
N3559

1

Proposal for Generic (Polymorphic) Lambda Expressions

(Revision 2)

Document no: N3559

Faisal Vali Herb Sutter Dave Abrahams

2013-03-17

Abstract

This document revises N3418: Proposal for Generic (Polymorphic) Lambda
Expressions and incorporates feedback from the Evolution Working Group
(Portland, October 2012). In this revision we propose the two features that
received no opposing votes from the EWG (with the other features described
in a separate document). Specifically, we propose that auto be required in a
lambda-expression's parameter-declaration-clause to identify a generic
lambda; and that a generic lambda with no lambda-captures contain a
conversion function template to an appropriate pointer-to-function. After a
brief discussion of the features (with details deferred to the Appendices), we
describe standard wording. All the features proposed in this document have
been implemented using clang.

0 Changes

The main differences between the initial proposal (N3418) and this document are:

– We only included those features that received no against votes

– auto is now required as a placeholder per Portland EWG direction

– Jason Merill's Return Type Deduction Proposal (N3386) that was accepted
 by the EWG, is referred to where needed to describe semantics

– We refer to our implementation experience using a fork (2012-07-11) of clang

– We refer to new user experience

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3418.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3418.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3386.html
http://faisalv.github.com/clang-glambda/
http://yapb-soc.blogspot.com/2012/12/clang-and-generic-polymorphic-lambdas.html

N3559

2

1 Introduction

This document proposes generic lambda expressions and revises N3418: Proposal for
Generic (Polymorphic) Lambda Expressions, which should be referenced for background and
motivation. Today’s C++11 lambda expression concisely creates an instance of a class
having a non-template function call operator. We propose a pure extension of C++11 lambda
syntax that creates an instance of a class having a function call operator template.

Here follow some examples of the proposed syntax extension in use:

 // 'Identity' is a lambda that accepts an argument of any type and
 // returns the value of its parameter.

auto Identity = [](auto a) { return a; };
int three = Identity(3);
char const* hello = Identity("hello");

 // Conversion to function pointer for capture‐less lambdas

int (*fpi)(int) = Identity;
char (*fpc)(char) = Identity;

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3418.pdf

N3559

3

2 Proposal

We are proposing the following pure extensions to C++11:

1 Allow auto type-specifier to indicate a generic lambda parameter
2 Allow conversion from a capture-less generic lambda to an appropriate pointer-to-

function

Each of these is discussed in some detail in the subsections below.

2.1 Allow auto type-specifier to indicate a generic lambda parameter

If the initial type-specifier within the decl-specifier-seq of a lambda’s parameter-
declaration is auto, the expression creates a generic lambda closure. A generic closure
type is just like a familiar C++11 closure type except that its function call operator is a
member function template. In the operator’s parameters, each use of auto is replaced by
a unique template type parameter, which is added to the operator’s template-parameter-
list.

For example, this generic lambda-expression containing statement:

auto L = [](const auto& x, auto& y){ return x + y; };

might result in the creation of a closure type, and object that behaves similar to the struct
below:

struct /* anonymous */
{
 template <typename T, typename U>
 auto operator()(const T& x, U& y) const // N3386 Return type deduction
 { return x + y; }
} L;

In our initial proposal, we had recommended omitting auto, similar to syntax supported
by other statically typed programming languages (D, C#, Java). A straw poll conducted
by the EWG on 2012-10-16 showed that of the eighteen people voting, the majority
either strongly favored (12/18) or favored (4/18) the mandatory use of auto, with no votes
against or strongly against. On the other hand, omitting auto or making it optional had
five out of eighteen members voting strongly against. Therefore we now propose that
auto be mandatory. We recognize that auto can be replaced in the future by a
placeholder (for e.g. '+') if further brevity is deemed necessary, but we do not propose this
at this time. For further discussion regarding this decision, see Appendix B.

http://wiki.edg.com/twiki/bin/view/Wg21portland2012/EvolutionWorkingGroup

N3559

4

2.2 Allow conversion from a capture-less generic lambda to an
appropriate pointer-to-function

A generic lambda with no lambda-captures shall have a public conversion function
template to a pointer-to-function. The conversion function template shall be non-virtual,
non-explicit and const (similar to the one for non-generic lambdas). It shall return the
address of a function that, when invoked, has the same effect as invoking the generic
lambda's function call operator with arguments of the same type as the type of the
parameters of the function-pointer being initialized by the generic lambda.

For example, this generic lambda-expression containing initialization:

int (*fp)(int, char) = [](auto a, auto b){ return a + b; };

might result in the creation of a closure type, and object that behaves similar to the struct
below:

struct /* anonymous */
{
 template<class A, class B>
 auto operator()(A a, B b) const // N3386 Return Type Deduction
 { return a + b; }

 private:
 // Note: We don't want to simply forward the call to operator()
 // since forwarding is not entirely transparent, and could
 // introduce visible side‐effects. To produce the
 // desired semantics we copy the parameter‐clause
 // and body exactly
 template<class A, class B>
 static auto __invoke(A a, B b) { // N3386 Return Type Deduction
 return a + b;
 }

 template<class A, class B, class R>
 using fptr_t = R (*) (A, B);

 public:
 template<class A, class B, class R>
 operator fptr_t<R, A, B>() const {
 return &__invoke;
 }
} L;

int (*fp)(int, char) = L;

Template Argument Deduction is used to deduce the template-arguments for the
conversion function template when a pointer-to-function is initialized with a generic
lambda. In returning an address to a function, the instantiation of the corresponding body
of the function call operator template specialization occurs.

N3559

5

3 Implementation Experience

Generic Lambda expressions as described in this document have been implemented using
a fork (2012-11-07) of clang with commits posted on github.

4 User Experience

Our Test Suite and User Experience of the features proposed in this document (and other
generic lambda extensions) can be found at the following links:
○ https://github.com/faisalv/clang-glambda/tree/master/test/CXX/generic-lambdas
○ https://gist.github.com/4347130
○ http://yapb-soc.blogspot.com/2012/12/clang-and-generic-polymorphic-lambdas.html

http://faisalv.github.com/clang-glambda/
https://github.com/faisalv/clang-glambda/tree/master/test/CXX/generic-lambdas
https://gist.github.com/4347130
http://yapb-soc.blogspot.com/2012/12/clang-and-generic-polymorphic-lambdas.html

N3559

6

5 Changes to the Working Draft

Change in 7.1.6.4 dcl.spec.auto paragraph 1:

The auto type-specifier signifies that the type of a variable being declared shall be
deduced from its initializer or that a function declarator shall include a trailing-return-
type or that a lambda is a generic lambda.

Change in 7.1.6.4 dcl.spec.auto, Add after paragraph 2:

Otherwise, if the auto type-specifier appears as one of the decl-specifiers in the decl-
specifier-seq of a parameter-declaration of a lambda-expression, the lambda is a generic
lambda (5.1.2 expr.prim.lambda).

Change in 5.1.2 expr.prim.lambda paragraph 5:

The closure type for a non-generic lambda-expression has a public inline function call
operator (13.5.4) whose parameters and return type are described by the lambda-
expression’s parameter-declaration-clause and trailing return-type respectively. For a
generic lambda, the closure type has a public inline function call operator member
template (14.5.2 temp.mem) whose template-parameter-list consists of one invented type
template-parameter for each occurrence of auto in the lambda's parameter-declaration-
clause, in order of appearance. The return type and function parameters of the function
call operator template are derived from the lambda-expression's trailing return-type and
parameter-declaration-clause by replacing each occurrence of auto in the decl-specifiers
by the name of the corresponding invented template-parameter. This function call
operator or operator template is declared const (9.3.1) if and only if the lambda
expression’s parameter-declaration-clause is not followed by mutable. It is neither
virtual nor declared volatile. Default arguments (8.3.6) shall not be specified in the
parameter-declaration-clause of a lambda declarator. Any exception-specification
specified on a lambda-expression applies to the corresponding function call operator or
operator template. An attribute-specifier-seq in a lambda-declarator appertains to the
type of the corresponding function call operator or operator template. [Note: Names
referenced in the lambda-declarator are looked up in the context in which the lambda-
expression appears. —end note]

Change in 5.1.2 expr.prim.lambda paragraph 6:

The closure type for a non-generic lambda-expression with no lambda-capture has a
public non-virtual non-explicit const conversion function to pointer to function pointer-
to-function having the same parameter and return types as the closure type’s function call
operator. The value returned by this conversion function shall be the address of a
function that, when invoked, has the same effect as invoking the closure type’s function
call operator. For a generic lambda with no lambda-capture, the closure type has a
public non-virtual non-explicit const conversion function template to pointer-to-
function. The conversion function template has the same invented template-parameter-
list, and the pointer-to-function has the same parameter and return types as the function
call operator template. If the generic lambda has no trailing-return-type, deduction of the

N3559

7

pointer-to-function (14.8.2.3 temp.deduct.conv) shall behave as if a type template-
parameter used to specify the return type of the pointer-to-function was added to the end
of the conversion function template's template-parameter-list and used during template
argument deduction. The value returned by any given specialization of this conversion
function template shall be the address of a function that, when invoked, has the same
effect as invoking the generic lambda's corresponding function call operator template
specialization. [Note: This will result in the implicit instantiation of the generic lambda's
body. Return type deduction (5.1.2 expr.prim.lambda) is done if no trailing-return-type
is specified. The instantiated generic lambda's return type and parameter types shall
match the deduced return type and deduced parameter types of the pointer-to-function —
end note] [Example:
 // ill‐formed: int (char) does not match char (char)
 int (*fp)(char) = [](auto a) { return a; };
— end example]

Change in 5.1.2 expr.prim.lambda paragraph 11:

If a lambda-expression has an associated capture-default and its compound-statement
odr-uses (3.2) this or a variable with automatic storage duration and the odr-used entity
is not explicitly captured, then the odr-used entity is said to be implicitly captured;
Additionally, for a generic lambda, if its compound-statement names a variable with
automatic storage duration in a potentially-evaluated expression (3.2 basic.def.odr) where
the enclosing full-expression is dependent (14.6.2 temp.dep) on a generic lambda
parameter and that variable is not explicitly captured, then the variable is said to be
implicitly captured; all such implicitly captured entities shall be declared within the
reaching scope of the lambda expression. [Note: The implicit capture of an entity by a
nested lambda-expression can cause its implicit capture by the containing lambda-
expression (see below). Implicit odr-uses of this can result in implicit capture. — end
note]

Change in 5.1.2 expr.prim.lambda paragraph 12:

An entity is captured if it is captured explicitly or implicitly. An entity captured by a
lambda-expression is odr-used (3.2) in the scope containing the lambda-expression. If
this is captured by a local lambda expression, its nearest enclosing function shall be a
non-static member function. If a lambda-expression odr-uses (3.2) this or a variable with
automatic storage duration from its reaching scope, that entity shall be captured by the
lambda-expression. Additionally, for a generic lambda, if its compound-statement names
a variable with automatic storage duration in a potentially-evaluated expression (3.2
basic.def.odr) where the enclosing full-expression is dependent (14.6.2 temp.dep) on a
generic lambda parameter, that variable shall be captured by the lambda-expression. If a
lambda-expression captures an entity and that entity is not defined or captured in the
immediately enclosing lambda expression or function, the program is ill-formed.

Change in 14.5.2 temp.mem paragraph 2:

A local class of non-closure type shall not have member templates.

N3559

8

6 Acknowledgments

We thank all those who read initial versions of this draft, who participated in discussions on
the various forums and commented on it.

In addition we would like to thank:

Jens Maurer for his indispensable assistance. Without him, this proposal would have
been less polished and more solecistic; it would also have lacked standard wording.

Doug Gregor for walking us through the Dimholt road and past the shadowy
paradoxes that once haunted lambda captures.

Scott Prager was instrumental in testing, discovering bugs and providing active
feedback on our implementation. His blog article on our implementation of generic
lambdas is insightful and thought provoking.

Adam Butcher is the author of the GCC patch mentioned in the earlier revision of this paper
[He was incorrectly identified as Arthur Butcher].

This proposal draws much from all the initial lambda (generic and nongeneric) proposals put
forth by Jeremiah Willcox, Doug Gregor, Jaako Jarvi, John Freeman & Lawrence Crowl.

http://yapb-soc.blogspot.com/2012/12/clang-and-generic-polymorphic-lambdas.html

N3559

9

7 References

● [Willcock2006] J. Willcock, J Järvi, D Gregor, B Stroustrup and A Lumsdaine. Lambda expressions and

closures for C++ N1968=06-0038, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22,
Programming Language C++, 2006.

● [Järvi2007] J Järvi, J Freeman, and L Crowl. Lambda expressions and closures for C++ (Revision 1)
N2329=07-00189, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming
Language C++, 2007

● N3418: F Vali, H Sutter, D Abrahams. Proposal for Generic (Polymorphic) Lambda Expressions
● N3386: J Merrill. Return type deduction for normal functions

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3418.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3386.html

N3559

10

Appendix A: The Gregor Capture Paradox – template
Variation1 and Name Resolution Issues

While in Portland, right after the Generic Lambda Discussion, Doug Gregor devised
an interesting paradox that could arise with generic lambdas, which upon our request,
he emailed to us (included with his permission):

Given this code:

template<bool C, typename T, typename U> struct if_;

template<typename T, typename U> struct if_<false, T, U> {
 typedef U type;
};

template<typename T, typename U> struct if_<true, T, U> {
 typedef T type;
};

struct X {
 X(int);
 operator int() const;
};

template<bool C>
constexpr typename if_<C, int, X>::type
f(typename if_<C, int, const int&>::type arg) { return arg; }

void test() {
 const int x = 17;

 auto g = [](auto a) {
 const int i = f<sizeof(a) == sizeof(char)>(x);
 };
 // g('a'); // okay: does not capture x
 // g(17); // error: captures x
}

Whether the auto assigned to 'g' is well-formed or not depends on
whether 'x' needs to be captured. Unfortunately, whether x needs to
be captured depends on the type of 'a', which can vary from one use to
another. That's not implementable, given that the capture list needs
to be determined when the lambda is created and initialized, long
before it is invoked.

1 Not to be confused with the Gregor Capture Paradox – typeid Variation [c++std-core-21303], Core Issue 1468

http://accu.org/cgi-bin/wg21/message?wg=core&msg=21303
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_toc.html

N3559

11

The suggested resolution would be for generic lambdas (or all
lambdas?) to capture any local variable from an enclosing scope that
is named within the body of the lambda, rather than only capturing
those local variables from an enclosing scope that are odr-used within
the body. That would make this code always ill-formed, but if one
turned the lambda into [=] or [&], it would work fine (by always
capturing 'x').

After a private email exchange between Doug and us, we all agreed that an initial
reasonable resolution might be:

generic lambdas to capture any local variable from an enclosing scope that
is named in a potentially-evaluated context within the body of the lambda.

In our implementation, Doug's example results in the following error:

test‐doug.cpp:41:48: error: variable 'x' cannot be implicitly
captured in a lambda with no capture‐default specified
 const int i = f<sizeof(a) == sizeof(char)>(x);
 ^
test‐doug.cpp:37:12: note: 'x' declared here
 const int x = 17;
 ^
test‐doug.cpp:39:11: note: lambda expression begins here
 auto g = [](auto a) {

 It compiles fine if a default capture (or an explicit capture of 'x') is specified.

Since only captureless lambdas have a conversion to a pointer to a function, it might
be useful to permit as many possible captureless lambdas that we can reliably and
unambiguously identify at definition time:
For e.g consider:

void f2(int i) { }
void test() {
 const int x = 17;

 auto g = [](auto a) {
 const int i = f2(x);
 };
 g('a'); // okay: does not capture x in our implementation
}

Therefore it might be worthwhile to consider the following notion:

generic lambdas to capture any local variable from an enclosing scope that
is named in a potentially-evaluated context, and can not unambiguously be
resolved as non odr-used at the point of definition of the lambda within the
body of the lambda.

It is also worth reminding readers that dependent name resolution in generic lambdas
would work as expected. Consider:

N3559

12

template<class T> void f_ADL(T t) {
 cout << "f_ADL(T)\n";
}
auto test2 = []() {
 auto g = [](auto a) {
 f_ADL(a);
 };
 return g;
};

struct Y { };

void f_ADL(Y y) {
 cout << "f_ADL(Y)\n";
}

int main() {
 auto g = test2();
 g('a');
 g(Y()); // ADL at instantiation‐context finds f_ADL(Y)
}

As one would expect with dependent name resolution within templates, our
implementation prints:
 f_ADL(T)

f_ADL(Y)

As required by the standard, if two different points of instantiation result in a violation
of the ODR rule, the program is ill-formed, no diagnostic required.

N3559

13

Appendix B: Discussion regarding omitting auto

It seems the main arguments against omitting auto are:
1 Ambiguity concerns (since identifiers can be omitted in lambda parameters)
2 Readability concerns
3 Stylistic concerns (in the setting of Concepts [still being actively designed])

While reasonable people will disagree about the readability of code that omits auto, we
feel the issue of ambiguity (does the parameter represent the name of a generic lambda
parameter, or the type of a non-generic parameter with its name omitted?) deserves
attention. Consider the following example posted on 2012-12-20 by Nevin Liber on std-
proposals (which we have modified only to give the lambda a name by inserting the line
'auto schrodinger =' below):

struct Missiles
{
 Missiles(int numberToCreate) { /*... */ }
 Missiles& operator()(int numberToLaunch) { /* ... */ }
};

auto schrodinger =
 [](Missiles){ return Missiles(1); };

This behavior has changed silently under the proposal.

In C++11, the variable schrodinger above unambiguously represents a non-generic
lambda with an unnamed parameter of type Missiles that returns a value of type Missiles.
If auto is allowed to be omitted, an interesting superposition might arise: Is schrodinger
a generic lambda, a non-generic lambda, or an error (or all three until actually invoked
quantum-physics-humor-alert ;)?

If the definition of struct Missiles is omitted, schrodinger would represent a generic
lambda – this much is clear. What is less clear is what schrodinger should represent if
struct Missiles is not omitted (and auto is not required to indicate a generic lambda
parameter). While one could try and formulate rules to disambiguate the situation (for
e.g. a generic parameter shall not be named the same name as a type-name that can be
found in its context), and while there is precedent in C++ for entangled code (consider:
int *a; struct a { }; int (*fp)(a);) we feel that introducing further potential for
such nuanced entanglement might increase complexity while adding little benefit
(considering there was significant disagreement about the wins of omitting auto).
Therefore, as the EWG favored in Portland, we now propose that auto be required.

Interestingly, a suggestion has been made by Richard Smith on std-proposals that we
consider reversing the decision that led to the variable identifier being optional in a non-
generic lambda parameter. We note that this would avoid the above ambiguity, and we
would be in favor of this, if the rest of the EWG found the solution palatable. This

https://groups.google.com/a/isocpp.org/d/msg/std-proposals/Xck6f50kOjU/4YmmmVJr89oJ
https://groups.google.com/a/isocpp.org/group/std-proposals/msg/85d33f8e60f9e8b2?dmode=source&output=gplain&noredirect&pli=1

N3559

14

direction can also be pursued at a later date, but it might be best to resolve this sooner
than later.

N3559

15

Appendix C: Inconsistency between auto variable
deduction and generic parameter deduction

It is worth noting that since auto lambda parameters are converted into invented
template-parameters and added to the template-parameter-list of the generic lambda's
function call operator template, the semantics of auto lambda parameters is defined
entirely in terms of deducing template arguments from a function call
(temp.deduct.call, 14.8.2.1) and not auto deduction semantics (dcl.spec.auto, 7.1.6.4
para 6). This is only relevant when deducing from a braced-init-list, since in all other
regards, the deduction semantics are identical. In the setting of a braced-init-list,
auto deduction replaces: auto IL = { 1, 2, 3} with std::initializer_list<T>
IL = { 1, 2, 3 } and then deduces against T. In the setting of deducing template
arguments from a function call, this does not work.

For e.g (in our implementation)

auto IL = { 1, 2, 3}; // ok
 ([](auto IL) { return 3; })({1, 2, 3}); // error

We recognize that this is confusing, and propose that a paper be written to unify these
semantics.

	Abstract
	0 Changes
	1 Introduction
	2 Proposal
	2.1 Allow auto type-specifier to indicate a generic lambda parameter
	2.2 Allow conversion from a capture-less generic lambda to anappropriate pointer-to-function

	3 Implementation Experience
	4 User Experience
	5 Changes to the Working Draft
	6 Acknowledgments
	7 References
	Appendix A: The Gregor Capture Paradox – templateVariation1 and Name Resolution Issues
	Appendix B: Discussion regarding omitting auto
	Appendix C: Inconsistency between auto variablededuction and generic parameter deduction

