
Stroustrup N3202=10-0192 Noexcept

1

N3202=10-0192
11/07/2010

Bjarne Stroustrup
Email: bs@cs.tamu.edu

To which extent can noexcept be deduced?

Abstract
If we fail to deem a function noexcept even though it doesn’t throw the worst that can happen is
that sub-optimal, but still correct, code will be executed. Thus, we should craft the simplest rules
that render the highest number of functions that does not throw noexcept, while never implicitly
make throwing code noexcept. Given the rules suggested here, a noexcept function can only
throw if a programmer specifically marked a throwing function noexcept.

Introduction
As an introduction, let me reproduce a (slightly modified) version of my initial comment to
Thorsten’s paper:

http://wiki.dinkumware.com/twiki/pub/Wg21batavia/EvolutionWorkingGroup/reconsider_noexcept.ht
ml

My suggested rules below are a refinement of the sentiment in the posting.

On 11/2/2010 9:18 AM, Thorsten Ottosen wrote:

We may summarize the problems with the current noexcept approach as follows:

• users will be annoyed that the compiler cannot deduce obvious cases, e.g. =default
constructors

• simple interfaces are cluttered with non-essential information, e.g. constexpr
functions

• almost every statement in function templates leak into the noexcept declaration
• a user-maintained noexcept increases the likelihood that the specification is not

correct. In turn, this implies (a) an increased chance that client code terminates
unexpectedly, or (b) that optimization opportunities are lost. (Note that providing
correct warnings is also undecidable.)

• client code can still change (fail to compile, different runtime behavior) if noexcept is
added or removed from a library.

This is - I think - true and worrying. His examples are very persuasive. His suggestion,
which I can be boiled down to:

mailto:bs@cs.tamu.edu�
http://wiki.dinkumware.com/twiki/pub/Wg21batavia/EvolutionWorkingGroup/reconsider_noexcept.html�
http://wiki.dinkumware.com/twiki/pub/Wg21batavia/EvolutionWorkingGroup/reconsider_noexcept.html�

Stroustrup N3202=10-0192 Noexcept

2

 “an inline function is (implicitly) noexcept unless it contains a throw or a call of a non-
noexcept function.”

This is simple

• it requires no flow analysis - if did I would strongly object.
• it does not require recompilation of every user if a potentially throwing operation is

added to or removed from a function - if it did I would strongly object

Note that a change to the implementation of a function still "bubbles up" to its "interface" - it just
does so implicitly and mostly invisibly to the user. Code that selects on noexcept may change
meaning and code that does not may throw.

The proposal is focused on inline functions. I think that's a mistake (an unnecessary
complication). The ability to deduce noexcept does not depend on inlining. The two issues are
orthogonal. Independently of "inline", we can

• deduce noexcept from the function definition
• have a declaration separated from the function definition (implying a need to reconcile

them)

First: in general we cannot know if a function throws - that would require (perfect) flow analysis
(and in the worst case solving the halting problem). Second: we cannot build systems where an
apparently small change in a function forces recompilations of all users. For example:

 void f(int i)
 {
 // int a[sz]; // before
 vector<int> a(sz); // after
 a[i] = 7;
 // ...
 }

Before, f() may have been noexcept; afterwards, it is not: vector may throw.

I know that some wants static checking of noexcept, but I don't and I consider static checking
not an option for C++0x. I don't even want that discussion now.

So, what does noexcept mean? It states what a caller may assume of a called function and if the
assumption is wrong (and the called function unexpectedly throws) the program terminates. If
that's all (and I think it should be), there is no reason to disallow mismatches between a
declaration and a definition: An implementation may warn if it finds "mismatches", but unless an

Stroustrup N3202=10-0192 Noexcept

3

implementation can actually prove that a noexcept will get violated for every execution there is
no compile or link time error.

Seen as this noexcept (deduced or explicit) can be used to speed up execution and to ensure
quick termination if a noexcept assumption is false. It is not a mechanism for "more robust" or
"more reliable" code.

If this is to go anywhere, we must keep this about as simple as my simplification of Thorsten's
idea/suggestion.

An example
Just to remind us what is the problem, here is the pair from the FCD and Thorsten’s paper:

template <class T1, class T2>
struct pair {
 typedef T1 first_type;
 typedef T2 second_type;

 T1 first;
 T2 second;
 constexpr pair() noexcept(is_nothrow_constructible<T1>::value &&
 is_nothrow_constructible<T2>::value);
 pair(const pair&) = default;
pair(const T1& x, const T2& y) noexcept(is_nothrow_constructible<T1, const T1&>::value &&
 is_nothrow_constructible<T2, const T2&>::value);
 ...
 void swap(pair& p) noexcept(noexcept(swap(first, p.first)) &&
 noexcept(swap(second, p.second)));
};

A comment
Ville commented:

For the boilerplate in noexcept, I expect every user who has to write that garbage to curse us to
everlasting damnation. It's HORRIBLE. I can barely understand if a heroic library writer can
manage to cope with it, but I can't imagine any normal user, expert or not, to have patience to
write such abominations. I would highly welcome any deduction facilities, if at all attainable.

Let’s keep that in mind.

Stroustrup N3202=10-0192 Noexcept

4

Consistency
Neither Thorsten’s proposal nor my (more radical/consistent variant) suggest changes to the
meaning of explicitly stated noexcept specifications.

The discussion of Thorsten’s paper mostly focused on the concern that deduction would imply
ODR violations. Thorsten observes (about my suggestion): “If I understand him correctly, then it
would be ok to let noexcept(foo()) return different values depending on context.” That seems to
be true, and seems to me to be fine. The idea of noexcept is to allow code to be written to take
advantage of knowing that code will not throw. The key observation is that if we fail to deem a
function noexcept even though it doesn’t throw the worst that can happen is that sub-optimal,
but still correct, code will be executed. In other words, as long as we don’t mistakenly deem a
throwing function noexcept, not serious harm is done. Furthermore, if people play around with
Booleans derived from noexcept, they should be happy as long as that rule is followed.

In fact, I do propose a consistency rule below (“Rule 5”), but from an exception safety point of
view, I don’t think it is necessary.

So, the question to answer is: can we craft simple rules that never deem a throwing function
noexcept and are likely to make more functions noexcept than we would get by exclusively
relying on programmers decorating functions with noexcept. I think that the answer is obviously
yes.

Sometimes, programmers can be cleverer than the rules I suggest, getting more optimal code.
However, I wouldn’t bet on that on a large scale. Please note that the serious mistake: deeming a
function that actually throws noexcept can only be done by a programmer. If a noexcept function
does throw, the program is terminated, which to my mind is far better than giving a wrong result.

Before going into details, let me outline potential rules for consistency of deduced and explicit
noexcept specifications, so that we have something more concrete to discuss. I would be happier
with any rules that obey the fundamental rule and are simpler than my suggestion:

1. If a function declaration has an explicit noexcept specification that specification is used.
That is, we trust the programmer.

2. If a function declaration that is not a definition has no noexcept specification it is
considered noexcept(false). That is, if we don’t know anything about a function we must
assume that it can throw.

3. If a function definition has no noexcept specification it is considered noexcept provided
it contains no operation that could throw (e.g., a throw, a dynamic_cast to a reference
type, or a function that is not noexcept) otherwise it is noexcept(false). That is, if we
know that a function cannot throw (unless a programmer has wrongly and explicitly
deemed a called function noexcept) we deem it noexcept.

Stroustrup N3202=10-0192 Noexcept

5

4. An assignment or initialization of a pointer to function with noexcept with an explicit
noexcept(P) function is an error. That is, the constraints on a pointer to function must be
at least as strict as those for an assigned function.

I believe rules 1, 2, 3, and 4 to be necessary. Compared to the FCD rules, I believe that these
rules leave every program that consistently uses explicit noexcept declarations unchanged. The
difference is that some functions are deduced to be noexcept.

[Note added 11/11/10: The CWG discussion raised the question of whether determining whether
an operation can throw should involve template instantiation to determine whether an
instantiation could throw. My opinion is that an approach that instantiates is not conservative. A
conservative deduction algorithm should only look at declarations – not definitions. Whether that
restriction (however phrased) makes this deduction approach useless for most template programs
was a topic of debate.]

In addition we need to craft rules that take care of inconsistent use of noexcept for declarations
of a function within a translation unit and between translation units. Such rules would serve to
avoid confusion and apparently inconsistent behavior; they protect against programmer mistakes.
Such added rules would not be to protect against misuses of deduction because those are covered
by rules 1 to 4. Presumably, the main technical reason to try to enforce consistency would be to
avoid problems with template instantiation. Consider

int f(); // we don’t know if f() throws, so noexcept(false)
X<f> x1;
int f() { return 0; }; // obviously noexcept
X<f> x2;
int f() noexcept(cond); // noexcept depends on cond
X<f> x3;

The deduced noexcept obviously is the correct (optimal) choice, as it will be in all cases except
where a programmer knows that someone has lied about noexcept in a function called by a
function deduced to be noexcept. I don’t think we should craft our rules to try to protect against
“lying” (incl. obscure programmer errors and deliberate decisions to treat a function that very
rarely throws as noexcept).

In principle, we could pick any rules we like (all will lead to correct use of noexcept), so we can
just as well try the simple rules demanding perfect consistency:

5. If two declarations of the same function differ in their noexcept specification the
program is invalid. If the two declarations are in different translation unit no diagnosis
required (i.e. an ODR violation).

I consider a deduced noexcept equivalent to a user-specified noexcept. However, to have that
work in real programs, we need one more rule:

Stroustrup N3202=10-0192 Noexcept

6

6. noexcept is only deduced if the function definition has no user-specified noexcept and if
the definition is not preceded by a declaration of the same function.

Without that rule, many classical programs would break. For example:

int f(); // f() might throw
int f() { return 0; } // actually, f() doesn’t throw

I believe that these rules are roughly equivalent to what the FCD requires.

I considered “tweaks” to allow the deduced noexcept to be used together with declarations
without noexcept specifications. For example:

int f(); // we don’t know if f() throws, so noexcept(false)
// no use of f here
int f() { return 0; }; // obviously noexcept

int g() { return 0; }; // obviously noexcept
int g(); // OK?

I don’t think this would buy us much and might complicate linkage rules. So I don’t propose
such as “rule 5a.”

A reflector message:

Den 03-11-2010 23:50, Alberto Ganesh Barbati skrev:

To: C++ core language mailing list Message c++std-core-18002

// First translation unit
> void f();
> inline void f() {}
> constexpr int x = noexcept(f());

// Second translation unit
> inline void f();
> constexpr int y = noexcept(f());

I could live with that; it doesn’t lead to throwing code being deemed noexcept. However, it is
prohibited by “rule 5.”

And further:

Suppose you have a library function that use metaprogramming to select
different implementations according to the fact that a certain
expression is noexcept or not, for example:

Stroustrup N3202=10-0192 Noexcept

7

// g.h
template <int isnoexcept, class T>
void g_impl(T x);

template <class T>
void g(T x)
{
 g_impl<noexcept(f(x))>(x);
}

I wonder how much metaprogramming is done with function templates declarations only and
how the programmer would define g_impl() so as not to get an error.

Now consider this modified version of the example:

// First translation unit
#include "g.h"

inline void f(int) {}

void test1()
{
 g(0);
}

// Second translation unit
#include "g.h"

inline void f(int);

void test2()
{
 g(0);
}

inline void f(int) {}

This program is now ill-formed because of 14.6.4.1/7, with no
diagnostic required. This is most surprising for the user because he
may not know that the library is playing noexcept-tricks and the
program (I mean the two TUs, not g.h) looks perfectly well-formed in
C++03.

>

This example could be caught by “Rule 5” in the second translation unit, but I don’t actually see
any harm in accepting this code.

Dave Abrahams supplied this example:

This proposal essentially requires the instantiation of function
bodies during SFINAE checking, doesn't it?

template <class T>

Stroustrup N3202=10-0192 Noexcept

8

typename enable_if_c<noexcept(some_inline_function_template<T>()
)>::type*
f(T x)

Yes, I think so. It is easy to write a template function that throws depending on its argument
type. If you want to SFINAE based on noexcept, you’ll have to either explicitly specify
noexcept (and take the chance that you are wrong because of an argument type that throws) or
instantiate to let the compiler find out. Seems fair.

Common cases
Consider the usual separate compilation model:

// f.h:
int f();

// def_f.cpp:
#include<f.h>
int f() { } // obviously noexcept

// use_f.cpp:
#include<f.h>
int x = f();

With simple deduction there are no way we can get noexcept in use_f.cpp. That doesn’t bother
me. This example is the motivation for “Rule 6.”

Inline and templates defined in headers also work fine:

// f.h:
inline int f() { … }
template<class T> T g(T) { /* no throwing operations here */ }

// use_f.cpp:
#include<f.h>
int x = f();
int y = g(7); // is noexcept
Throwing z = g(Throwing{}); // is noexcept(false)

Simple deduction gives us what we want. Classes behave as would be expected from the
examples above:

// f.h:
struct X {
 int f() { /* no throwing operations here */ };
 int g();
};

Stroustrup N3202=10-0192 Noexcept

9

// use_f.cpp:
#include<f.h>
void user(const X& x)
{
 int r1 = x.f(); // noexcept
 int r2 = x.g(); // noexcept(false)
}

We get noexcept deduction for the inline member but not from the non-inlined one.

	To which extent can noexcept be deduced?
	Abstract
	Introduction
	An example
	A comment
	Consistency
	Common cases

