizeof; // Error, ‘b’ is ‘ sizeof ’ but not const
const int c sizeof;
double aa[a]; // Error, ‘a’ is not declared with ‘ sizeof ’
double cc[c]; // OK
double dd[d]; // Error, &d > &dd
const int d sizeof;

};

It may be possible to have no extra syntax on array bound data members and rely on compilers inferring
that particular members are array bound data members because they are referenced in bound expressions. We
have kept the extra syntax in this proposal for clarity.

4.3 Declaration and definition of constructors

To allow the compiler to generate a size-function that performs the minimal computation necessary to determine
a not-yet-created object’s size, we propose that constructor parameters that are necessary to determine how
large the object will be are marked with the sizeof keyword. We will refer to such parameters as array bound
constructor parameters.

Array bound data members will typically be initialized from array bound constructor parameters:

struct A {
A(int n sizeof);
const int a sizeof;
double array[a];

};

4

A::A(int n sizeof) :
a{n}

{}

The member-initializer for an array bound data member differs from a normal member initializer in the
following ways:

• The values of constructor parameters that are not array bound constructor parameters may not be used

• The values of data members that are not array bound data members may not be used

• Member functions of the object being initialized may not be used

• If the member initializer for an array bound data member M1 uses the value of an array bound data
member M2 from the same complete object, and &M2 > &M1, then the program is ill-formed, no
diagnostic required

• If the member initializer for an array bound data member M1 refers (possibly indirectly, through the
initializer of another array bound data member) to the address of a subobject M2 of the same complete
object, and &M2 > &M1, then the program is ill-formed, no diagnostic required

• The compiler may evaluate member-initializers for array bound data members an unspecified number of
times, and may do so in any phase of object creation

• If a member-initializer expression for an array bound data member is evaluated more than once during
the creation of an object, and the result of evaluating that expression is not the same all evaluations,
behaviour is undefined

4.4 Composition of runtime-size types

Declaring a data member of runtime-size type is syntactically no different from declaring a normal data member.
If a class contains a data member of runtime-size type, then that class also has runtime size. Member-initializers
for data members of runtime-size are subject to the following restrictions:

• Expressions used as arguments to array bound constructor parameters are subject to the same restrictions
as expressions that are used as member-initializers for array bound data members

5 Rationale

In order to support copy-construction, move-construction and destruction of runtime-size types, it is necessary
for the bound of each runtime-bound array data member to be stored in the object somehow. One approach to
this is for the compiler to introduce a hidden member variable for each runtime-bound array, storing either the
bound of the array, its total size, or a pointer to the end of the array. Each of these has its own benefits and
drawbacks. This proposal differs from the “implicit variable” approach in two key ways:

• Making bound members explicit gives the user control over the size, position and alignment of the bound
member, instead of having a certain size/position/alignment predetermined by the ABI

• Allowing the bound of a runtime-bound array data member to be specified as an expression allows the
user to control whether the bound variable stores the actual bound of the array, or some other information
that can be used to derive the bound.

The following examples illustrate the flexibility that this approach affords us. A, B, C and D have one
runtime-bound array data member each, but use different ways of storing the bound of the array. E and F
explore some of the possibilities when multiple runtime-bound array data members are present.

5

struct A {
A(unsigned int n sizeof) : a{n} {}
const unsigned int a sizeof; // a stores the bound of aa
double aa[a];

};

struct B {
B(unsigned int n sizeof) : b{n∗sizeof(double)} {}
const size t b sizeof; // b stores the total size of bb
double bb[b/sizeof(double)];

};

struct C {
C(unsigned int n sizeof) : c{&cc[0]+n} {}
double ∗const c sizeof; // c stores a pointer to end(cc)
double cc[c − &cc[0]];

};

struct D {
D(unsigned int n sizeof) : d{reinterpret cast<char∗>(&dd[0]+n)−reinterpret cast<char∗>(this)} {}
const size t d sizeof; // d stores the offset of end(dd) from ‘this ’
double dd[(d−(reinterpret cast<char∗>(&dd[0])−reinterpret cast<char∗>(this)))/sizeof(double)];

};
Note that the constructor of D is only valid because there are no runtime-size class members or runtime-bound
array data members whose bound expressions reference not-yet-initialized array bound data members between
the declarations of d and dd.

struct E {
E(unsigned int n sizeof) : e{n} {}
const unsigned int e sizeof; // one bound member is used for two arrays
float ee1[e];
double ee2[2∗e];

};

struct F {
F(unsigned int n1 sizeof, unsigned int n2 sizeof) :

f1{n1},
f2{reinterpret cast<char∗>(&ff2[0]+n2)−reinterpret cast<char∗>(this)} {}

const unsigned int f1 sizeof;
const size t f2 sizeof; // stores the offset of the end of ff2 from ‘ this ’
float ff1 [f1];
double ff2[(f2−(reinterpret cast<char∗>(&ff2[0])−reinterpret cast<char∗>(this)))/sizeof(double)];
// it is necessary to load both f1 and f2 to determine the bound of ff2
char f3; // but it is not necessary to load f1 to determine the offset of f3 from ‘ this ’

};

6 Impact on exiting language features

6.1 sizeof

When used on a runtime-size type, use of the sizeof operator is ill-formed. When used on an object of runtime-
size type, the sizeof operator will return the size of that object. Example:

6

struct A {
A(int n sizeof) : a{n} {}
const int a sizeof;
uint16 t aa[a];

};

void f() {
A a{42};
sizeof(A); // ill−formed
sizeof(a); // == sizeof(const int) + 42 ∗ sizeof(uint16 t) == 4 + 84 = 88

}

Additionally, in order to facilitate the use of placement new with runtime-size types, sizeof can be applied
to an expression that is the direct construction of an object of runtime-size type (see 6.7 for details).

6.2 Default construction and destruction

Given that the bound of all runtime-bound array data members can be computed by the implementation, we
see no problems with implementing default construction and destruction of runtime-size types.

Note that it is possible to define a class where the value given to an array bound data member by the
defaulted default constructor causes a bound expression to return a nonsensical value—i.e. some value that is
either negative or causes implementation limits to be exceeded. The consequences of defining and using such a
class would be the same as the consequences of calling operator new[] with a nonsensical bound.

6.3 Copy construction and move construction

We see no problems with the generation of implicit copy and move constructors for runtime-size types. However,
it is possible to define a class with a runtime-bound array data member where if all array bound data members
are copied into the new object, the runtime-bound array data member’s bound expression would not yield the
same value for the new object as it did for the original. For example, consider an array bound data member
which holds a pointer to the end of the array (c.f. struct C in section 5).

We have two main options for handling this—either we define a subset of the possible bound expressions for
which we can guarantee that a simple copy/move of the array bound data members is correct, or we accept that
the defaulted copy/move constructors can produce an inconsistent object and thus invoke undefined behaviour.

Another concern is that these generated copy/move constructors would perform an element-by-element
copy/move of some number of array elements determined at runtime, and this is an operation which is impossible
to write explicitly.

This is already an issue for array data members, although it is possible to work around it when the bound
is fixed:

struct B {
int bb [4];

// B(const B& o) : bb{o.bb} {} // invalid, cannot initialize from an array
B(const B& o) : bb{o.bb[0], o.bb [1], o.bb [2], o.bb [3]} {} // OK, but ugly

};

For classes where a simple copy/move of the array bound data member(s) is not sufficient (e.g. struct C
in section 5), this is a significant problem. Since the copy/move constructor must be written out explicitly in
order to initialize the array bound data member(s) correctly, it is impossible to take advantage of the defaulted
copy/move constructor. If the array element type is move-only, then this makes it impossible to implement the
move constructor for classes that use a bound expression like the one used by struct C in section 5.

In order to resolve this, we may need to look at supporting copy/move initialization of array types in C++.
However, that is beyond the scope of this proposal.

7

6.4 Copy assignment and move assignment

The issues that affect copy/move construction of runtime-size types also affect copy/move assignment. In
addition to those issues, we must must consider what happens when the bounds of the runtime-bound array
data members in the objects being assigned from/to differ. If we choose to specify a compiler-generated copy
assignment operator, then behaviour would be undefined if they differ.

6.5 Pointer arithmetic

There will be no built-in arithmetic operators for pointers to runtime-size types, except for unary plus. Code
that attempts to perform arithmetic on such pointers is ill-formed. The exception for unary plus is made because
it is implementable (unlike other pointer arithmetic operations on runtime-size types) and we see no reason to
disallow it.

6.6 Unions

To allow the use of runtime-size classes and arrays of runtime bound in unions, we also need to allow runtime-
size union types. This opens up some difficult questions such as “what happens when the active member of a
runtime-size union is changed?”.

It is tempting to simply disallow runtime-size unions. However, dynarray, one of the motivating use cases for
this core language feature, is a container whose obvious implementation (in terms of this proposal) is a union
of an array of runtime bound and a pointer to a heap-allocated array. Therefore, we propose that unions are
supported to the extent necessary for this use case.

Specifically, we propose that unions containing one or more runtime-size members differ from normal unions
as follows:

• Runtime-size union constructors must initialize a member

• The size of a runtime-size union is the maximum of the runtime size of the member that is initialized at
construction and the size of the largest non-runtime-size member

• The active member of a runtime-size union may not be changed

6.7 Placement new

Placement new should work for runtime-size types as it does for other types, since the onus is on the caller of
placement new to provide enough memory to construct the object in.

Determining how much memory will be used by placement new is more difficult for runtime-size types than
fixed-size types. In order to make use of placement new easier, we need to offer some way to efficiently determine
the size of an object before constructing it. In practice, this means exposing a way of calling the size-function
for a constructor without actually creating a new object.

One approach to this is to specify that sizeof can be applied to an expression that is the direct construction
of an object of runtime-size type. Use of sizeof in this manner would result in a call to the appropriate size-
function, and the value returned by that call would be returned by sizeof. In this context, expressions used
as arguments to array bound constructor parameters are evaluated, even though they are subexpressions of an
operand of sizeof. Expressions used as arguments to other constructor parameters are unevaluated.

struct C {
C(int n sizeof) : c{n} {}
const int c sizeof;
uint16 t cc [c];

};

void f() {

8

auto sz = sizeof(C{3}); // does not actually construct a temporary of type
// C, instead only calls the size function
// corresponding to C(int)

}

6.8 Global variables

We believe that global objects of runtime-size types can be supported, but this area needs more analysis. We
welcome feedback from implementors regarding this.

6.9 Arrays

Arrays of objects of runtime-size type are ill-formed.

6.10 Templates

There are no special interactions between templates themselves and runtime-size types that need consideration,
as far as we are aware.

However, certain constructs that are currently valid for all types will become ill-formed with the introduction
of runtime-size types (c.f. sizeof, pointer arithmetic, arrays). As Jens Maurer points out [9], template authors
may wish to enable, disable or specialise their templates for runtime-size types, and we should provide a type
trait to support this. Such a trait could be implemented without special compiler support via SFINAE on
sizeof.

Acknowledgements

This proposal evolved from the sized constructors proposal by J. Daniel Garcia and Xin Li, and was influenced
by conversations with Daveed Vandevoorde as well as email discussions with Jens Maurer and Lawrence Crowl.

References

[1] Bjarne Stroustrup. Alternatives for Array Extensions. Working paper N3810, ISO/IEC JTC1/SC22/WG21,
October 2013.

[2] J. Daniel Garcia and Xin Li. Run-time bound array data members. Working paper N3875, ISO/IEC,
January 2014.

[3] ISO/IEC JTC1/SC22/WG14. Programming Languages – C. ISO Standard ISO/IEC 9899:1999, ISO/IEC,
December 1999.

[4] ISO/IEC JTC1/SC22/WG21. Programming Languages – C++. ISO Standard ISO/IEC 14882:2011,
ISO/IEC, November 2011.

[5] ISO C++ Standards Committee. Working Draft, Standard for Programming Language C++. Working
Draft N3691, ISO/IEC JTC1/SC22/WG21, July 2013.

[6] Lawrence Crowl and Matt Austern. C++ Dynamic Arrays. Working paper N3662, ISO/IEC
JTC1/SC22/WG21, April 2013.

[7] ISO C++ Standards Committee. Working Draft, Standard for Programming Language C++. Working
Draft N3797, ISO/IEC JTC1/SC22/WG21, October 2013.

9

[8] Lawrence Crowl. [c++std-ext-14769] Re: Runtime-sized types (dynarray / bs array revisited), April 2014.
http://accu.org/cgi-bin/wg21/message?wg=ext&msg=14769.

[9] Jens Maurer. [c++std-ext-14818] Re: Runtime-sized types (dynarray / bs array revisited), April 2014.
http://accu.org/cgi-bin/wg21/message?wg=ext&msg=14818.

10

