
N3830 - Scoped Resource - Generic RAII Wrapper for the

Standard Library

Peter Sommerlad and Andrew L. Sandoval

2013-12-23

Document Number: N3830 (update of N3677)

Date: 2013-12-23

Project: Programming Language C++

1 Changes from N3677

• Replace all 4 proposed classes with a single class covering all use cases, using
variadic templates, as determined in the Fall 2013 LEWG meeting.

2 Introduction

The Standard Template Library provides RAII classes for managing pointer types, such
as std::unique_ptr and std::shared_ptr. This proposal seeks to add a new generic
RAII class which ties zero or more resources to a clean-up/completion routine which
is bound by scope, ensuring execution at scope exit (as the object is destroyed) unless
released or executed early or returned by moving its value.

3 Acknowledgements

• This proposal would not have been possible without the impressive work of Pe-
ter Sommerlad who produced the sample implementation during the Fall 2013
committee meetings in Chicago. Peter took what Andrew Sandoval produced for
N3677 and demonstrated the possibility of using C++14 features to make a single,
general purpose RAII wrapper capable of fulfilling all of the needs presented by
the original 4 classes (from N3677) with none of the compromises.

• Gratitude is also owed to members of the LEWG participating in the Fall 2013
(Chicago) meeting for their support, encouragement, and suggestions that have
led to this proposal.

1

2 N3830 2013-12-09

• Special thanks and recognition goes to OpenSpan, Inc. (http://www.openspan.com)
for supporting the production of this proposal, and for sponsoring Andrew L. San-
doval’s first proposal (N3677) and the trip to Chicago for the Fall 2013 LEWG
meeting.

• This proposal refers to N3829 for the implementation of std::apply(). It should
be voted in after N3829, because its description relies on the existence of apply()
in the standard library. However, it can also be applied independently with ap-
propriate changes to the specification.

• Thanks also to members of the mailing lists who gave feedback. Especially Zhihao
Yuan, and Ville Voutilainen.

4 Motivation and Scope

The quality of C++ code can often be improved through the use of ”smart” container
objects. For example, using std::unique_ptr or std::shared_ptr to manage pointers
can prevent common mistakes that lead to memory leaks, as well as the less common leaks
that occur when exceptions unwind. The latter case is especially difficult to diagnose
and debug and is a commonly made mistake – especially on systems where unexpected
events (such as access violations) in third party libraries may cause deep unwinding
that a developer did not expect. (One example would be on Microsoft Windows with
Structured Exception Handling and libraries like MFC that issue callbacks to user-
defined code wrapped in a try/catch(...) block. The developer is usually unaware
that their code is wrapped with an exception handler that depending on compile-time
options will quietly unwind their code, masking any exceptions that occur.)

This proposal introduces a new RAII ”smart” container called scoped_resource

which can bind a resource to ”clean-up” code regardless of type or the number of argu-
ments required by the ”clean-up” function.

4.1 Without Coercion

Existing smart pointer types can often be coerced into providing the needed functionality.
For example, std::unique_ptr could be coerced into invoking a function used to close
an opaque handle type. For example, given the following system APIs, std::unique_ptr
can be used to ensure the file handle is not leaked on scope exit:

typedef void *HANDLE; // System defined opaque handle type
typedef unsigned long DWORD;

#define INVALID_HANDLE_VALUE reinterpret_cast<HANDLE>(-1)

// Can’t help this, that’s from the OS

// System defined APIs
void CloseHandle(HANDLE hObject);

N3830 2013-12-09 3

HANDLE CreateFile(const char *pszFileName,

DWORD dwDesiredAccess,

DWORD dwShareMode,

DWORD dwCreationDisposition,

DWORD dwFlagsAndAttributes,

HANDLE hTemplateFile);

bool ReadFile(HANDLE hFile,

void *pBuffer,

DWORD nNumberOfBytesToRead,

DWORD*pNumberOfBytesRead);

// Using std::unique ptr to ensure file handle is closed on scope-exit:
void CoercedExample()

{

// Initialize hFile ensure it will be ”closed” (regardless of value) on scope-exit
std::unique_ptr<void, decltype(&CloseHandle)> hFile(

CreateFile("test.tmp",

FILE_ALL_ACCESS,

FILE_SHARE_READ,

OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL,

nullptr),

CloseHandle);

// Read some data using the handle
std::array<char, 1024> arr = { };

DWORD dwRead = 0;

ReadFile(hFile.get(), // Must use std::unique ptr::get()
&arr[0],

static_cast<DWORD>(arr.size()),

&dwRead);

}

While this works, there are a few problems with coercing std::unique_ptr into
handling the resource in this manner:

• The type used by the std::unique_ptr does not match the type of the resource.
void is not a HANDLE. (Thus the word coercion is used to describe it.)

• There is no convenient way to check the value returned by CreateFile and assigned
to the std::unique_ptr<void> to prevent calling CloseHandle when an invalid
handle value is returned. std::unique_ptr will check for a null pointer, but the
CreateFile API may return another pre-defined value to signal an error.

• Because hFile does not have a cast operator that converts the contained ”pointer”
to a HANDLE, the get() method must be used when invoking other system APIs
needing the underlying HANDLE.

4 N3830 2013-12-09

Each of these problems is solved by scoped_resource as shown in the following
example:

void ScopedResourceExample1()

{

// Initialize hFile ensure it will be ”closed” (regardless of value) on scope-exit
auto hFile = std::make_scoped_resource(

CloseHandle, // Clean-up API
CreateFile("test.tmp",

FILE_ALL_ACCESS,

FILE_SHARE_READ,

OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL,

nullptr), // The resource
INVALID_HANDLE_VALUE); // Don’t call CloseHandle if it failed!

// Read some data using the handle
std::array<char, 1024> arr = { };

DWORD dwRead = 0;

// cast operator makes it seamless to use with other APIs needing a HANDLE
ReadFile(hFile,

&arr[0],

static_cast<DWORD>(arr.size()),

&dwRead);

}

4.2 Multiple Parameters

In some cases it is convenient to invoke a ”clean-up” API that requires multiple parame-
ters. While this could be done using std::bind, it is not necessary with std::scoped_-

resource. Variadic template parameters and std::tuple make it possible to bind more
than one value to a resource’s clean-up function. In the example shown below, the sys-
tem defined clean-up function VirtualFree requires 3 parameters, only one of which is
the ”resource” (which in this case is a block of virtual memory.)

// System defined APIs:
void* VirtualAlloc(

void *pAddress,

size_t size,

unsigned int fAllocationType,

unsigned int fProtect);

bool VirtualFree(

void *pAddress,

size_t size,

unsigned int uiFreeType);

void ScopedResourceMultiExample()

N3830 2013-12-09 5

{

auto pVirtualMem = make_scoped_resource(

VirtualFree, // Clean-up function
VirtualAlloc(nullptr,

PAGE_SIZE,

MEM_COMMIT,

PAGE_READWRITE), // Resource (1st parameter)
0, // 2nd parameter to VirtualFree
MEM_RELEASE); // 3rd Parameter to VirtualFree

if(nullptr == pVirtualMem)

{

// Handle error...
}

.

.

.

}

In this example, VirtualFree will be invoked with all three required parameters on scope
exit. Though useless in this example, it is also possible to access the other parameters.
The cast operator will always cast to the type of and return the first parameter (the
real resource in this example), but the get<T>() method allows access to the other
parameters as in this example:

if(pVirtualMem.get<2>() != MEM_RELEASE)

{

// Something is not right!
}

4.3 Lambdas, etc.

It is also possible to use lambdas instead of a function pointer to initialize a scoped_-

resource. The following is a very simple and otherwise useless example:

void TalkToTheWorld(const std::string &strFarewell)

{

// Always say goodbye before returning,
// but if given a non-empty farewell message use it...
auto goodbye = std::make_scoped_resource([]() ->void

{

std::cout << "Goodbye world..." << std::endl;

});

auto altgoodbye = std::make_scoped_resource([](const std::string &strBye) ->void

{

std::cout << strFarewell.c_str() << std::endl;

6 N3830 2013-12-09

},

strFarewell);

if(false == strFarewell.empty())

{

goodbye.release(); // Don’t use goodbye!
}

else

{

altgoodbye.release(); // Don’t use the alternate
}

// Say hello first!
std::cout << "Hello World" << std::endl;

}

Though there is obviously no need for a scoped_resource for something this simple,
the example not only shows that a lambda may be used in place of a function, but also
that no ”resource value” is required if the ”clean-up” function takes no parameters. The
example also shows that a resource can be released (that is the clean-up function is not
called). Methods also exist to allow it to execute earlier than at scope exit.

4.4 Other Functionality

In addition to the basic features shown above, scoped_resource also provides vari-
ous operators (cast, ->, (), *, and accessor methods (get, get_deleter). The most
complicated of these is the invoke() method which allows the ”clean-up” function to
be executed early, just as it would be at scope exit. This method takes a parameter
indicating whether or not the function should again be executed at scope exit. There
is also a release_all() method which returns a std::tuple<R...> containing all of
the parameter values released, and a reset(R&&... resource) method that allows all
parameter values to be reset.

As already shown in the examples, the expected method of construction is to use one
of the two generator functions:

• make_scoped_resource(deleter, resources...) - non-checking instance, al-
lows multiple parameters.

• make_scoped_resource_checked(deleter, resource, invalid-value) - checked
instance, allowing only one resource which is validated prior to invoking the deleter
function.

4.5 What’s not included

scoped_resource does not do reference counting like shared_ptr does. Though there is
very likely a need for a class similar to scoped_resource that includes reference counting
it is beyond the scope of this proposal.

N3830 2013-12-09 7

One other limitation with scoped_resource is that while the resources themselves
may be reset(), the ”deleter” or ”clean-up” function/lambda can not be altered. Gen-
erally there should be no need to reset the deleter, and especially with lambdas type
matching would be difficult or impossible.

5 Impact on the Standard

This proposal is a pure library extension. A new header, <scope_resource> is pro-
posed, but it does not require changes to any standard classes or functions. It does not
require any changes in the core language, and it has been implemented in standard C++
conforming to c++14.

6 Design Decisions

6.1 General Principles

• Simplicity - Using scoped_resource should be nearly as simple as using an un-
wrapped type. The generator functions, cast operator, and accessors all enable
this.

• Transparency - It should be obvious from a glance what each instance of a scoped_-

resource object does. By binding the resource to it’s clean-up routine, the decla-
ration of scoped_resource makes its itention clear.

• Resource Conservation and Lifetime Management - Using scoped_resource makes
it possible to ”allocate it and forget about it” in the sense that deallocation is
always accounted for after the scoped_resource has been initialized.

• Exception Safety - Exception unwinding is one of the primariy reasons that scoped_-
resource is needed. Nevertheless the goal is to introduce a new container that
will not throw during construction of the scoped_resource itself.

• Flexibility - scoped_resource is designed to be flexible, allowing the use of lamb-
das or existing functions for clean-up of resources, as well as allowing for zero or
more parameters. This is a vast improvement over the originally proposed classes
in N3677.

6.2 Prior Implementations

Please see N3677 from the May 2013 mailing (or http://www.andrewlsandoval.com/scope -
exit/) for the previously proposed solution and implementation. Discussion of N3677 in
the (Chicago) Fall 2013 LEWG meeting led to the creation of scoped_resource with the
general agreement that such an implementation would be vastly superior to N3677 and

8 N3830 2013-12-09

would find favor with the LEWG. Professor Sommerlad produced the implementation
backing this proposal during the days following that discussion.

N3677 has a more complete list of other prior implementations.

6.3 Open Issues to be Discussed

• Should scoped_resource be move-able like unique_ptr and even be named unique_-

resource ?

• Should there be a companion class for sharing the resource shared_resource ?
(Peter thinks no. Ville thinks it could be provided later anyway.)

• Is the set of provided overloaded operators really useful ? Which could be removed
without harm ? Is there something missing ? There is doubt if the pointer special
handling and conversion operator are really required. However, the original pro-
posal by Andrew provided that functionality to enable use of the wrapper where
the wrapped resource would be used.

• Is scoped resource lightweight enough, or should the mechanics for early-release
and re-assignment be omitted ?

7 Technical Specifications

7.1 Header

In section [utilities.general] add an extra row to table 44

Table 1: Table 44 - General utilities library summary

Subclause Header

20.nn Scoped Resource <scoped_resource>

7.2 Additional section

Add a new section to chapter 20 introducing the contents of the header scoped_-

resource.

7.3 Scoped Resource Wrapper [utilities.scoped resource]

This subclause contains infrastructure for a generic RAII resource wrapper.
Header <scoped_resource> synopsis

N3830 2013-12-09 9

1 The header <scoped_resource> defines the class template scoped_resource, the enu-
meration invoke it and function templates to create its instances.

namespace std {

enum class invoke_it

{

once,

again

};

template<typename DELETER, typename ... R>

class scoped_resource

{

DELETER deleter; // exposition only
std::tuple<R...> resource; // exposition only
bool execute_on_destruction; // exposition only
scoped_resource& operator=(scoped_resource const &)=delete;

scoped_resource(scoped_resource const &)=delete;

public:

// construction
explicit

scoped_resource(DELETER&& deleter, R&&... resource, bool shouldRun = true) noexcept;

explicit

scoped_resource(const DELETER& deleter, const R&... resource, bool shouldRun=true) noexcept;

// move
scoped_resource(scoped_resource &&other) noexcept;

scoped_resource& operator=(scoped_resource &&other) noexcept;

// resource release
~scoped_resource();

void invoke(invoke_it const strategy = invoke_it::once) noexcept;

see below release() noexcept;

void reset(R... newresource) noexcept;

// resource accessors
operator see below () const noexcept; // resource type cast

template<size_t n = 0>

see below get() const noexcept;

see below operator*() const noexcept;

see below operator->() const noexcept;

// deleter access
const DELETER & get_deleter() const noexcept;

};

// factory functions
template<typename DELETER, typename ... R>

auto make_scoped_resource(DELETER t, R ... r) {

return scoped_resource<DELETER, R...>(std::move(t), std::move(r)...);

10 N3830 2013-12-09

}

template<typename DELETER, typename RES>

auto make_scoped_resource_checked(DELETER t, RES r, RES invalid) {

auto shouldrun=(r != invalid);

return scoped_resource<DELETER, RES>(std::move(t), std::move(r), shouldrun);

}

} // namespace std

2 [Note: scoped_resource is meant to be a universal RAII wrapper for resource handles
provided by an operating system or platform. Typically, such resource handles come with
a factory function and a release function and are of trivial type. The release function
together with the result of the factory function is used to create a scoped resource
variable, that on destruction will call the release function. Access to the underlying
resource handle is achieved through a set of convenience functions or type conversion.
— end note]

7.3.1 Class Template scoped_resource

[scoped resource.scoped resource]

explicit

scoped_resource(DELETER&& deleter, R&&... resource,

bool shouldRun = true) noexcept;

explicit

scoped_resource(const DELETER& deleter, const R&... resource,

bool shouldRun = true) noexcept;
1 Requires: deleter is a noexcept function (object) taking resource... as arguments.
2 Effects: construct a scoped resource that will call deleter(resource...) on its de-

struction if shouldRun is true.

scoped_resource(scoped_resource &&other) noexcept;
3 Effects: move construct a scoped resource by moving members. Sets other.execute_-

on_destruction to false.

scoped_resource& operator=(scoped_resource &&other) noexcept;
4 Effects: this->invoke(); moves all members from other. Sets other.execute_on_-

destruction to false.

~scoped_resource();
5 Effects: this->invoke();

void invoke(invoke_it const strategy = invoke_it::once) noexcept;
6 Effects:

if (execute_on_destruction)

apply(deleter,resource);

execute_on_destruction=(strategy==invoke_it::again);

N3830 2013-12-09 11

see below release() noexcept;
7 Effects: execute_on_destruction=false;
8 Returns: resource.

Return type is tuple<R...>, if sizeof(R...)>1 or tuple_element_t<0,tuple<R...>>
if sizeof(R...)==1, or void.

void reset(R... newresource) noexcept;
9 Effects:

this->invoke(invoke_it::again);

resource=make_tuple(move(newresource)...);

10 [Note: This function takes the role of an assignment of a new resource. — end note]

operator see below () const noexcept;
11 Returns: get<0>(resource).

Return type and operator name is the underlying type tuple_element_t<0,tuple<R...>>.

template<size_t n = 0>

see below get() const noexcept;
12 Returns: get<n>(resource).

Return type is tuple_element_t<n,tuple<R...>> const &.
[Note: An implementation might chose auto const & return type deduction. — end
note]

see below operator*() const noexcept;

see below operator->() const noexcept;
13 Requires: These functions are only available if is_pointer<tuple_element_t<0,tuple<R...>>>::value

is true. The second one only applies if the return type is a class or union type.
14 Returns: *get<0>(resource)

Return type is decltype(*get<0>(resource)).

const DELETER & get_deleter() const noexcept;
15 Returns: deleter

8 Appendix: Example Implementation

// Copyright Peter Sommerlad and Andrew L. Sandoval 2012 - 2013.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE 1 0.txt or copy at
// http://www.boost.org/LICENSE 1 0.txt)

//
// scoped resource - sample implementation
// Written by Professor Peter Sommerlad
// In response to N3677 (http://www.andrewlsandoval.com/scope exit/)
// which was discussed in the Fall 2013 ISO C++ LEWG committee meeting.
//

12 N3830 2013-12-09

// scoped resource is a more versatile replacement for the 4 RAII classes
// presented in N3677.
//
// Subsequent (editing, etc.) work by:
// -Andrew L. Sandoval

#ifndef SCOPED_RESOURCE_H_

#define SCOPED_RESOURCE_H_

#include <cstddef>

#include <tuple>

#include <type_traits>

#include <utility>

// should actually be part of the standard, if it isn’t already.
namespace apply_ns{

using namespace std;

// from C++14 standard draft example, doesn’t work perfect, but fixable here
// fixed by removing reference from std::tuple size¡Tuple¿
template<typename F, typename Tuple, size_t ... I>

auto apply_impl(F&& f, Tuple&& t, index_sequence<I...>)

//noexcept(noexcept(forward¡F¿(f)(get¡I¿(forward¡Tuple¿(t))...)))
{

return forward<F>(f)(get<I>(forward<Tuple>(t))...);

}

template<typename F, typename Tuple>

auto apply(F&& f, Tuple&& t)

//noexcept(noexcept(apply impl(forward¡F¿(f), forward¡Tuple¿(t), make index sequence¡tuple -
size¡decay t¡Tuple¿¿::value¿)))
{

using Indices = make_index_sequence<tuple_size<decay_t<Tuple>>::value>;

return apply_impl(forward<F>(f), forward<Tuple>(t), Indices{});

}

}

// something like the following should be available in the standard, if not it should
// tuple element gets problems with the empty case...
namespace select_first{

// the following idea doesn’t work, because it instantiates tuple element with an empty tuple
/∗
template <typename ... L>
using first type =std:: conditional <sizeof ...(L)!=0,typename std:: tuple element<0,std :: tuple<L...>>::type,void>::type ;
∗/

template <typename ... L> struct first_type_or_void;

template <typename F, typename ...L>

struct first_type_or_void<F,L...>{

using type=F;

};

N3830 2013-12-09 13

template <> struct first_type_or_void<>{

using type=void;

};

template <typename ...L>

using first_type_or_void_t = typename first_type_or_void<L...>::type;

}

// shouldn’t be e member type of scoped resource, because it will be impossible to spell
enum class invoke_it { once, again };

// provide it as variadic template
template<typename DELETER, typename ... R>

class scoped_resource {

DELETER deleter; // deleter must be void(R...) noexcept compatible
std::tuple<R...> resource;

bool execute_on_destruction;

scoped_resource& operator=(scoped_resource const &)=delete;

scoped_resource(scoped_resource const &)=delete; // no copies!
auto do_release(std::true_type is_size_one){

execute_on_destruction = false;

return std::get<0>(std::tuple_cat(resource,std::tuple<bool>{}));

// avoid compile errors if sizeof(R...) is 0.
}

auto do_release(std::false_type is_some_other_size){

execute_on_destruction = false;

return resource;

}

public:

scoped_resource(scoped_resource &&other)

:deleter{std::move(other.deleter)}

,resource{std::move(other.resource)}

,execute_on_destruction{other.execute_on_destruction}{

other.execute_on_destruction=false;

}

scoped_resource& operator=(scoped_resource &&other){

this->invoke();

deleter=std::move(other.deleter);

resource=std::move(other.resource);

execute_on_destruction=other.execute_on_destruction;

other.execute_on_destruction = false;

return *this;

}

explicit

scoped_resource(DELETER deleter, R... resource, bool shouldrun=true) noexcept

: deleter{std::move(deleter)}

, resource{std::make_tuple(std::move(resource)...)}

, execute_on_destruction{shouldrun}{}

~scoped_resource() {

invoke(invoke_it::once);

}

14 N3830 2013-12-09

auto release(){

return do_release(std::conditional_t<sizeof...(R)==1,

std::true_type,std::false_type>{});

}

// reset – only resets the resource, not the deleter!
void reset(R... newresource) noexcept {

invoke(invoke_it::again);

resource = std::make_tuple(std::move(newresource)...);

}

// get - for cases where cast operator is undesirable (e.g. as a ... parameter)
template<size_t n = 0>

auto const & get() const noexcept {

return std::get<n>(resource);

}

//
// cast operator
// provide that for the single/first value case
operator select_first::first_type_or_void_t<R...>() const noexcept {

return get();

}

// ?? are the following operators useful?
// operator-¿ for accessing members on pointer types

std::add_lvalue_reference_t<

std::remove_pointer_t<

select_first::first_type_or_void_t<R...>>>

operator->() const {

return std::get<0>(resource);

}

//
// operator* for dereferencing pointer types

std::add_lvalue_reference_t<

std::remove_pointer_t<

select_first::first_type_or_void_t<R...>>>

// auto const & should be better... but clang crashes
operator*() const {

return *get(); // If applicable
}

const DELETER& get_deleter() const noexcept {

return deleter;

}

void invoke(invoke_it const strategy = invoke_it::once) noexcept {

if (execute_on_destruction) {

apply_ns::apply(deleter, resource);

N3830 2013-12-09 15

}

execute_on_destruction = strategy==invoke_it::again;

}

};

template<typename DELETER, typename ... R>

auto make_scoped_resource(DELETER t, R ... r) {

return scoped_resource<DELETER, R...>(std::move(t), std::move(r)...);

}

// the following convenience factory is intended for a single resource only, i.e. file descriptor
template<typename DELETER, typename RES>

auto make_scoped_resource_checked(DELETER t, RES r, RES invalid) {

auto shouldrun=(r != invalid);

return scoped_resource<DELETER, RES>(std::move(t), std::move(r), shouldrun);

}

#endif /∗ SCOPED RESOURCE H */

