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Revision History This document supersedes N3708. A new kind of coroutines - std::symmetric_coroutine<T> -
is introduced and additional examples (like recursive SAX parsing) are added.
A section explains the benfits of using coroutines in the context of event-based asynchronous model.

Introduction
This proposal suggests adding two first-class continuations to the C++ standard library:
std::asymmetric_coroutine<T> and std::symmetric_coroutine<T> .

In computer science routines are defined as a sequence of operations. The execution of routines forms a parent-
child relationship and the child terminates always before the parent. Coroutines (the term was introduced by Melvin
Conway1) are a generalization of routines (Donald Knuth2). The principal difference between coroutines and routines
is that a coroutine enables explicit suspend and resume of its progress via additional operations by preserving execution
state and thus provides an enhanced control flow (maintaining the execution context).

characteristics: Characteristics3 of a coroutine are:

• values of local data persist between successive calls (context switches)

• execution is suspended as control leaves coroutine and resumed at certain time later

• symmetric or asymmetric control-transfer mechanism; see below

• first-class object (can be passed as argument, returned by procedures, stored in a data structure to be used later
or freely manipulated by the developer)

• stackful or stackless

Several programming languages adopted particular features (C# yield, Python generators, ...).

BCPL Erlang Go Lua PHP Ruby

C# F# Haskell Modula-2 Prolog Sather

D Factor Icon Perl Python Scheme

Table 1: some programming languages with native support of coroutines17

Coroutines are useful in simulation, artificial intelligence, concurrent programming, text processing and data manipu-
lation,3 supporting the implementation of components such as cooperative tasks (fibers), iterators, generators, infinite
lists, pipes etc.
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execution-transfer mechanism: Two categories of coroutines exist: symmetric and asymmetric coroutines.

An asymmetric coroutine knows its invoker, using a special operation to implicitly yield control specifically to its
invoker. By contrast, all symmetric coroutines are equivalent; one symmetric coroutine may pass control to any other
symmetric coroutine. Because of this, a symmetric coroutine must specify the coroutine to which it intends to yield
control.

stackfulness: In contrast to a stackless coroutine a stackful coroutine can be suspended from within a nested
stackframe. The execution resumes at the exact same point in the code where it was suspended before.
With a stackless coroutine, only the top-level routine may be suspended. Any routine called by that top-level routine
may not itself suspend. This prohibits providing suspend/resume operations in routines within a general-purpose
library.

first-class continuation: A first-class continuation can be passed as an argument, returned by a function and
stored in a data structure to be used later.
In some implementations (for instance C# yield) the continuation can not be directly accessed or directly manipulated.

Without stackfulness and first-class semantics some useful execution control flows cannot be supported (for instance
cooperative multitasking or checkpointing).

What coroutines actually do: Coroutines are generalized routines.

A routine has a parent-child relationship to its subroutines.
The routine processes (pushes to stack or stores in registers) the arguments which have to be passed as parameters
to the subroutine as it is defined in the calling convention11 of the underlying ABI10. A branch-and-link instruction
transfers execution control to the code of the subroutine.
When the subroutine is entered the prolog creates a new stack frame (adjusting the stack-pointer and/or frame-pointer),
preserves some non-volatile general purpose registers (as defined by the calling convention11) and return address. Space
for local variables is allocated by modifying the stack-pointer.
When a subroutine finishes, it runs the epilog which undoes the steps from the prolog, e.g. it restores preserved registers,
removes the stack-frame (stack-pointer is restored to address before the subroutine was entered), and branches to the
instruction at the return address.
A return value might be returned in a register defined by the calling convention11.

When a coroutine switches execution context it executes the same as ordinary routines: saving and restoring some
CPU registers. The main difference is that each coroutine owns its own stack, that is, when a coroutine is suspended
its stackframe is not removed. This fact is the reason why a coroutine allows you to resume from the suspend point.
A coroutine contains a control-block which is used as a storage for the stack-pointer, instruction-pointer and some
general purpose registers.
Coroutines manipulate those registers directly (by calling suspend/resume).
Appendix A. jump-operation for SYSV ABI on x86_64 shows for x86_64/SYSV ABI how a jump-operation could be
implemented.
An ordinary routine can be regarded as a degenerate coroutine that does not suspend and runs straight to its end
(finishes execution).

In fact entering a coroutine is equivalent to entering an ordinary routine, but it also supports suspend and resume.
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Motivation
This proposal refers to boost.coroutine8 as reference implementation - providing a test suite and examples (some are
described in this section).

In order to support a broad range of execution control behaviour the coroutine types of std::symmetric_coroutine<T>
and std::asymmetric_coroutine<T> can be used to escape-and-reenter loops, to escape-and-reenter recursive compu-
tations and for cooperative multitasking helping to solve problems in a much simpler and more elegant way than with
only a single flow of control.

event-driven model

The event-driven model is a programming paradigm where the flow of a program is determined by events. The events
are generated by multiple independent sources and an event-dispatcher, waiting on all external sources, triggers callback
functions (event-handlers) whenever one of those events is detected (event-loop). The application is divided into event
selection (detection) and event handling.

The resulting applications are highly scalable, flexible, have high responsiveness and the components are loosely coupled.
This makes the event-driven model suitable for user interface applications, rule-based productions systems or applica-
tions dealing with asynchronous I/O (for instance network servers).

event-based asynchronous paradigm

A classic synchronous console program issues an I/O request (e.g. for user input or filesystem data) and blocks until
the request is complete.
In contrast, an asynchronous I/O function initiates the physical operation but immediately returns to its caller, even
though the operation is not yet complete. A program written to leverage this functionality does not block: it can
proceed with other work (including other I/O requests in parallel) while the original operation is still pending. When
the operation completes, the program is notified. Because asynchronous applications spend less overall time waiting
for operations, they can outperform synchronous programs.
Events are one of the paradigms for asynchronous execution, but not all asynchronous systems use events. Although
asynchronous programming can be done using threads, they come with their own costs:

• hard to program (traps for the unwary)

• memory requirements are high

• large overhead with creation and maintenance of thread state

• expensive context switching between threads

The event-based asynchronous model avoids those issues:

• simpler because of the single stream of instructions

• much less expensive context switches

3



The downside of this paradigm consists in a sub-optimal program structure. An event-driven program is required to
split its code into multiple small callback functions, i.e. the code is organized in a sequence of small steps that execute
intermittently. An algorithm that would usually be expressed as a hierarchy of functions and loops must be transformed
into callbacks. The complete state has to be stored into a data structure while the control flow returns to the event-loop.
As a consequence, event-driven applications are often tedious and confusing to write. Each callback introduces a new
scope, error callback etc. The sequential nature of the algorithm is split into multiple callstacks, making the application
hard to debug. Exception handlers are restricted to local handlers: it is impossible to wrap a sequence of events into
a single try-catch block. The use of local variables, while/for loops, recursions etc. together with the event-loop is not
possible. The code becomes less expressive.

In the past, code using asio’s asynchronous-operations was convoluted by callback functions.

class session{
public:

session(boost ::asio:: io_service& io_service) :
socket_(io_service) // construct a TCP -socket from io_service

{}

tcp:: socket& socket (){
return socket_;

}

void start (){
// initiate asynchronous read; handle_read () is callback -function
socket_.async_read_some(boost ::asio:: buffer(data_ ,max_length),

boost::bind(& session :: handle_read ,this ,
boost::asio:: placeholders ::error ,
boost::asio:: placeholders :: bytes_transferred ));

}

private:
void handle_read(const boost:: system :: error_code& error ,

size_t bytes_transferred ){
if (!error)

// initiate asynchronous write; handle_write () is callback -function
boost::asio:: async_write(socket_ ,

boost::asio:: buffer(data_ ,bytes_transferred),
boost::bind(& session :: handle_write ,this ,

boost::asio:: placeholders :: error ));
else

delete this;
}

void handle_write(const boost:: system :: error_code& error ){
if (!error)

// initiate asynchronous read; handle_read () is callback -function
socket_.async_read_some(boost ::asio:: buffer(data_ ,max_length),

boost::bind(& session :: handle_read ,this ,
boost::asio:: placeholders ::error ,
boost::asio:: placeholders :: bytes_transferred ));

else
delete this;

}

boost::asio::ip::tcp:: socket socket_;
enum { max_length =1024 };
char data_[max_length ];

};

In this example, a simple echo server, the logic is split into three member functions - local state (such as data buffer)
is moved to member variables.

boost.asio6 provides with its new asynchronous-result feature a new framework combining event-driven model and
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coroutines, hiding the complexity of event-driven programming and permitting the style of classic sequential code.
The application is not required to pass callback functions to asynchronous operations and local state is kept as local
variables. Therefore the code is much easier to read and understand. Proposal ’N3964: Library Foundations for Asyn-
chronous Operations’5 describes the usage of coroutines in the context of asynchronous operations.
yield_context18 internally uses boost.coroutine8:

void session(boost::asio:: io_service& io_service ,
boost::asio::ip::tcp:: socket& socket ){

try{
for (;;){

// local data -buffer
char data[max_length ];

boost:: system :: error_code ec;

// read asynchronous data from socket
// execution context will be suspended until
// some bytes are read from socket
std:: size_t length=socket.async_read_some(

boost::asio:: buffer(data),
boost::asio::yield[ec]);

if (ec==boost::asio::error ::eof)
break; // connection closed cleanly by peer

else if(ec)
throw boost :: system :: system_error(ec); //some other error

// write some bytes asynchronously
boost::asio:: async_write(

socket ,
boost::asio:: buffer(data ,length),
boost::asio::yield[ec]);

if (ec==boost::asio::error ::eof)
break; // connection closed cleanly by peer

else if(ec)
throw boost :: system :: system_error(ec); //some other error

}
} catch(std:: exception const& e){

std::cerr <<"Exception:␣"<<e.what()<<"\n";
}

}

In contrast to the previous example this one gives the impression of sequential code and local data while using asyn-
chronous operations async_read and async_write . The algorithm is implemented in one function and error handling
is done by one try-catch block.

recursive SAX parsing

To someone who knows SAX, the phrase "recursive SAX parsing" might sound nonsensical. You get callbacks from
SAX; you have to manage the element stack yourself. If you want recursive XML processing, you must first read the
entire DOM into memory, then walk the tree.
But coroutines let you invert the flow of control so you can ask for SAX events. Once you can do that, you can process
them recursively.

// Represent a subset of interesting SAX events
struct BaseEvent{

BaseEvent(const BaseEvent &)= delete;
BaseEvent& operator =( const BaseEvent &)= delete;

};

// End of document or element
struct CloseEvent: public BaseEvent{

// CloseEvent binds (without copying) the TagType reference.
CloseEvent(const xml::sax:: Parser :: TagType& name):
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mName(name)
{}

const xml::sax:: Parser :: TagType& mName;
};

// Start of document or element
struct OpenEvent: public CloseEvent{

// In addition to CloseEvent ’s TagType , OpenEvent binds AttributeIterator.
OpenEvent(const xml::sax:: Parser :: TagType& name ,

xml::sax:: AttributeIterator& attrs):
CloseEvent(name),
mAttrs(attrs)

{}

xml::sax:: AttributeIterator& mAttrs;
};

// text within an element
struct TextEvent: public BaseEvent{

// TextEvent binds the CharIterator.
TextEvent(xml::sax:: CharIterator& text):

mText(text)
{}

xml::sax:: CharIterator& mText;
};

// The parsing coroutine instantiates BaseEvent subclass instances and
// successively shows them to the main program. It passes a reference so we
// don’t slice the BaseEvent subclass.
typedef std:: asymmetric_coroutine <const BaseEvent&> coro_t;

void parser(coro_t :: push_type& sink ,std:: istream& in){
xml::sax:: Parser xparser;
// startDocument () will send OpenEvent
xparser.startDocument ([& sink](const xml::sax:: Parser :: TagType& name ,

xml::sax:: AttributeIterator& attrs)
{

sink(OpenEvent(name ,attrs ));
});

// startTag () will likewise send OpenEvent
xparser.startTag ([& sink](const xml::sax:: Parser :: TagType& name ,

xml::sax:: AttributeIterator& attrs)
{

sink(OpenEvent(name ,attrs ));
});

// endTag () will send CloseEvent
xparser.endTag ([& sink](const xml::sax:: Parser :: TagType& name)

{
sink(CloseEvent(name ));

});
// endDocument () will likewise send CloseEvent
xparser.endDocument ([& sink](const xml::sax:: Parser :: TagType& name)

{
sink(CloseEvent(name ));

});
// characters () will send TextEvent
xparser.characters ([& sink](xml::sax:: CharIterator& text)

{
sink(TextEvent(text ));

});
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try
{

// parse the document , firing all the above
xparser.parse(in);

}
catch (xml:: Exception e)
{

// xml::sax:: Parser throws xml:: Exception. Helpfully translate the
// name and provide it as the what() string.
throw std:: runtime_error(exception_name(e));

}
}

// Recursively traverse the incoming XML document on the fly , pulling
// BaseEvent& references from ’events ’.
// ’indent ’ illustrates the level of recursion.
// Each time we’re called , we’ve just retrieved an OpenEvent from ’events ’;
// accept that as a param.
// Return the CloseEvent that ends this element.
const CloseEvent& process(coro_t :: pull_type& events ,const OpenEvent& context ,

const std:: string& indent=""){
// Capture OpenEvent ’s tag name: as soon as we advance the parser , the
// TagType& reference bound in this OpenEvent will be invalidated.
xml::sax:: Parser :: TagType tagName = context.mName;
// Since the OpenEvent is still the current value from ’events ’, pass
// control back to ’events ’ until the next event. Of course , each time we
// come back we must check for the end of the results stream.
while(events ()){

// Another event is pending; retrieve it.
const BaseEvent& event=events.get();
const OpenEvent* oe;
const CloseEvent* ce;
const TextEvent* te;
if((oe=dynamic_cast <const OpenEvent *>(&event ))){

// When we see OpenEvent , recursively process it.
process(events ,*oe ,indent+"␣␣␣␣");

}
else if((ce=dynamic_cast <const CloseEvent *>(&event ))){

// When we see CloseEvent , validate its tag name and then return
// it. (This assert is really a check on xml::sax::Parser , since
// it already validates matching open/close tags.)
assert(ce->mName == tagName );
return *ce;

}
else if((te=dynamic_cast <const TextEvent *>(&event ))){

// When we see TextEvent , just report its text , along with
// indentation indicating recursion level.
std::cout <<indent <<"text:␣’"<<te->mText.getText()<<" ’\n";

}
}

}

// pretend we have an XML file of arbitrary size
std:: istringstream in(doc);
try
{

coro_t :: pull_type events(std::bind(parser ,_1,std::ref(in)));
// We fully expect at least ONE event.
assert(events );
// This dynamic_cast <&> is itself an assertion that the first event is an
// OpenEvent.
const OpenEvent& context=dynamic_cast <const OpenEvent &>(events.get ());
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process(events , context );
}
catch (std:: exception& e)
{

std::cout << "Parsing␣error:␣" << e.what() << ’\n’;
}

This problem does not map at all well to communicating between independent threads. It makes no sense for either
side to proceed independently of the other. You want them to pass control back and forth.
The solution involves a small polymorphic class event hierarchy, to which we’re passing references. The actual instances
are temporaries on the coroutine’s stack; the coroutine passes each reference in turn to the main logic. Copying them
as base-class values would slice them.
If we were trying to let the SAX parser proceed independently of the consuming logic, one could imagine allocating
event-subclass instances on the heap, passing them along on a thread-safe queue of pointers. But that doesn’t work
either, because these event classes bind references passed by the SAX parser. The moment the parser moves on, those
references become invalid.
Instead of binding a TagType& reference, we could store a copy of the TagType in CloseEvent . But that doesn’t
solve the whole problem. For attributes, we get an AttributeIterator& ; for text we get a CharIterator& . Storing
a copy of those iterators is pointless: once the parser moves on, those iterators are invalidated. You must process the
attribute iterator (or character iterator) during the SAX callback for that event.
Naturally we could retrieve and store a copy of every attribute and its value; we could store a copy of every chunk of
text. That would effectively be all the text in the document – a heavy price to pay, if the reason we’re using SAX is
concern about fitting the entire DOM into memory.
There’s yet another advantage to using coroutines. This SAX parser throws an exception when parsing fails. With a
coroutine implementation, you need only wrap the calling code in try/catch.
With communicating threads, you would have to arrange to catch the exception and pass along the exception pointer
on the same queue you’re using to deliver the other events. You would then have to rethrow the exception to unwind
the recursive document processing.
The coroutine solution maps very naturally to the problem space.

’same fringe’ problem

The advantages of stackful coroutines can be seen particularly clearly with the use of a recursive function, such as
traversal of trees.
If traversing two different trees in the same deterministic order produces the same list of leaf nodes, then both trees
have the same fringe even if the tree structure is different.

The same fringe problem could be solved using coroutines by iterating over the leaf nodes and comparing this se-
quence via std::equal() . The range of data values is generated by function traverse() which recursively traverses
the tree and passes each node’s data value to its std::asymmetric_coroutine<T>::push_type .
std::asymmetric_coroutine<T>::push_type suspends the recursive computation and transfers the data value to the
main execution context.
std::asymmetric_coroutine<T>::pull_type::iterator , created from std::asymmetric_coroutine<T>::pull_type
, steps over those data values and delivers them to std::equal() for comparison. Each increment of
std::asymmetric_coroutine<T>::pull_type::iterator resumes traverse() . Upon return from
iterator::operator++() , either a new data value is available, or tree traversal is finished (iterator is invalidated).
In effect, the coroutine iterator presents a flattened view of the recursive data structure.

struct node{
typedef std:: shared_ptr <node > ptr_t;

// Each tree node has an optional left subtree ,
// an optional right subtree and a value of its own.
// The value is considered to be between the left
// subtree and the right.
ptr_t left ,right;
std:: string value;

// construct leaf
node(const std:: string& v):

left(),right(),value(v)
{}
// construct nonleaf
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node(ptr_t l,const std:: string& v,ptr_t r):
left(l),right(r),value(v)

{}

static ptr_t create(const std:: string& v){
return ptr_t(new node(v));

}

static ptr_t create(ptr_t l,const std:: string& v,ptr_t r){
return ptr_t(new node(l,v,r));

}
};

node::ptr_t create_left_tree_from(const std:: string& root){
/* --------

root
/ \

b e
/ \

a c
-------- */

return node:: create(
node:: create(

node:: create("a"),
"b",
node:: create("c")),

root ,
node:: create("e"));

}

node::ptr_t create_right_tree_from(const std:: string& root){
/* --------

root
/ \

a d
/ \

c e
-------- */

return node:: create(
node:: create("a"),
root ,
node:: create(

node:: create("c"),
"d",
node:: create("e")));

}

// recursively walk the tree , delivering values in order
void traverse(node::ptr_t n,

std:: asymmetric_coroutine <std::string >:: push_type& out){
if(n->left) traverse(n->left ,out);
out(n->value );
if(n->right) traverse(n->right ,out);

}

// evaluation
{

node::ptr_t left_d(create_left_tree_from("d"));
std:: asymmetric_coroutine <std::string >:: pull_type left_d_reader(

[&]( std:: asymmetric_coroutine <std::string >:: push_type& out){
traverse(left_d ,out);

});

9



node::ptr_t right_b(create_right_tree_from("b"));
std:: asymmetric_coroutine <std::string >:: pull_type right_b_reader(

[&]( std:: asymmetric_coroutine <std::string >:: push_type& out){
traverse(right_b ,out);

});

std::cout << "left␣tree␣from␣d␣==␣right␣tree␣from␣b?␣"
<< std:: boolalpha
<< std::equal(std::begin(left_d_reader),

std::end(left_d_reader),
std:: begin(right_b_reader ))

<< std::endl;
}
{

node::ptr_t left_d(create_left_tree_from("d"));
std:: asymmetric_coroutine <std::string >:: pull_type left_d_reader(

[&]( std:: asymmetric_coroutine <std::string >:: push_type& out){
traverse(left_d ,out);

});

node::ptr_t right_x(create_right_tree_from("x"));
std:: asymmetric_coroutine <std::string >:: pull_type right_x_reader(

[&]( std:: asymmetric_coroutine <std::string >:: push_type& out){
traverse(right_x ,out);

});

std::cout << "left␣tree␣from␣d␣==␣right␣tree␣from␣x?␣"
<< std:: boolalpha
<< std::equal(std::begin(left_d_reader),

std::end(left_d_reader),
std:: begin(right_x_reader ))

<< std::endl;
}
std::cout << "Done" << std::endl;

output:
left tree from d == right tree from b? true
left tree from d == right tree from x? false
Done

C# await

C# contains the two keywords async and await . async introduces a control flow that involves awaiting asynchronous
operations. The compiler reorganizes the code into a continuation-passing style. await wraps the rest of the function
after await into a continuation if the asynchronous operation has not yet completed.
The project await_emu12 uses boost.coroutine8 for a proof-of-concept demonstrating the implementation of a full
emulation of C# await as a library extension. Because of stackful coroutines await is not limited by "one level" as
in C#.
Evgeny Panasyuk describes the advantages of boost.coroutine8 over await at Channel 9 - ’The Future of C++’12.

int bar(int i){
// await is not limited by "one level" as in C#
auto result=await async ([i]{ return reschedule (),i*100; });
return result+i*10;

}

int foo(int i){
cout << i << ":\ tbegin" << endl;
cout << await async ([i]{ return reschedule (),i*10; }) << ":\ tbody" << endl;
cout << bar(i) << ":\tend" << endl;
return i*1000;
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}

void async_user_handler (){
vector <future <int >> fs;

// instead of ‘async ‘ at function signature , ‘asynchronous ‘ should be
// used at the call place:
for(auto i=0;i!=5;++i)

fs.push_back(asynchronous ([i]{ return foo(i+1); }));

for(auto&& f:fs)
cout << await f << ":\ tafter␣end" << endl;

}

Impact on the Standard
This proposal is a library extension. It does not require changes to any standard classes, functions or headers. It can
be implemented in C++03 and C++11 and requires no core language changes.

Design Decisions
Proposed Design

The design suggests two kinds of coroutines - std::asymmetric_coroutine<T> and std::symmetric_coroutine<T> .
Symmetric coroutines usually occur in the context of concurrent programming in order to represent independent units
of execution. Implementations that produce sequences of values typically use asymmetric coroutines.3

std::asymmetric_coroutine<>::pull_type: provides an asymmetric execution-transfer mechanism. This type
transfers data from another execution context (== pulled-from).
The class has only one template parameter defining the transferred parameter type.
The constructor of std::asymmetric_coroutine<T>::pull_type takes a function (coroutine-function) accepting a
reference to a std::asymmetric_coroutine<T>::push_type as argument.
Instantiating a std::asymmetric_coroutine<T>::pull_type passes the control of execution to coroutine-function and
a complementary std::asymmetric_coroutine<T>::push_type is synthesized by the library and passed as reference
to coroutine-function.

This kind of coroutine provides std::asymmetric_coroutine<T>::pull_type::operator()() - this method only
switches context; it transfers no data.

std::asymmetric_coroutine<T>::pull_type provides input iterators
( std::asymmetric_coroutine<T>::pull_type::iterator ) and std::begin() / std::end() are overloaded. The
increment-operation switches the context and transfers data.

std:: asymmetric_coroutine <int >:: pull_type source(
[&]( std:: asymmetric_coroutine <int >:: push_type& sink){

int first=1,second =1;
sink(first);
sink(second );
for(int i=0;i<8;++i){

int third=first+second;
first=second;
second=third;
sink(third);

}
});

for(auto i:source)
std::cout << i << "␣";

std::cout << "\nDone" << std::endl;

output:
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1 1 2 3 5 8 13 21 34 55
Done

In this example a std::asymmetric_coroutine<T>::pull_type is created in the main execution context taking a
lambda function (== coroutine-function) which calculates Fibonacci numbers in a simple for -loop).
The coroutine-function is executed in a newly created execution context which is managed by the instance of
std::asymmetric_coroutine<T>::pull_type .
A std::asymmetric_coroutine<T>::push_type is automatically generated by the library and passed as reference to
the lambda function. Each time the lambda function calls
std::asymmetric_coroutine<T>::push_type::operator()(Arg&&) with another Fibonacci number,
std::asymmetric_coroutine<T>::push_type transfers it back to the main execution context. The local state of
coroutine-function is preserved and will be restored upon transferring execution control back to coroutine-function to
calculate the next Fibonacci number.
Because std::asymmetric_coroutine<T>::pull_type provides input iterators and std::begin() / std::end() are
overloaded, a range-based for -loop can be used to iterate over the generated Fibonacci numbers.

std::asymmetric_coroutine<>::push_type: provides an asymmetric execution-transfer mechanism. This type
transfers data to the other execution context (== pushed-to).
The class has only one template parameter defining the transferred parameter type.
The constructor of std::asymmetric_coroutine<T>::push_type takes a function (coroutine-function) accepting a
reference to a std::asymmetric_coroutine<T>::pull_type as argument. In contrast to
std::asymmetric_coroutine<T>::pull_type , instantiating a std::asymmetric_coroutine<T>::push_type does not
pass the control of execution to coroutine-function - instead the first call of
std::asymmetric_coroutine<T>::push_type::operator()(Arg&&) synthesizes a complementary
std::asymmetric_coroutine<T>::pull_type and passes it as reference to coroutine-function.

The std::asymmetric_coroutine<T>::push_type interface does not contain a get() -function: you can not re-
trieve values from another execution context with this kind of coroutine.

std::asymmetric_coroutine<T>::push_type provides output iterators
( std::asymmetric_coroutine<T>::push_type::iterator ) and std::begin() / std::end() are overloaded. The
increment-operation switches the context and transfers data.

struct FinalEOL{
~FinalEOL (){

std::cout << std::endl;
}

};

const int num=5, width =15;
std:: asymmetric_coroutine <std::string >:: push_type writer(

[&]( std:: asymmetric_coroutine <std::string >:: pull_type& in){
// finish the last line when we leave by whatever means
FinalEOL eol;
// pull values from upstream , lay them out ’num’ to a line
for (;;){

for(int i=0;i<num;++i){
// when we exhaust the input , stop
if(!in) return;
std::cout << std::setw(width) << in.get ();
// now that we’ve handled this item , advance to next
in();

}
// after ’num’ items , line break
std::cout << std::endl;

}
});

std::vector <std::string > words{
"peas", "porridge", "hot", "peas",
"porridge", "cold", "peas", "porridge",
"in", "the", "pot", "nine",
"days", "old" };
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std::copy(std::begin(words),std::end(words),std::begin(writer ));

output:
peas porridge hot peas porridge
cold peas porridge in the
pot nine days old

In this example a std::asymmetric_coroutine<T>::push_type is created in the main execution context accepting a
lambda function (== coroutine-function) which requests strings and lays out num of them on each line.
This demonstrates the inversion of control permitted by coroutines. Without coroutines, a utility function to perform
the same job would necessarily accept each new value as a function parameter, returning after processing that single
value. That function would depend on a static state variable. A coroutine-function, however, can request each new
value as if by calling a function – even though its caller also passes values as if by calling a function.
The coroutine-function is executed in a newly created execution context which is managed by the instance of
std::asymmetric_coroutine<T>::push_type .
The main execution context passes the strings to the coroutine-function by calling
std::asymmetric_coroutine<T>::push_type::operator()(Arg&&) .
A std::asymmetric_coroutine<T>::pull_type is automatically generated by the library and passed as reference to
the lambda function. The coroutine-function accesses the strings passed from the main execution context by calling
std::asymmetric_coroutine<T>::pull_type::get() and lays those strings out on std::cout according the para-
meters num and width.
The local state of coroutine-function is preserved and will be restored after transferring execution control back to
coroutine-function.
Because std::asymmetric_coroutine<T>::push_type provides output iterators and std::begin() / std::end()
are overloaded, the std::copy algorithm can be used to iterate over the vector containing the strings and pass them
one by one to the coroutine.

std::symmetric_coroutine<>::call_type: provides a symmetric execution-transfer mechanism. This type trans-
fers data to the other execution context.
The class has only one template parameter defining the transferred parameter type.

std::symmetric_coroutine<T>::call_type starts a symmetric coroutine and transfers its parameter to its coroutine-
function. The template parameter defines the transferred parameter type. The constructor of
std::symmetric_coroutine<T>::call_type takes a function (coroutine-function) accepting a reference to a
std::symmetric_coroutine<T>::yield_type as argument. Instantiating a std::symmetric_coroutine<T>::call_type
does not pass the control of execution to coroutine-function - instead the first call of
std::symmetric_coroutine<T>::call_type::operator()() synthesizes a std::symmetric_coroutine<T>::yield_type
and passes it as reference to coroutine-function.
The std::symmetric_coroutine<T>::call_type interface does not contain a get() -function.

In contrast to std::asymmetric_coroutine<T> , where the relationship between caller and callee is fixed,
std::symmetric_coroutine<T> is able to transfer execution control to any other (symmetric) coroutine. That is, a
std::symmetric_coroutine<T> is not required to return to its direct caller.

A std::symmetric_coroutine<T>::yield_type is automatically generated by the library and passed as reference
to the coroutine-function. The coroutine-function accesses the data passed to it by calling
std::symmetric_coroutine<T>::yield_type::get() .
The local state of coroutine-function is preserved and will be restored after transferring execution control back to
coroutine-function.

std::symmetric_coroutine<>::yield_type: provides a symmetric execution-transfer mechanism. This type trans-
fers control to another execution-context.
std::symmetric_coroutine<T>::yield_type::operator()() is used to transfer data and execution control to another
context by calling std::symmetric_coroutine<T>::yield_type::operator()() with another
std::symmetric_coroutine<T>::call_type as first argument. Alternatively, you may transfer control back to the
code that called std::symmetric_coroutine<T>::call_type::operator()() by calling
std::symmetric_coroutine<T>::yield_type::operator()() without a std::symmetric_coroutine<T>::call_type
argument.

The class has only one template parameter defining the transferred parameter type. Data transferred to the coroutine
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are accessed through std::symmetric_coroutine<T>::yield_type::get() .

Instances of this coroutine type can be created by the library only.

std::vector <int > merge(const std::vector <int >& a,const std::vector <int >& b){
std::vector <int > c;
std:: size_t idx_a=0,idx_b =0;
std:: symmetric_coroutine <void >:: call_type* other_a =0,* other_b =0;

std:: symmetric_coroutine <void >:: call_type coro_a(
[&]( std:: symmetric_coroutine <void >:: yield_type& yield){

while(idx_a <a.size ()){
if(b[idx_b]<a[idx_a]) // element in b is less than in a

yield(* other_b ); // yield to coroutine coro_b
c.push_back(a[idx_a ++]); // add element to final array

}
// add remaining elements of array b
while(idx_b <b.size ())

c.push_back(b[idx_b ++]);
});

std:: symmetric_coroutine <void >:: call_type coro_b(
[&]( std:: symmetric_coroutine <void >:: yield_type& yield){

while(idx_b <b.size ()){
if(a[idx_a]<b[idx_b]) // element in a is less than in b

yield(* other_a ); // yield to coroutine coro_a
c.push_back(b[idx_b ++]); // add element to final array

}
// add remaining elements of array a
while(idx_a <a.size ())

c.push_back(a[idx_a ++]);
});

other_a =& coro_a;
other_b =& coro_b;

coro_a (); // enter coroutine -fn of coro_a

return c;
}

std::vector <int > a={1 ,5,6,10};
std::vector <int > b={2,4,7,8,9,13};
std::vector <int > c=merge(a,b);
print(a);
print(b);
print(c);

output:
a : 1 5 6 10
b : 2 4 7 8 9 13
c : 1 2 4 5 6 7 8 9 10 13

In this example two std::symmetric_coroutine<T>::call_type are created in the main execution context accepting
a lambda function (== coroutine-function) which merges elements of two sorted arrays into a third array. coro_a()
enters the coroutine-function of coro_a cycling through the array and testing if the actual element in the other array is
less than the element in the local one. If so, the coroutine yields to the other coroutine coro_b using yield(*other_b)
. If the current element of the local array is less than the element of the other array, it is put to the third array. Because
the coroutine jumps back to coro_a() (returning from this method) after leaving the coroutine-function, the elements
of the other array will appended at the end of the third array if all element of the local array are processed.
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stackful: Each instance of a coroutine has its own stack.

In contrast to stackless coroutines, stackful coroutines allow invoking the suspend operation out of arbitrary sub-
stackframes, enabling escape-and-reenter operations.

move-only: A coroutine is moveable-only.

If it were copyable, then its stack with all the objects allocated on it would be copied too. That would force un-
defined behaviour if some of these objects were RAII-classes (manage a resource via RAII pattern). When the first of
the coroutine copies terminates (unwinds its stack), the RAII class destructors will release their managed resources.
When the second copy terminates, the same destructors will try to doubly-release the same resources, leading to
undefined behavior.

clean-up: On coroutine destruction the associated stack will be unwound.

The implementer is free to deallocate the stack or cache it for future usage (for coroutines created later).

segmented stack: std::asymmetric_coroutine<T> and std::symmetric_coroutine<T> must support segmen-
ted stacks (growing on demand).

It is not always possible to accurately estimate the required stack size - in most cases too much memory is alloc-
ated (waste of virtual address-space).
At construction a coroutine starts with a default (minimal) stack size.
At this time of writing only GCC version 4.7 or higher15 and clang version 3.4 or higher are known to support segmented
stacks. With version 1.54 boost.coroutine8 provides support for segmented stacks.

context switch: A coroutine saves and restores registers according to the underlying ABI on each context switch.

This also includes the floating point environment as required by the ABI. The implementer can omit preserving the
floating point environment if he can predict that it’s safe.
On POSIX systems, a coroutine context switch must not preserve signal masks for performance reasons.
A context switch is done via std::asymmetric_coroutine<T>::push_type::operator()(Arg&&) ,
std::asymmetric_coroutine<T>::pull_type::operator()() for asymmetric coroutines and
std::symmetric_coroutine<T>::call_type::operator()() ,
std::symmetric_coroutine<T>::yield_type::operator()() for symmetric coroutines.

coroutine-function: The coroutine-function returns void and takes its counterpart-coroutine as argument, so that
using the coroutine passed as argument to coroutine-function is the only way (besides simply returning) to transfer
data and execution control to another execution context.

For std::asymmetric_coroutine<T>::pull_type the coroutine-function is entered at
std::asymmetric_coroutine<T>::pull_type construction. For std::asymmetric_coroutine<T>::push_type the
coroutine-function is not entered at std::asymmetric_coroutine<T>::push_type construction but entered by the
first invocation of std::asymmetric_coroutine<T>::push_type::operator()(Arg&&) .

For std::symmetric_coroutine<T>::call_type the coroutine-function is not entered at
std::symmetric_coroutine<T>::call_type construction but entered by the first invocation of
std::symmetric_coroutine<T>::call_type::operator()() .
std::symmetric_coroutine<T>::yield_type are always synthesized by the framework.
After execution control is returned from coroutine-function the state of the coroutine can be checked via
std::asymmetric_coroutine<T>::pull_type::operator bool() ,
std::asymmetric_coroutine<T>::push_type::operator bool() and
std::symmetric_coroutine<T>::call_type::operator bool() returning true if the coroutine is still valid (coroutine-
function has not terminated).
Unless T is void , std::asymmetric_coroutine<T>::pull_type::operator bool() returning true also implies
that a data value is available.

Unless T is void, the coroutine-function of a std::symmetric_coroutine<T>::call_type can assume that (a)
upon initial entry and (b) after every
std::symmetric_coroutine<T>::yield_type::operator()() call, std::symmetric_coroutine<T>::yield_type::get()
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has a new value available.
However, if T is a move-only type, std::symmetric_coroutine<T>::yield_type::get() may only be called once
before the next std::symmetric_coroutine<T>::yield_type::operator()() call.

passing data from a pull-coroutine to main-context: In order to transfer data from a
std::asymmetric_coroutine<T>::pull_type to the main-context the framework synthesizes a
std::asymmetric_coroutine<T>::push_type associated with the std::asymmetric_coroutine<T>::pull_type in-
stance in the main-context. The synthesized
std::asymmetric_coroutine<T>::push_type is passed as argument to coroutine-function.
The coroutine-function must call this std::asymmetric_coroutine<T>::push_type::operator()(Arg&&) in order to
transfer each data value back to the main-context.
In the main-context, the std::asymmetric_coroutine<T>::pull_type::operator bool() determines whether the
coroutine is still valid and a data value is available or coroutine-function has terminated
( std::asymmetric_coroutine<T>::pull_type is invalid; no data value available). Access to the transferred data
value is given by std::asymmetric_coroutine<T>::pull_type::get() .

std:: asymmetric_coroutine <int >:: pull_type source( // constructor enters coro -fn
[&]( std:: asymmetric_coroutine <int >:: push_type& sink){

sink (1); // push {1} back to main -context
sink (1); // push {1} back to main -context
sink (2); // push {2} back to main -context
sink (3); // push {3} back to main -context
sink (5); // push {5} back to main -context
sink (8); // push {8} back to main -context

});

while(source ){ // test if pull -coroutine is valid
int ret=source.get(); // access data value
source (); // context -switch to coroutine -function

}

passing data from main-context to a push-coroutine: In order to transfer data to a
std::asymmetric_coroutine<T>::push_type from the main-context the framework synthesizes a
std::asymmetric_coroutine<T>::pull_type associated with the std::asymmetric_coroutine<T>::push_type in-
stance in the main-context. The synthesized std::asymmetric_coroutine<T>::pull_type is passed as argument to
coroutine-function.
The main-context must call this std::asymmetric_coroutine<T>::push_type::operator()(Arg&&) in order to trans-
fer each data value into the coroutine-function.
Access to the transferred data value is given by std::asymmetric_coroutine<T>::pull_type::get() .

std:: asymmetric_coroutine <int >:: push_type sink( // constructor does NOT enter coro -fn
[&]( std:: asymmetric_coroutine <int >:: pull_type& source ){

for (int i:source ){
std::cout << i << "␣";

}
});

std::vector <int > v{1,1,2,3,5,8,13,21,34,55};
for(int i:v){

sink(i); // push {i} to coroutine -function
}

passing data to a symmetric-coroutine: In order to transfer data to a
std::symmetric_coroutine<T>::call_type from the main-context the framework synthesizes a
std::symmetric_coroutine<T>::yield_type associated with the std::symmetric_coroutine<T>::call_type in-
stance in the main-context. The synthesized
std::symmetric_coroutine<T>::yield_type is passed as argument to coroutine-function.
The main-context must call this std::symmetric_coroutine<T>::call_type::operator()() in order to transfer each
data value into the coroutine-function.
Access to the transferred data value is given by std::symmetric_coroutine<T>::yield_type::get() .
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// constructor does NOT enter coroutine -function
std:: symmetric_coroutine <int >:: call_type coro(

[&]( std:: symmetric_coroutine <int >:: yield_type& yield){
for (;;) {

std::cout << yield.get() << "␣";
yield (); // jump back to starting context

}
});

coro (1); // transfer {1} to coroutine -function
coro (2); // transfer {2} to coroutine -function
coro (3); // transfer {3} to coroutine -function
coro (4); // transfer {4} to coroutine -function
coro (5); // transfer {5} to coroutine -function

accessing parameters: Parameters returned from or transferred to the coroutine-function can be accessed with
std::asymmetric_coroutine<T>::pull_type::get() or std::symmetric_coroutine<T>::yield_type::get() .

Splitting-up the access of parameters from context switch function enables to check if
std::asymmetric_coroutine<T>::pull_type is valid after return from
std::asymmetric_coroutine<T>::pull_type::operator()() , e.g. std::asymmetric_coroutine<T>::pull_type
has values and coroutine-function has not terminated.

std:: asymmetric_coroutine <std::tuple <int ,int >>:: push_type sink(
[&]( std:: asymmetric_coroutine <std::tuple <int ,int >>:: pull_type& source ){

// access tuple {7 ,11}; x==7 y==1
int x,y;
std::tie(x,y)= source.get ();

});

sink(std:: make_tuple (7 ,11));

Parameters passed via std::symmetric_coroutine<T>::call_type are accessed via
std::symmetric_coroutine<T>::yield_type::get() inside the symmetric coroutine.

std:: symmetric_coroutine <std::tuple <int ,int >>:: call_type call(
[&]( std:: symmetric_coroutine <std::tuple <int ,int >>:: yield_type& yield ){

// access tuple {7 ,11}; x==7 y==1
int x,y;
std::tie(x,y)=yield.get ();

});

call(std:: make_tuple (7 ,11));

exceptions: An exception thrown inside a std::asymmetric_coroutine<T>::pull_type ’s coroutine-function be-
fore its first call to std::asymmetric_coroutine<T>::push_type::operator()(Arg&&) will be re-thrown by the
std::asymmetric_coroutine<T>::pull_type constructor. After a std::asymmetric_coroutine<T>::pull_type ’s
coroutine-function’s first call to
std::asymmetric_coroutine<T>::push_type::operator()(Arg&&) , any subsequent exception inside that coroutine-
function will be re-thrown by std::asymmetric_coroutine<T>::pull_type::operator()() .

An exception thrown inside a std::asymmetric_coroutine<T>::push_type ’s coroutine-function will be re-thrown
by std::asymmetric_coroutine<T>::push_type::operator()(Arg&&) .

An uncaught exception inside a std::symmetric_coroutine<T>::call_type ’s coroutine-function will call
std::terminate() .

exit a coroutine-function: A coroutine-function is exited with a simple return statement.
Returning from a std::asymmetric_coroutine<T>::pull_type ’s coroutine-function jumps back to the main-context
that invoked it. If the coroutine-function did not execute std::asymmetric_coroutine<T>::push_type::operator()(Arg&&)
, control resumes after the std::asymmetric_coroutine<T>::pull_type ’s constructor. If the coroutine-function has
executed std::asymmetric_coroutine<T>::push_type::operator()(Arg&&) , control resumes after the most recent
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std::asymmetric_coroutine<T>::pull_type::operator()() . From that point on,
std::asymmetric_coroutine<T>::pull_type::operator bool() will return false .
Returning from a std::asymmetric_coroutine<T>::push_type ’s coroutine-function jumps back to the main-context
that invoked it. Control resumes after the most recent std::asymmetric_coroutine<T>::push_type::operator()(Arg&&)
. From that point on, std::asymmetric_coroutine<T>::push_type::operator bool() will return false .
Returning from a std::symmetric_coroutine<T>::call_type ’s coroutine-function jumps back to the calling
std::symmetric_coroutine<T>::call_type::operator()() at the start of symmetric coroutine chain. That is, sym-
metric coroutines do not have a strong, fixed relationship to the caller as asymmetric coroutines do. From that point
on, std::symmetric_coroutine<T>::call_type::operator bool() will return false .

Other libraries and proposals

Mordor: Mordor13 is another C++ library implementing cooperative multitasking in order to achieve high I/O
performance. The difference from this design is that this proposal focuses on enhanced control flow, while Mordor13

abstracts on the level of tasking: providing a cooperatively scheduled fiber engine.

AT&T Task Library: Another design of a task library was published by AT&T14 describing a tasking system with
non-preemptive scheduling.
std::asymmetric_coroutine<T>::push_type / std::asymmetric_coroutine<T>::pull_type does not provide schedul-
ing logic but could be used as the basic mechanism for such a tasking abstraction.

boost.fiber: boost.fiber9 uses symmetric coroutines in order to support cooperative multi-tasking. The interface is
similar to std::thread , e.g. synchonization primitives like mutex , condition_variable and future are provided.

C++ proposal: resumable functions (N33284): This proposal is a library superset of N3328: the resumable
function can be implemented on top of coroutines. The proposed coroutine library does not require memory allocation
for the future on a context switch and does not require language changes (no keywords like resumable and await).
As described in N3328 section 3.2.5 ’Function Prolog’ - the body of a resumable function is transformed into a switch
statement. This is similar to the stackless coroutines of Python and C#.
A proof-of-concept how await could be built upon boost.coroutine8 has already been implemented in await_emu12.

Without stackfulness and first-class semantics, some useful execution control flows cannot be supported (for instance
cooperative multitasking, checkpointing) and recursive problems such as the ’same fringe’ example become much more
difficult.

C++ proposal: Library Foundations for Asynchronous Operations, Revision 1 (N39645): N3964 dis-
cusses how boost.asio6’s generalized CompletionToken support facilitates integrating asynchronous operations with
coroutines and fibers. The paper proposes this mechanism for use in any asychronous library functions.

Proposed Wording
std::asymmetric_coroutine<>::pull_type

Defined in header <coroutine> .
template<class T> class asymmetric_coroutine<T>::pull_type;

template<class T> class asymmetric_coroutine<T&>::pull_type;

template<> class asymmetric_coroutine<void>::pull_type;

The class std::asymmetric_coroutine<T>::pull_type provides a mechanism to receive data values from another
execution context.

member types

iterator std::input_iterator (not defined for asymmetric_coroutine<void>::pull_type template specialization)

member functions
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(constructor) constructs new coroutine

pull_type(); (1)

pull_type(Function&& fn); (2)

pull_type(pull_type&& other); (3)

pull_type(const pull_type& other)=delete; (4)

1) creates a std::asymmetric_coroutine<T>::pull_type which does not represent a context of execution
2) creates a std::asymmetric_coroutine<T>::pull_type object and associates it with a execution context
3) move constructor, constructs a std::asymmetric_coroutine<T>::pull_type object to represent a context of

execution that was represented by other, after this call other no longer represents a coroutine
4) copy constructor is deleted; coroutines are not copyable

Notes
Return values from the coroutine-function are accessible via std::asymmetric_coroutine<T>::pull_type::get() .
If the coroutine-function throws an exception, this exception is re-thrown when the caller returns from
std::asymmetric_coroutine<T>::pull_type::operator()() .

Parameters
other another coroutine object with which to construct this coroutine object
fn function to execute in the new coroutine

Exceptions
1), 3) noexcept specification: noexcept
2) std::system_error if the coroutine could not be started - the exception may represent a implementation-specific

error condition; re-throw user defined exceptions from coroutine-function

Example

std:: asymmetric_coroutine <int >:: pull_type source(
[&]( std:: asymmetric_coroutine <int >:: push_type& sink){

int first=1,second =1;
sink(first);
sink(second );
for(int i=0;i<8;++i){

int third=first+second;
first=second;
second=third;
sink(third);

}
});

for(auto i:source)
std::cout << i << "␣";

std::cout << "\nDone" << std::endl;

output:
1 1 2 3 5 8 13 21 34 55
Done

(destructor) destroys a coroutine

~pull_type(); (1)

1) destroys a std::asymmetric_coroutine<T>::pull_type . If that std::asymmetric_coroutine<T>::pull_type
is associated with a context of execution, then the context of execution is destroyed too. Specifically, its stack is
unwound.
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operator= moves the coroutine object

pull_type & operator=(pull_type&& other); (1)

pull_type & operator=(const pull_type& other)=delete; (2)

1) assigns the state of other to *this using move semantics

2) copy assignment is deleted; coroutines are not copyable

Parameters

other another coroutine object to assign to this coroutine object

Return value

*this

Exceptions

1) noexcept specification: noexcept

operator bool indicates whether context of execution is still valid and a return value can be retrieved, or coroutine-
function has finished

operator bool(); (1)

1) evaluates to true if coroutine is not complete (coroutine-function has not terminated)

Exceptions

1) noexcept specification: noexcept

operator() jump context of execution

pull_type & operator()(); (1)

1) transfer control of execution to coroutine-function

Notes
It is important that the coroutine is still valid ( operator bool() returns true ) before calling this function, otherwise
it results in undefined behaviour.

Return value

*this

Exceptions

1) std::system_error if control of execution could not be transferred to other execution context - the exception may
represent a implementation-specific error condition; re-throw user-defined exceptions from coroutine-function

get accesses the current value from coroutine-function

R get(); (1) (member of generic template)

R& get(); (2) (member of generic template)

void get()=delete; (3) (only for asymmetric_coroutine<void>::pull_type template specialization)

1) access values returned from coroutine-function (if move-only, the value is moved, otherwise copied)

2) access reference returned from coroutine-function
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Notes
It is important that the coroutine is still valid ( operator bool() returns true ) before calling this function, otherwise
it results in undefined behaviour.
If type T is move-only, it will be returned using move semantics. With such a type, if you call get() a second time
before calling operator()() , get() will throw an exception – see below.

Return value

R return type is defined by coroutine’s template argument

void coroutine does not support get()

Exceptions

1) Once a particular move-only value has already been retrieved by get() , any subsequent get() call throws
std::coroutine_error with an error-code std::coroutine_errc::no_data until operator()() is called.

swap swaps two coroutine objects

void swap(pull_type& other); (1)

1) exchanges the underlying context of execution of two coroutine objects

Exceptions

1) noexcept specification: noexcept

non-member functions

std::swap Specializes std::swap for std::asymmetric_coroutine<T>::pull_type and swaps the underlying con-
text of lhs and rhs.

void swap(pull_type& lhs,pull_type& rhs); (1)

1) exchanges the underlying context of execution of two coroutine objects by calling lhs.swap(rhs) .

Exceptions

1) noexcept specification: noexcept

std::begin Specializes std::begin for std::asymmetric_coroutine<T>::pull_type .

template<class R> asymmetric_coroutine<R>::pull_type::iterator begin(coroutine<R>::pull_type& c); (1)

1) creates and returns a std::input_iterator

std::end Specializes std::end for std::asymmetric_coroutine<T>::pull_type .

template<class R> asymmetric_coroutine<R>::pull_type::iterator end(coroutine<R>::pull_type& c); (1)

1) creates and returns a std::input_iterator indicating the termination of the coroutine-function

Incrementing the iterator switches the execution context.
When a main-context calls iterator::operator++() on an iterator obtained from an explicitly-instantiated
std::asymmetric_coroutine<T>::pull_type , it must compare the incremented value with the iterator returned by
std::end() . If they are unequal, the coroutine-function has passed a new data value, which can be accessed via
iterator::operator*() . Otherwise the coroutine-function has terminated and the incremented iterator has become
invalid.
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When a std::asymmetric_coroutine<T>::push_type ’s coroutine-function calls iterator::operator++() on an
iterator obtained from the std::asymmetric_coroutine<T>::pull_type passed by the library, control is transferred
back to the main-context. The main-context might never pass another data value. From the coroutine-function’s point
of view, the iterator::operator++() call might never return. If it does return, the main-context has passed a new
data value, which can be accessed via iterator::operator*() .
A function written to compare the incremented iterator with the iterator returned by std::end() can be used in
either situation.
If the return-type is move-only the first call to iterator::operator*() moves the value. After that, any subsequent
call to iterator::operator*() throws an exception ( std::coroutine_error ) until iterator::operator++() is
called.
The iterator is forward-only.

Notes
Because std::asymmetric_coroutine<T>::pull_type::iterator is an InputIterator , you cannot expect to copy
an iterator and increment it independently of the original.

Example

int j=10;
std:: asymmetric_coroutine <int >:: pull_type source(

[&]( std:: asymmetric_coroutine <int >:: push_type& sink){
for(int i=0;i<j;++i){

sink(i);
}

});

auto e(std::end(source ));
for(auto i(std:: begin(source ));i!=e;++i){

std::cout << *i << "␣";
}

std::asymmetric_coroutine<>::push_type

Defined in header <coroutine> .
template<class T> class asymmetric_coroutine<T>::push_type;

template<class T> class asymmetric_coroutine<T&>::push_type;

template<> class asymmetric_coroutine<void>::push_type;

The class std::asymmetric_coroutine<T>::push_type provides a mechanism to send a data value from one execution
context to another.

member types

iterator std::output_iterator (not defined for asymmetric_coroutine<void>::push_type template specialization)

member functions

(constructor) constructs new coroutine

push_type(); (1)

push_type(Function&& fn); (2)

push_type(push_type&& other); (3)

push_type(const push_type& other)=delete; (4)

1) creates a std::asymmetric_coroutine<T>::push_type which does not represent a context of execution

2) creates a std::asymmetric_coroutine<T>::push_type object and associates it with a execution context

3) move constructor, constructs a std::asymmetric_coroutine<T>::push_type object to represent a context of
execution that was represented by other, after this call other no longer represents a coroutine
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4) copy constructor is deleted; coroutines are not copyable

Parameters

other another coroutine object with which to construct this coroutine object

fn function to execute in the new coroutine

Exceptions

1), 3) noexcept specification: noexcept

2) std::system_error if the coroutine could not be started - the exception may represent a implementation-specific
error condition

Notes
If the coroutine-function throws an exception, this exception is re-thrown when the caller returns from
std::asymmetric_coroutine<T>::push_type::operator()(Arg&&) .

Example

std:: asymmetric_coroutine <std::tuple <int ,int >>:: push_type sink(
[&]( std:: asymmetric_coroutine <std::tuple <int ,int >>:: pull_type& source ){

// access tuple {7 ,11}; x==7 y==1
int x,y;
std::tie(x,y)= source.get ();

});

sink(std:: make_tuple (7 ,11));

(destructor) destroys a coroutine

~push_type(); (1)

1) destroys a std::asymmetric_coroutine<T>::push_type . If that std::asymmetric_coroutine<T>::push_type
is associated with a context of execution, then the context of execution is destroyed too. Specifically, its stack is
unwound.

operator= moves the coroutine object

push_type & operator=(push_type&& other); (1)

push_type & operator=(const push_type& other)=delete; (2)

1) assigns the state of other to *this using move semantics

2) copy assignment operator is deleted; coroutines are not copyable

Parameters

other another coroutine object to assign to this coroutine object

Return value

*this

Exceptions

1) noexcept specification: noexcept
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operator bool indicates if context of execution is still valid, that is, coroutine-function has not finished

operator bool(); (1)

1) evaluates to true if coroutine is not complete (coroutine-function has not terminated)

Exceptions

1) noexcept specification: noexcept

operator() jump context of execution

push_type & operator()(const Arg& arg); (1) (member of generic template)

push_type & operator()(Arg&& arg); (2) (member of generic template)

push_type & operator()(Arg& arg); (3) (member only of asymmetric_coroutine<Arg&>::push_type
template specialization)

push_type & operator()(); (4) (member only of asymmetric_coroutine<void>::push_type
template specialization)

1),2) If Arg is move-only, it will be passed using move semantics. Otherwise it will be copied.

Switches the context of execution, transferring arg to coroutine-function.

Note
It is important that the coroutine is still valid ( operator bool() returns true ) before calling this function, otherwise
it results in undefined behaviour.

Parameters

arg argument to pass to the coroutine-function

Return value

*this

Exceptions

1) std::system_error if control of execution could not be transferred to other execution context - the exception may
represent a implementation-specific error condition; re-throw user-defined exceptions from coroutine-function

swap swaps two coroutine objects

void swap(push_type& other); (1)

1) exchanges the underlying context of execution of two coroutine objects

Exceptions

1) noexcept specification: noexcept

non-member functions
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std::swap Specializes std::swap for std::asymmetric_coroutine<T>::push_type and swaps the underlying con-
text of lhs and rhs.

void swap(push_type& lhs,push_type& rhs); (1)

1) exchanges the underlying context of execution of two coroutine objects by calling lhs.swap(rhs) .

Exceptions

1) noexcept specification: noexcept

std::begin Specializes std::begin for std::asymmetric_coroutine<T>::push_type .

template<class R> asymmetric_coroutine<R>::push_type::iterator begin(coroutine<R>::push_type& c); (1)

1) creates and returns a std::output_iterator

std::end Specializes std::end for std::asymmetric_coroutine<T>::push_type .

template<class R> asymmetric_coroutine<R>::push_type::iterator end(coroutine<R>::push_type& c); (1)

1) creates and returns a std::output_iterator indicating the termination of the coroutine

Calling iterator::operator*(Arg&&) switches the execution context and transfers the given data value.
iterator::operator*(Arg&&) returns if other context has transferred control of execution back.
The iterator is forward-only.

Notes
Because std::asymmetric_coroutine<T>::push_type::iterator is an OutputIterator , you cannot expect to copy
an iterator and increment it independently of the original.

Example

std:: asymmetric_coroutine <int >:: push_type sink(
[&]( std:: asymmetric_coroutine <int >:: pull_type& source ){

while(source ){
std::cout << source.get() << "␣";
source ();

}
});

std::vector <int > v{1,1,2,3,5,8,13,21,34,55};
std::copy(std::begin(v),std::end(v),std:: begin(sink ));

std::symmetric_coroutine<>::call_type

Defined in header <coroutine> .
template<class T> class symmetric_coroutine<T>::call_type;

template<class T> class symmetric_coroutine<T&>::call_type;

template<> class symmetric_coroutine<void>::call_type;

The class std::symmetric_coroutine<T>::call_type provides a mechanism to send a data value from one execution
context to another.

member functions

25



(constructor) constructs new coroutine

call_type(); (1)

call_type(Function&& fn); (2)

call_type(call_type&& other); (3)

call_type(const call_type& other)=delete; (4)

1) creates a std::symmetric_coroutine<T>::call_type which does not represent a context of execution

2) creates a std::symmetric_coroutine<T>::call_type object and associates it with a execution context

3) move constructor, constructs a std::symmetric_coroutine<T>::call_type object to represent a context of exe-
cution that was represented by other, after this call other no longer represents a coroutine

4) copy constructor is deleted; coroutines are not copyable

Notes
If the coroutine-function throws an exception and this exception is uncatched, std::terminate() is called.

Parameters

other another coroutine object with which to construct this coroutine object

fn function to execute in the new coroutine

Exceptions

1), 3) noexcept specification: noexcept

2) std::system_error if the coroutine could not be started - the exception may represent a implementation-specific
error condition; re-throw user defined exceptions from coroutine-function

Example

std:: symmetric_coroutine <std::tuple <int ,int >>:: call_type call(
[&]( std:: symmetric_coroutine <std::tuple <int ,int >>:: yield_type& yield ){

// access tuple {7 ,11}; x==7 y==1
int x,y;
std::tie(x,y)=yield.get ();

});

call(std:: make_tuple (7 ,11));

(destructor) destroys a coroutine

~call_type(); (1)

1) destroys a std::symmetric_coroutine<T>::call_type . If that std::symmetric_coroutine<T>::call_type is
associated with a context of execution, then the context of execution is destroyed too. Specifically, its stack is
unwound.

operator= moves the coroutine object

call_type & operator=(call_type&& other); (1)

call_type & operator=(const call_type& other)=delete; (2)

1) assigns the state of other to *this using move semantics

2) copy assignment is deleted; coroutines are not copyable

Parameters
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other another coroutine object to assign to this coroutine object

Return value

*this

Exceptions

1) noexcept specification: noexcept

operator bool indicates whether context of execution is still valid or coroutine-function has finished

operator bool(); (1)

1) evaluates to true if coroutine is not complete (coroutine-function has not terminated)

Exceptions

1) noexcept specification: noexcept

operator() jump context of execution

call_type & operator()(const Arg& arg); (1) (member of generic template)

call_type & operator()(Arg&& arg); (2) (member of generic template)

call_type & operator()(Arg& arg); (3) (member only of symmetric_coroutine<Arg&>::call_type
template specialization)

call_type & operator()(); (4) (member only of symmetric_coroutine<void>::call_type
template specialization)

1),2) If Arg is move-only, it will be passed using move semantics. Otherwise it will be copied.

Switches the context of execution, transferring arg to coroutine-function.

Notes
It is important that the coroutine is still valid ( operator bool() returns true ) before calling this function, otherwise
it results in undefined behaviour.

Return value

*this

Exceptions

1) noexcept specification: noexcept

swap swaps two coroutine objects

void swap(call_type& other); (1)

1) exchanges the underlying context of execution of two coroutine objects

Exceptions

1) noexcept specification: noexcept

non-member functions
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std::swap Specializes std::swap for std::symmetric_coroutine<T>::call_type and swaps the underlying con-
text of lhs and rhs.

void swap(call_type& lhs,call_type& rhs); (1)

1) exchanges the underlying context of execution of two coroutine objects by calling lhs.swap(rhs) .

Exceptions

1) noexcept specification: noexcept

std::symmetric_coroutine<>::yield_type

Defined in header <coroutine> .
template<class T> class symmetric_coroutine<T>::yield_type;

template<class T> class symmetric_coroutine<T&>::yield_type;

template<> class symmetric_coroutine<void>::yield_type;

The class std::symmetric_coroutine<T>::yield_type provides a mechanism to receive data values from another
execution context and to transfer the execution control to another coroutine.

member functions

(constructor) constructs new coroutine

yield_type(); (1)

yield_type(yield_type&& other); (2)

yield_type(const yield_type& other)=delete; (3)

1) creates a std::symmetric_coroutine<T>::yield_type which does not represent a context of execution

2) move constructor, constructs a std::symmetric_coroutine<T>::yield_type object to represent a context of
execution that was represented by other, after this call other no longer represents a coroutine

3) copy constructor is deleted; coroutines are not copyable

Notes
Values to the coroutine-function are accessible via std::symmetric_coroutine<T>::yield_type::get() .
std::symmetric_coroutine<T>::yield_type can be synthesized by the library only.

Parameters

other another coroutine object with which to construct this coroutine object

Exceptions

1) - 3) noexcept specification: noexcept

(destructor) destroys a coroutine

~yield_type(); (1)

1) destroys a std::symmetric_coroutine<T>::yield_type
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operator= moves the coroutine object

yield_type & operator=(yield_type&& other); (1)

yield_type & operator=(const yield_type& other)=delete; (2)

1) assigns the state of other to *this using move semantics

2) copy assignment is deleted; coroutines are not copyable

Parameters

other another coroutine object to assign to this coroutine object

Return value

*this

Exceptions

1) noexcept specification: noexcept

operator bool indicates whether the coroutine is still a valid instance

operator bool(); (1)

1) evaluates to true if the instance is a valid coroutine

Exceptions

1) noexcept specification: noexcept

operator() jump context of execution

yield_type & operator()(); (1)

template< typename X > yield_type & operator()( symmetric_coroutine< T >::call_type & other, X & x); (2)

template<> yield_type & operator()( symmetric_coroutine< void >::call_type & other); (3)

1) transfer control of execution to the starting point, e.g invocation of
std::symmetric_coroutine<T>::call_type::operator()()

2) transfer control of execution to another symmetric coroutine, parameter x is passed as value into other’s context

3) transfer control of execution to another symmetric coroutine

Notes
It is important that the coroutine is still valid ( operator bool() returns true ) before calling this function, otherwise
it results in undefined behaviour.

Return value

*this

Exceptions

1) std::system_error if control of execution could not be transferred to other execution context - the exception may
represent a implementation-specific error condition; re-throw user-defined exceptions from coroutine-function

Example
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std:: symmetric_coroutine <int >:: call_type coro_a(
[&]( std:: symmetric_coroutine <int >:: yield_type& yield){

std::cout << yield.get() << "\n";
yield (); // jump back to starting context
std::cout << yield.get() << "\n";
std::cout << "coro_a␣finished" << std::endl;

});

coro_a (3); // start coro_a with parameter 3

std:: symmetric_coroutine <std::string >:: call_type coro_b(
[&]( std:: symmetric_coroutine <std::string >:: yield_type& yield ){

std::cout << yield.get() << "\n";
yield( coro_a , 7); // resume coro_a with parameter 7
std::cout << "coro_b␣finished" << std::endl;

});

coro_b("abc"); // start coro_b with parameter "abc"
std::cout << "Done" << std::endl;

output:
3
abc
7
coro_a finished
coro_b finished
Done

get accesses the current value passed to coroutine-function

R get(); (1) (member of generic template)

R& get(); (2) (member of generic template)

void get()=delete; (3) (only for symmetric_coroutine<void>::yield_type template specialization)

1) access values passed to coroutine-function (if move-only, the value is moved, otherwise copied)
2) access reference passed to coroutine-function

Notes
If type T is move-only, it will be returned using move semantics. With such a type, if you call get() a second time
before calling operator()() , get() will throw an exception – see below.

Return value
R return type is defined by coroutine’s template argument
void coroutine does not support get()

Exceptions
1) Once a particular move-only value has already been retrieved by get() , any subsequent get() call throws

std::coroutine_error with an error-code std::coroutine_errc::no_data until operator()() is called.

swap swaps two coroutine objects

void swap(yield_type& other); (1)

1) exchanges the underlying context of execution of two coroutine objects

Exceptions
1) noexcept specification: noexcept
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non-member functions

std::swap Specializes std::swap for std::symmetric_coroutine<T>::yield_type and swaps the underlying con-
text of lhs and rhs.

void swap(yield_type& lhs,yield_type& rhs); (1)

1) exchanges the underlying context of execution of two coroutine objects by calling lhs.swap(rhs) .

Exceptions

1) noexcept specification: noexcept

std::coroutine_errc

Defined in header <coroutine> .

enum class coroutine_errc { no_data };

Enumeration std::coroutine_errc defines the error codes reported by std::asymmetric_coroutine<T>::pull_type
or std::symmetric_coroutine<T>::yield_type in std::coroutine_error exception object.

member constants Determines error code.

no_data std::asymmetric_coroutine<T>::pull_type or std::symmetric_coroutine<T>::yield_type has no
valid data (maybe moved by prior access)

std::coroutine_error

Defined in header <coroutine> .

class coroutine_error;

The class std::coroutine_error defines an exception class that is derived from std::logic_error .

member functions

(constructor) constructs new coroutine error object.

coroutine_error( std::error_code ec); (1)

1) creates a std::coroutine_error error object from an error-code.

Parameters

ec error-code

code Returns the error-code.

const std::error_code& code() const; (1)

1) returns the stored error code.

Return value

std::error_code stored error code

Exceptions

1) noexcept specification: noexcept
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what Returns a error-description.

virtual const char* what() const; (1)

1) returns a description of the error.

Return value

char* null-terminated string with error description

Exceptions

1) noexcept specification: noexcept
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A. jump-operation for SYSV ABI on x86_64
The assembler code (from boost.context7) shows what the jump-operation might look like for SYSV ABI on x86_64.

1 .text
2 .globl jump
3 .type jump ,@function
4 jump:
5 /* first argument , RDI , points to stack (X) from which we jump */
6 /* second argument , RSI , points to stack (Y) to which we jump */
7 /* third argument , RDX , parameter we want to pass to jumped context */

9 /* save current non -volatile registers to stack X */
10 pushq %rbp /* save RBP */
11 pushq %rbx /* save RBX */
12 pushq %r15 /* save R15 */
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13 pushq %r14 /* save R14 */
14 pushq %r13 /* save R13 */
15 pushq %r12 /* save R12 */

17 /* switch stacks , prepare to jump */
18 /* store RSP (pointing to context -data) in RDI */
19 movq %rsp , (%rdi)
20 /* restore RSP (pointing to context -data) from RSI */
21 movq %rsi , %rsp

23 /* restore non -volatile registers from stack Y */
24 popq %r12 /* restrore R12 */
25 popq %r13 /* restrore R13 */
26 popq %r14 /* restrore R14 */
27 popq %r15 /* restrore R15 */
28 popq %rbx /* restrore RBX */
29 popq %rbp /* restrore RBP */

31 /* restore return -address */
32 popq %r8

34 /* data passing */
35 movq %rdx , %rax /* use third arg as return value after jump */
36 movq %rdx , %rdi /* use third arg as first arg in context function */

38 /* context switch */
39 jmp *%r8 /* indirect jump to context via restored return address */
40 .size jump ,.-jump

Register rdi takes the stack-address of to the current execution context X (containing the control-block) and register
rsi contains the stack-address of the target execution context Y (containing the control-block) to be resumed.

In lines 10-15 the contents of the current non-volatile registers are pushed on the stack of X.

Lines 19 and 21 exchange the stack-pointers - the current stack-pointer is stored in and returned via the first ar-
gument ( rdi ). The address of the other context, contained in rsi , is assigned to the stack-pointer rsp .

The next block (lines 24-29) restores the contents of non-volatile registers for the execution context Y.

Line 32 pops the address of the instruction which should be executed in Y to register r8 .

Lines 35 and 36 allow to transfer data (as return value in Y ) between context jumps.

The next line transfers execution control (branch-and-link) to Y by executing the instruction to which r8 points.
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