Towards support for attributesin C++
(Revision 6)
Jens Maurer, Michael Wong

[ens.maurer @gmx.net
michaelw@ca.ibm.com

Document number: N2761=08-0271

Date: 2008-09-18

Project: Programming Language C++, Core Working Group
Reply-to: Michael Wong (michaelw@ca.ibm.com)
Revision: 6

General Attributesfor C++

1 Overview

Theideaisto be able to annotate some entities in C++ with additional information.
Currently, there is no means to do that short of inventing a new keyword and augmenting
the grammar accordingly, thereby reserving yet another name of the user's namespace.
This proposal will survey existing industry practice for extending the C++ syntax, and
presents a general means for such annotations, including its integration into the C++
grammar. Specific attributes are not introduced in this proposal. It does not obviate the
ability to add or overload keywords where appropriate, but it does reduce such need and
add an ability to extend the language. This proposal will allow many C++0x proposalsto
move forward. A draft form of this proposal was presented in Oxford and received
acceptance in EWG to proceed to wording stage. This proposal integrates suggestions
and comments from the Oxford presentation, and email conversations post-Oxford. It
addresses many of the controversia aspects from the Oxford presentation and includes
comprehensive Standard wordings. Specifically, it adds:

Sept 15, 2008, Revision 6
e Updated based on latest draft N2723
e Added support for late-specified return type attributesin 8.1p1 and 8.3.5p2
e Added support for enum-base attributesin 7.2pl
e added support for variadic template packed expansion through base-specifier in
Clause 10
Attribute-specification removed
e Updated with Issue 681
o After Corereview on Sept 16,2008 addressed comment
0 Moved attribute to left of statement
0 Refined noreturn attribute
e After Corereview on Sept 17, 2008 addressed comment

mailto:jens.maurer@gmx.net
mailto:michaelw@ca.ibm.com

0 Redrafted noreturn statement semantics
0 Added lambda, and other syntax support
0 Removed throw support

June 10, 2008, Revision 5
e Minor fix-ups
e Post Corereview and address core comments

Feb 28, 2008, Revision 4
e Expand grammar based on feedback from WG14 to accept attribute at the
beginning of declarations binding to the list of declarator-ids.
e Added attributed bitfield support

Sept 10, Revision 3:
e Expand on C and C++ compatibility and simultaneously publish on WG14.

July 18, Revision 2:

e HTML cleanup

o alow empty attribute-lists

e renamed "attribute-parameter-clause” to "attribute-argument-clause”, "attribute-
parameter-list” to "attribute-argument-list”, "attribute-parameter” to "attribute-
argument"
allow attribute on conversion-type-id's type-specifier-seq
Toronto: introduce attribute-specification (similar to 'extern "C" { }")
Toronto: integrate attributes into all keyword-based statements (except "break"
and "continue™), plus "throw"
Toronto: allow attributes on using-directives
« Toronto: add noreturn and final attributes

May 4, Revision 1.
e Empty attribute list
e Added Using for block scope attributes
e Added OpenMP control flow attribute syntax
e Removed support for the first attribute left class/enum/struct-key and the function
return type

2 The Problem

In the pre-Oxford mailing, n2224 [n2224] makes a case for extensible syntax without
overloading the keyword space. It references alarge number of existing C++0x
proposals that would benefit from such a proposal. This paper will examine the extensible
syntax mechanism through the authors’ experience with its implementation in an existing
C++ compiler.

3 The industry’s solution

Most compilersimplement extensions on top of the C++ Standard [C++03]. In order to
not invade Standard namespace, compilers have implemented double underscore
keywords, __ attribute (()) [GNU], or __declspec() [MS]syntax. C# [C#] implements a
single bracket system.

This paper will study the _attribute and the __declspec syntax and make a
recommendation on a specific syntax.

Thefollowing are C++ entities that could benefit from attributes:
e functions

variables

names of variables or functions

types

blocks

trandation units

control-flow statements

4 GNU'’s attribute syntax

Although the exact syntax is described in the GNU [GNU] manuals, it isaverbal
description with no grammar rules attached. Thisisaqualifier on type, variable, or
function. It is assumed that the compiler knows based on the attribute as to which of
those it belongs to and parse accordingly. This functionality has been implemented by
GCC since 2.9.3 and various compilers which need to maintain GCC source-
compatibility. IBM compiler is one of those and has implementation experience since
2001. Other compiler experience includes EDG.

The description in the GCC manual is neither sufficiently specific nor complete to clearly
avoid ambiguity. It is also meant to bind to C-only. There are also somewhat incorrect
implementations in existing GCC compilers. But the statement described in the GCC
manual does describe an intended future direction. We suggest that we follow this future
direction. In this paper, | will try to highlight those intended directions, describe any
deviations and omissions from the manual descriptions, while giving sufficient feel for
the syntax.

The genera syntax is:
__attribute__ ((attribute-list))

and:
attribute-list

The format is able to apply to structures, unions, enums, variables, or functions. An
undocumented keyword __ attribute isequivalent to __ attribute and isused in GCC
system headers. The user can also usethe __ prefixed to the attribute name instead of the

general syntax above. For C++ classes, here is some example of usage. First, an attribute
can only be applied to fully defined type declaration with declarators and declarator-id.

__attribute__ ((aligned(16))) class Z{inti;} ;
__dtribute__((aligned(16))) class Y ;

An attribute list placed at the beginning of a user-defined type applies to the variable of
that type and not the type. This behavior issimilar to __Declspec’s behavior.

__attribute__((aligned(16))) class A {inti;} a; // ahasaignment of 16
classA al; // al has alignment of 4

An attribute list placed after the class keyword will apply to the user-defined type. Thisis
also __ Declspec’ s behavior.

class__attribute ((aligned(16))) B {inti;} b; // Class B has aignment of 16
classB bl; // bl also has alignment of 16

Similarly, an attribute list placed before the declarator will apply to the user-defined type:

classC{inti;} _ attribute_((aligned(16))) c;// Class C hasaignment 16
class C cl; //cl aso has aignment 16

But an attribute list placed after the declarator will apply to the declarator-id:

classD {inti;} d__attribute ((aligned(16))) ;//d hasalignment 16
class D d1; // d1 has alignment 4

When all these attributes are present, the last one read for the class will dominate, but it
could be overridden individually:

__attribute_ ((aligned(16))) class__ attribute ((aligned(32))) E{inti;} _ attribute
((aligned(64))) e __ attribute__((aligned(128))); // Class E has alignment 64

classE €e1; // el aso has alignment 64

classEe2 _ attribute ((aligned(128))); // €2 has alignment 128

classE __ attribute_ ((aligned(128))) €3 ; //e3 has aignment 64

class __ attribute ((aligned(128))) E e4 ; //e4 has alignment 64

__attribute__ ((aligned(128))) class E €5 ; //e5 has alignment 128

While an attribute list is not allowed incomplete declaration without a declarator-id, it is
allowed on a complete type declaration without a declarator-id. An attribute that is
acceptable as a class attribute will be allowed for atye declaration:

class__attribute_ ((aligned(16))) X {inti; }; // class X has alignment 16
class X x; /I x has alignment 16
classV {inti;} _ attribute ((aligned(16))) ; // classV hasaignment 16

classV v; //v has aignment 16

An attribute specifier list is silently ignored if the content of the union, struct, or
enumerated type is not defined in the specifier in which the attribute specifier list is used.

struct __attribute ((alias("__foo"))) __ attribute _ ((weak)) sti;
union __ attribute _ ((unused)) __ attribute ((weak)) unl;
enum __attribute ((unused)) __ attribute _ ((weak)) enumi;

When an attribute does not apply to types, it is diagnosed. Where attribute specifiers
follow the closing brace, they are considered to relate to the structure, union, or
enumerated type defined, not to any enclosing declaration the type specifier appearsin,
and the type is not complete until after the attribute specifiers.

struct {} _ attribute ((unused)) _ attribute ((weak)) st4;
struct {inti;} _ attribute ((unused)) _ attribute ((weak)) stda;
struct struct3{intj;} _ attribute ((aias("__foo"))) _ attribute ((weak)) st5;

union{inti;} _ attribute ((alias("__foo"))) _ attribute ((weak)) un4;
unionunion3{int j;} _ attribute ((unused)) __ attribute _ ((weak)) un5;

enum{ } _ attribute ((aias("__foo"))) __ attribute ((weak));

enum {k};

enum{k1} attribute ((unused)) attribute ((weak));

enum enum3{I} __ attribute ((unused)) __attribute _ ((weak));

enum enum4 {m,};

enumenum5{m1,} _ attribute ((alias("__foo"))) _ attribute _((weak));

Any list of qualifiers and specifiers at the start of a declaration may contain attribute
specifiers, whether or not alist may in that context contain storage class specifiers. An
attribute specifier list may appear immediately before the comma, =, or semicolon
terminating a declaration of an identifier other than a function definition.

inti__ attribute ((unused));
staticint __ attribute ((weak)) const a5 attribute ((alias("__foo")))
__attribute_ ((unused));

/ functions

__attribute_ ((weak)) __attribute ((unused)) foo() __attribute ((alias("__foo")))
__attribute__ ((unused));

__attribute_ ((unused)) __attribute _ ((weak)) int &();

An attribute specifier can appear as part of a declaration counting declarations of
unnamed parameters and type names, and relates to that declaration (which may be
nested in another declaration, for example in the case of a parameter declaration), or to a
particular declarator within a declaration. Where an attribute specifier is applied to a

parameter declared as afunction or array, it should apply to the function or array rather
then to the pointer to which the parameter isimplicitly converted.

void funcl(int __attribute ((weak, aias("__foo"))) name);
void funcl(int __ attribute ((weak, dias("__foo"))) name) {
inti;

}

void func2(int __attribute__((noreturn)) array[]);

void funcptr(void);
void func3(int __attribute__ ((noreturn)) funcptr());

An attribute specifier list may appear after the colon following alabel, other that a case or
default label. The only attribute it makes sense to use is unused.

int main() {
typedef int INT1; // INT1 isa<typedef name>
typedef int INT2; // INT2 is a<typedef name>

short i;

/I Syntactically an attribute specifier list can follow alabel, but semantically the only

/] attribute it makes sense to useis "unused” which we do not support (yet). So we will

/[emit awarning here

INT1: _ attribute ((alias("oxford"))) __ attribute ((unused)) __ attribute ((weak))
i=3;

LABELL: attribute ((unused)) attribute ((weak))
i =4

// old behaviour still valid
INT2:
i=3;

LABELZ2:
i =4

/] attribute specifiers cannot appear after case and default labels
switch(i) {
case O:
i++;
break;
casel: _ attribute ((unused))
i++;

break;
default: __ attribute ((unused))
break;

}

return O;
}

4.1 Attribute specifiers as part of aggregate types, and
enumerations

* an attribute specifier list is silently ignored if the content of the union, struct, or
enumerated type is not defined in the specifier in which the attribute specifier list
isused (same as GCC)

» adiagnostic message is emitted when attribute specifiers that do not apply to
types are used on aggregate types and enums.

4.2 Attribute specifiers in comma separated list of declarations

» thefirst attribute specifier list appliesto all the declarators, any other attributes
specifier appliesto the identifier declared, not to all the subsequent identifiers
declared in the declaration. Thisis the intended future behaviour documented in
the GCC manual, which differs from the current GCC (3.0.1) behaviour:

Example:
int__attribute_ ((attrl)) fool __ attribute ((attr2)),
__attribute _ ((attr3)) foo2 __ attribute _ ((attr4)),
__attribute__ ((attr5)) foo3 __ attribute ((attr6));

attrl appliesto fool, foo2, foo3 becauseit is a declaration specifier
attr2 applies to fool becauseit is part of the fool declarator

attr3, attr4 apply to foo2 because they are part of the foo2 declarator
attrb, attr6 apply to foo3 because they are part of the foo3 declarator

4.3 Attribute specifiers immediately before a comma, = or
semicolon
» the attribute specifier list should apply to the outermost adjacent declarator, not to

the declared object or function. Thisis the intended future GCC behaviour, which
differs from the current GCC behaviour.

Example:
void (****f) (void) __attribute__((noreturn));

"noreturn” should apply to the function ****f, but currently (for GCC) applies
to theidentifier f.

4.4 Attribute specifiers at the start of a nested declarator
applies to the outermost adjacent declarator
» the GCC intended future semantics differs from the current behaviour.

Example:
void (__attribute__ ((noreturn)) ****f) (); /I "noreturn" appliesto the
function ****f not to f
char* __ attribute_ ((aligned(8))) *f; // "aligned" appliesto char*, sofisa
pointer to 8-byte aligned pointer to char

» when an attribute specifier followsthe * of a pointer declarator it should be atype
attribute, and will be ignored with a silent informational messageif it is not

» when an attribute specifier follows the * of a pointer declarator, it must follow
any type qualifier present, and cannot be mixed with them.

void foo(int* const __ stdcall __ attribute ((weak))i); // dlowed
voidfoo (int* const __ attribute ((weak)) _stdcall i); //illegal
voidfoo (int* _ attribute ((weak)) const _stdcal i); //illega

4.5 Attribute specifiers list following a label

» an attribute specifier list following a case or default 1abel will cause a syntax
(parse) error (same as GCC)

» because the only attribute it makes sense to use after alabel is"unused”, an
attribute specifier list following alabel (other than case or default) will aways be
ignored

* A declaration starting with an attribute specifier that immediately follows alabel
iswill be considered to apply to the label because thisis consistent with what
GCC (3.0.1) does. The attribute specifier can be applied to the declaration by
inserting a semicolon between the colon that follows the label and the declaration:

L1: attribute ((week)) inti =0; I/ weak appliesto L1
L1 ; _ attribute ((weak))inti=0; //weak appliestovariablei

4.6 Problems with GNU __ attribute

There are some problems with this syntax through implementation experience. The
syntax islong and ugly. It generally makes declarations unreadable even if one attribute
isincluded. The attribute syntax is not mangled leading to possible type collision. This
causes problems when attributed types are used in templates and overloading. In this
paper, attributed types could be mangled, although thisis strictly not part of the C++
Standard specification. But mangling will help to resolve the overloading problem.

The GNU syntax also does not distinguish between attributed types of atypeid reference.
The original GNU syntax does not cover class and templates, but extension to classes as
typesisfairly straight forward. Templates will need some amount of work.

The syntax as implemented differs from the manual, and is somewhat different from the
standard C++ syntax. This proposal intends to correct most of these differencesin favor
of the C++ standard syntax, but largely maintains compatibility with GNU’ s intended
future direction and therefore the large body of Open Source software.

We will use this syntax as guidance, but will try to obtain syntax rule that we feel makes
more sense for readability.

5 Microsoft __ DeclSpec syntax
The Microsoft __Declspec syntax [MS] is more precise and offers agrammar.

The __declspec keywords should be placed at the beginning of asimple declaration. The
compiler ignores, without warning, any __declspec keywords placed after * or & and in
front of the variable identifier in a declaration.

A __ declspec attribute specified in the beginning of a user-defined type declaration
appliesto the variable of that type. For example:

__declspec(dllinport) class X {} varX;

In this case, the attribute appliesto var X. A __declspec attribute placed after the class or
struct keyword applies to the user-defined type. For example:

class __declspec(dllimport) X {};
In this case, the attribute appliesto X.

This syntax is a subset of the more wild GNU attribute syntax, and actually offers no
contradiction to the GNU syntax.

6 This Proposal

There are different designs on the syntactic construct of an attribute -- that is, the group
of tokens which specify an attribute. There have been considerabl e discussions on this
topic. We would like an approach which uses some aspect of the GNU syntax, but
remove that which is deemed to be too controversial. We would also like to make it short
(small number of characters) to facilitate readability. Summarizing the different opinions,
we offer two suggestionsin this paper. We will defer detailed discussion of them in
section 8. Since thisfeature islikely to be used in header files which are shared between
C and C++, we would like to obtain acceptance by both programming communities. We
will get consensus from WG14 and WG21.

With the exception of section 8, the discussion in this paper applies equally to both
syntactic proposals. Without lost of generality, we will use the double-square bracket
construction from here on in this paper.

For ageneral struct, class, union, enum declaration, it will not alow attribute placement
in aclass head, between the class keyword, and the type declarator. Also, unlike GNU
attribute and M S Declspec, attribute at the beginning will not apply to the declared
variable, but to the type declarator. Thiswill have the effect of losing GNU attribute’s
ability of declaring an attribute at the beginning of a declaration list, and having it apply
to the entire declaration. We feel that thisloss of convenience in favor of clearer
understanding is desirable.

[[attr1]] classC [[attr2]] { } [[attr3]] c[[attr4 1], d [[attr51]];

attrl applies to declarator-ids c, d

attr2 applies to the definition of class C
attr3 appliesto type C

attr4 applies to declarator-id ¢

attr5 applies to declarator-id d

A general function declaration can be decorated as follows. Only one attribute specifier is
allowed in a decl-specifier seq, and it applies to the function return type.

[[attr1]] int [[attr2]] * [[attr3]] (* [[attrd]] * [[attrS]] f [[attr6]]) () [[attr7]], [[attr8]];

attrl applies to the pointer-to-pointer to function f, and to e
attr2 applies to the return type of int

attr3 applies to the return type *

attr4 appliesto the first * in the pointer-to-pointer to f

attr5 applies to the second * in the pointer-to-pointer to f
attr6 applies to the function variable f

attr7 applies to the function (**f)()

attr8 appliesto e

A constructor can be named as such, ignoring the arguments:
C::C[attrl]] (...) [[attr2]];

attrl appliesto the name C
attr2 applies to the function C::C()

Parameter declaration can aso apply through a general type declaration.
An array declaration will apply as follows:

int [[attr2]] a[10] [[attr3]];

attr2 appliesto typeint
attr3 appliesto the array a

For aglobal decoration or abasic statement:

using [[attrl]];

attrl applies to the trandation unit from this point onwards

For ablock:

using [[attr1]] { }

attrl applies to the block in braces.

For a control construct, annotation can be added at the beginning:
for [[attrl]] (int i=0; i<num_elem; i++) {process (list_itemg[i]); }
attrl applies to the control flow statement for.

After the meeting in Toronto where the proposal was very well accepted, additional

syntax was asked for other control flow statements such as do, and while in addition to
o (Case

Switch

Default

If

Else

Labels

Return

Goto

Throw

Using

bitfields

Thiswas added for this paper.

All other positions are disallowed for attribute decorations.

Although this syntax is meant to be used for standard extensions, it could also be used for
vendor-specific extensions. Vendor-specific extension will be required to use double-
underscores for their attribute names. A good rule to follow may be to prefix the attribute
with the vendor name such as:

[[ibm::align, noreturn, align(size t), omp::for]]

6.1 Complex examples

Another issue is where to place the attribute when we wish to associate an attribute with
the definition of aclass or enum type. Currently it is placed after the class-key and the
declarator-id. Others have argued for its placement between the class-key and the
declarator-id. Thisisreferring to the problem that Lawrence Crowl brought up which
involves placing the [[]] between the struct-key and the declarator-id, e.g.:

struct [[attr]] Ss;

He argued that this would prevent having to clone S and then apply that cloned S with the
attribute to swhereas a

struct S[[attr]] s;
would require cloning S with the attribute.

Thisisakind of implementer complication. We argue that we already do that (cloning)
when we have const/vol qualifiers anyway. Thiswill be no worst.

A typedef will modify the cloned instance similar to a const
typedef struct foo [[attr]] foo;
Only in these two cases

struct S[[attr]] ;
struct S[[attr]] { ... };

does the attr modify S such that al instance of struct Swill have the attribute.
But
typefef struct S[[attr]] { ... } S

will modify the struct type S and the variable S and not a copy of it.

7 Guidance on when to use/reuse a keyword and
when to use an attribute

So what should be an attribute and what should be part of the language.

It was agreed that it would be something that helps but can be ignorable with little serious
Side-effects.

If you are proposing a new feature, the decision of when to use the attribute feature and
when to overload or invent a new keyword should follow a clear guideline. At the Oxford
presentation of this paper, we were asked to offer guidance in order to prevent wholesale
dumping of extension keywords into the attribute extension. The converse is no one will
use the attribute feature and all electing to create or reuse keywords in the belief that this
elevates their feature in importance.

Certainly, we would advise anyone who propose an attribute to consider comments on the
following areawhich will help guide them in making the decision of whether to use
attributes or not:

e Thefeatureisused in declarations or definitions only.

e Isthefeatureisof useto alimited audience only (e.g., aignment)?

e The feature does not modify the type system (e.g., thread local) and hence does
not require new mangling?

e Thefeatureisa"minor annotation" to a declaration that does not alter its
semantics significantly. (Test: Take away the annotation. Does the remaining
declaration still make sense?

e [sit avendor-specific extension?

e |Isitalanguage Bindings on C++ that has no other way of tying to atype or
scope(e.g. OpenMP)

e How does this change Overload resolution?

e What isthe effect in typedefs, will it require cloning?

Some guidance for when not to use an attribute and use/reuse a keyword

e Thefeatureisused in expressions as opposed to declarations.

e Thefeatureis of use to abroad audience.

e Thefeatureisacentral part of the declaration that significantly affectsits
reguirements/semantics (e.g., constexpr).

e The feature modifies the type system and/or overload resolution in a significant
way (e.g., rvalue references). (However, something like near and far pointers
should probably still be handled by attributes, although those do affect the type
system.)

e Thefeatureisused everywhere on every instance of class, or statements

Where each vendor wishes to create a vendor-specific attribute, the use is conditionally-
supported with implementation-defined behavior.

After the meeting in Toronto, we added specific guidance on the choice of when to use an
attribute to avoid misuse. There was general agreement that attributes should not affect
the type system, and not change the meaning of a program regardless of whether the
attribute is there or not. Attributes provide away to give hint to the compiler, or can be
used to drive out additional compiler messages that are attached to the type, or statement.

They provide a more scoped way of relating to C++ statements then what pragmas can
do. Assuch, they can detect ODR violation more easily.

We created alist of good and bad attributes that can be used as guidelines.

Good choices in attributes include:
e dign(unsigned int)
e pure (promisethat afunction always returnsthe same value)
e probably(unsignedint) (hint for if, switch, ...)
- if [[probably(true) 1] (i==42){ ... }
noreturn (the function never returns)
deprecated (functions)
noalias (promises no other path to the object)
unused (parameter name)
final on virtual function declaration and on a class
not_hiding (name of function does not hide something in a base class)
register (if we had a time machine)
owner (apointer isowned and it isthe owner’ s duty to deleteit)

Bad choices in attributes include:
e C99restrict (affectsthe type system)
e huge (really long long type, e.g. 256bhits)
e C++ const

For a particular interesting use of attributes, Michael Spertus has suggested an owner
attribute with the following syntax:

char * [[owner]] strdup(char *[[not_owner]]);
int pthread_mutex_lock(pthread_mutex_t *[[not_owner]]);

Part of what makes memory management hard is that when you get a ptr from someone,
you don’t know if you are responsible for freeing it. For example, any user of strdup
needs to know that they are responsible for freeing the pointer returned by strdup.
Similarly, the caller of pthread_mutex_lock is not giving pthread mutex_lock the
responsibility for managing the lifetime of the pthread_mutex_t to pthread _mutex_lock.

The owner attribute says that the user of this pointer is responsible for managing the
object’s lifetime.

The not_owner attribute says that the user of this pointer has no responsibility for
managing the object’ s lifetime.

Assigning an [[not_owner]] pointer to an [[owner]] pointer is not allowed because you
can’'t give away something you don’t own.

Not al pointers are suitable for this annotation. For example, one sometimes calls a
function that may or may not save a pointer to one of its arguments. However, that does
not reduce the usefulness of being able to notate that a function (e.g., afactory function)

isreturning a pointer that the caller needs to manage or the value of calling afunction and
knowing that it will not perturb the lifetime of its pointer arguments.

What makes this agood candidate for attributesis that code that runs with these
attributes also runs identically if the attributes are ignored, abeit with less type checking.

8 Alternative Syntax and controversial issues

Different syntax for specifying an attribute were discussed on the reflector, during private
conversations and EWG presentations. For the purpose of this paper, we will summarize
these discussions into two representative syntax below, and present them as proposals.

" Double-square” syntax

In this syntax, the specification of attributes begins with the characters "[[" and ends with
"11". There are variations where the two brackets are treated as one token or two tokens.

attribute-specifier :
[[attribute-list]]

Theideaisto find a (one) character or character pair which does not form the starting
tokensin the right hand of existing production rules. An opening square bracket pair
satisfies this requirement.

This syntax is succinct, concise, and short. The usual GNU attribute and M 'S declspec
syntax islong and makes declarations difficult to read. The M S square bracket syntax,
while even shorter can cause ambiguity for arrays, and may lead to difficulty with some
parsers. So we have chosen to not duplicate it.

While reviewing this syntax, some WG14 members pointed out that the following syntax
is preferable. We will call thisthe “function-like” syntax.

declarative_ attribute (thread local)

Thisalowsit to be manipulated by the preprocessor. This syntax is even longer then the
GNU syntax. We understand the desire to make it possible for preprocess manipul ation
such as to make the attribute disappear for compilers that don’t understand this. But we
believe thisis adifferent issue as every compiler must parsethisasit is a standard-
compliant feature.

The double-square syntax can provide for potential compatibility for GNU. It also
provides a path for WG14 to adapt a similar but alternate attribute keyword for C1x. If
this name is something like ATTRIBUTE(...), then apossible trandation is:

#define ATTRIBUTE (...) [[_VA_ARGS_]]

Note: Alisdaire Meredith supplied the finding that VA_ARGS is supported in clause
16.3p5 of the current draft.

We thought about having [[as asingle token. We believe it helps the parser to
disambiguate:

int a [10] [[thread local 1];

int b[10];

where the parser only hasto do a one-token look ahead to distinguish the two cases.

Clark Nelson convinced us that there will always be a look-ahead issue. The differenceis
that in one case it is a one-character look-ahead if it is atoken, or a one token look-ahead
if it isadouble token. So we will not add [[as a new token and leave it as two tokens. We

also do not want people to write:
int a [10][
// here comes an attribute
[adfalfdfhl]
1

" Function-like" syntax

attribute-specifier :
std (attribute-list)

In this syntax, the attribute specification begins with the tokens "std(" and ends with ")".
Instead of "std", we can use other variations of spelling. Underscore prefix can also be
added. If () isambiguous, then we can also use (()).

One key advantage of this syntax isthat it follows the prior art in GCC. There are other
compiler vendors supporting the GCC syntax, and the programming community is
familiar with it. Existing code can readily adapt to this syntax.

Depending on what we choose as the "function name”, function-like syntax can be short,
addressing a concern expressed in the previous subsection. Also, square brackets are
traditionally associated with arrays in the C family of languages. Double-square syntax
can disappear in the middle of a complicated array declaration, and can be mistaken as
part of amultidimensional array by a human reader. It therefore has its own share of
readability issues. Double-square syntax is not necessarily better than function-like
syntax in thisregard.

One issue with function-like syntax is that the function name could collide with namesin
existing programs. Adding underscore prefix would not completely solve the problem as
these names are reserved for the implementer. However, the problem may not be as
severe asit seems. Given "std" is already used elsewhere in the language, it is unlikely
that a compiler vendor would use names like "std" or "_Std" in an existing
implementation. The same applies to the use of "std" in an existing program.
Furthermore, we can assume that C++ compiler vendors are paying attention to the

current C++1x effort. It should not be difficult to find a suitable underscore name if "std"
doesn't work.

Compatibility with Existing practice and feedback from WG14

In summary, and after discussions with the C liaisons in the Bellevue meeting, the main
differences in opinion between the two committees were:

1. C places great emphasis on backwards compatibility with existing syntax, and in
particular does not like the design choice in C++ where we break existing positional
placement practices. While we do not have a specific list of these breakages from C, |
have compiled such alist in this paper (which appliesto a specific release of GNU and
note that GNU is also changing with each release). The leading issue of concern was felt
to be the one of allowing attributes in the storage qualifier location, and applied to the
declarator-ids at the far right of the declaration. | quote from our paper
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2007/n2418.pdf

e.g.:

An attribute list placed at the beginning of a user-defined type applies to the variable of
that type and not the type. This behavior issimilar to __Declspec’s behavior.
__attribute__((aligned(16))) class A {inti;} a; // ahasalignment of 16

class A al; // al has alignment of 4

This is a feature (or an accident) which C++ has deliberately avoided for a number of reasons.
First, it breaks with the clean design in that an attribute is associated with an entity far from its
position. Second, it leads to ambiguity because some future storage modifiers may demand that
we look into the semantics of the modifier to determine which entity it would associate with (the
declarator-id a or the type A).

2. C prefers the function-like syntax (similar to GNU attributes) the bracketed-notation syntax
chosen by C++. C generally favours standardizing existing practice rather then invent new syntax.

We discussed the merits of these issues. We feel obliged to explain that C++ chose this design
deliberately and wish to consider 2 resolution:

1. C++ wanted to create a consistent design where there is little doubt of what entity the
attribute should be attached. We largely succeeded, we believe. In most cases, the
attribute attaches to the entity to the left. In block scope cases, it does attach to the entity
(the brace block) to the right, but where those cases exists, we fedl it isthe natural choice
of programmers and is done also to avoid parsing ambiguity. However, C++ does
acknowledge the need to support existing practice and would consider updating our paper
to accommodate the syntax above under strict conditions of positioning and binding.

2. On the delimiter issue, C++ chose new syntax because we deliberately chose semantics
and syntax constraints different then the GNU syntax. Reusing an existing syntax under
such circumstance would be incorrect. C++ members were amost in unanimous
agreement that we would continue to strongly support the double-bracket syntax. The C
liaisons present (Nick, Barry, Clark, Bill) felt that thisis not nearly as big an issue as #1

for C, the positional placement issue and a compromise would be more likely especially
since C++ islesslikely to move (and a bridge between syntaxes exists).

We chose to adapt resolution 1.

To extend C++ to allow attributes at the beginning of simple declarations and member
declarations (not excluding function declarations)and have it applied only to the
declarator-id (and it must be the first position and not be swapped with the static

keyword.

We also chose to adapt resolution 2 (that we would like to retain our delimiter choices)
and urge C to adapt similar delimiter, and feel that in case C does not, some kind of
macro magic will bridge the two syntaxes.

Vendor -specific extensions

Currently, vendor-specific extensions are added using the vendor name as a prefix and
double colon followed by the attribute name. There is controversy on this as some
opinions prefer double underscore prefix and postfix to the vendor name. The other
controversial issue is the potential need for naming compiler vendor companies officially
with aregistered name to prevent name collisions. This would involve directly naming
compiler vendors. This position remains controversial.

9 OpenMP binding to C++

One serendipitous benefit of afeature design isif it can be used to solve an unexpected
problem. This feature can be used to bind OpenM P [OpenMP] syntax more closely to
C++. OpenMP is an industry specification for loop parallelism with a common binding
for Fortran, C and C++. It is popular with industry, research, and government. It
describes syntax using pragmas for C and C++ for shared memory parallelism. One of the
author is amember of the OpenM P language committee, and the steering committee.

There are many problem with the pragma syntax including its inability to convey scope,
error and type information. This has limited OpenMP s acceptancein C and C++. In
Fortran, the binding is more natural. An alternate syntax that would work better with
C/C++ has been asked for by the OpenM P committee.

The attribute syntax while not perfect can be used to map almost every syntax construct
in C++. After discussion with Christian Terbiven, Dieter An Mey, and Bern Mohr shortly
after the Oxford meeting, they were very enthusiastic on the potential of this proposal to
allow an augmented syntax for C++, and C if they also adapt this syntax.

The[] here has the usual meaning as optional element and should not be confused with
the [[]] notation of the attribute syntax. It isnot part of the syntax.

According to the current OpenMP 2.5 [OpenMP] specification, a parallel 1oop construct
looks as follows:
#pragma omp for [clause[[,] clause] ...] new-line
for-loop
and is bound to a parallel region that looks as follows:
#pragma omp parallel [clause[][, Jclause] ...] new-line
structured-block

while both constructs can be combined into the following:
#pragma omp parallel for [clause[[,] clause] ...] new-line
for-loop

These three code snippets could be written using the proposed attribute syntax as shown
below:
for [[onmp::for(clause, clause), ...]] (I oop-head)

| oop- body

The enclosing parallel region would look like this:
using [[onp::parallel(clause,clause), ...]]

When there are several clauses or the clauses contain alot of variables, thef or keyword
and the actual loop can get quite far apart but thisis normally the case when many
attributes are used.

In OpenMP, abarrier iswritten as follows:
#pragma onp barrier

In the attribute syntax, this might look as follows:
using [[onp::barrier]]
{}

Everything in the structured block { } will get executed by all threadsin parallel, no
worksharing constructs are allowed inside the block, the actual barrier is at the end of the
block.

All other OpenMP 2.5 constructs and directives could be translated to onp: : cl ause or
onp: : di r ecti ve inthe attribute syntax.

Here is a motivating example showing a clear advantage of the attribute syntax for
OpenMP: Reductions in orphaned worksharing constructs. Assume the following
program where we have a parallel region calling a subrouting containing a worksharing
construct:

#pragma onp parall el

doubl e result = evaluate_ny function(.);

doubl e eval uate_nmy_function(..)

{
doubl e sum
#pragma onp for reduction(+:sun

for (int i =0; i < something |arge; i++)
{

sum += conputation(i, ..);
}

return sum

}

As areduction variable cannot be a private variable, the current solution isto declare
sumstatic, which also atersthe original program:
static double sum

Using the attribute syntax with OpenM P, one could possibly write:
doubl e sum [[onp::shared]];

The attribute syntax leaves several problems untouched and open, as the parallelization is
still not really in the language. For example
» Itisnot possiblefor afunction to determineif it is called inside of aworksharing
construct.
» Itisnot possibleto directly bind any information regarding the parallelization on
atemplate type to alow for specialization (and thus optimization).

We may address these issue in the next revision of this paper.

10 Introduction of specific new attributes

This proposal will standardize the use of three good attributes and use the processto
identify the reason why they are good candidates and add them to the C++ Standard.

e Align
0 Thisfeature adds alignment support that overrides the natural alignment of
the type. It gives more information to the compiler to align types, or
functions more suitably for the optimizers. As such, it improves the
program, but its absence does not necessarily make no sense. Whileitis
true that incorrect alignment can cause bad behavior, the code presumably
can still make sense without it.

e Noreturn
void fatal [[noreturn]] (void);
void fatal(...)
{

exit(L):

}

This attribute is useful for afew library functions such as abort and exit
which cannot return. The user can aso define their own functions that
never return using this attribute.

The noreturn keyword tells the compiler to assume that fatal cannot return.
It can then optimize without regard to what would happen if fatal ever did
return. This makes slightly better code. More importantly, it helps avoid
spurious warnings of uninitialized variables. Y ou cannot assume that
registers saved by the calling function are restored before calling the
noreturn function. It does not make sense for a noreturn function to have a
return type other than void.

Thisisagood attribute because it gives additional information that can be
used by the optimizer, but does not alter the semantics of the program if
removed.

e Fina

o Thefina attribute to a class declaration and the virtual function

declaration can prevent them from being further inherited. A class with the
final attribute will not be allowed to be a base class for another class. A
virtual function with the final attribute will not be overriddenin a
subclass. Thisisagood attribute because it allows the compiler to emit a
message if the class or function is extended.

Examples

The specific attributes are shown for exposition only, since they do not form a part of this
proposal. In particular, N2165 does not specify that alignment be part of the type, it is
only an attribute of variables or class data members.

struct S [[gnu::packed 1]; // avoid padding in this
structure

class C [[wish::explicit override]]

: public B { ... };
typedef struct [[ibm::align(16) 11 { ... } T;
int x [[ibm::library("hidden") 11; // the name "x" is not

DLL-exported

int [[ibm::align(16) 1] * £ [[ibm::library ("export") 1]
(int, double) ;

// exported function that returns a pointer to
aligned int

[[ibm::align(16) 1] int i,7; // variable i,j is
aligned to 16 bytes

static [[align(8)) 1] int k; // ill-formed, attribute
must come before static

11 Proposed Wording changes

General drafting note: These words introduce the term "appertains' for the syntactic
relationship between the placement of an attribute-specifier and various source
constructs such as labels or statement to which it applies. In contrast, the term "applies’
is used to describe the semantic restrictions on an attribute.

Modify 2.11 lex.key paragraphl as indicated:

The identifiers shown in Table 3 are reserved for use as keywords (that is, they
are unconditionally treated as keywords in phase 7) except in an attribute-token
(7.6 dcl.attr):

Modify 3.3.1 basic.scope.pdecl paragraph 6 as indicated:

The point of declaration of aclassfirst declared in an elaborated-type-specifier is
asfollows:

o for adeclaration of the form
cl ass-key identifier attribute-specifiergy, ;

theidentifier is declared to be a class-name in the scope that contains the
declaration, otherwise

Modify 3.4.4 basic.lookup.elab paragraph 2 as indicated:

If the elaborated-type-specifier has no nested-name-specifier, and unless the
elaborated-type-specifier appears in a declaration with the following form:

class-key identifier attribute-specifiergy ;

theidentifier islooked up according to 3.4.1 but ignoring any non-type names that
have been declared. ... If the elaborated-type-specifier isintroduced by the class-
key and this lookup does not find a previously declared type-name, or if the
elaborated-type-specifier appears in a declaration with the form:

cl ass-key identifier attribute-specifiergy ;

the elaborated-type-specifier is a declaration that introduces the class-name as
described in 3.3.1 basic.scope.pdecl.

Modify 5.1.1 expr.prim.lambda paragraph 1 as indicated
lambda-parameter-declaration:

(lambda-parameter -declaration-listey) mutabl ey attribute-specifier o
exception-specificationey |ambda-retur n-type-clausegy

lambda-parameter-declaration-list:

lambda-parameter
lambda-parameter , lambda-parameter-declaration-list

lambda-parameter:
decl-specifier-seq attribute-specifier o, declarator
lambda-retur n-type-clause:
-> attribute-specifierqy type-id
In alambda-parameter-declaration, the attribute-specifier appertainsto the
lambda. In a lambda-return-type-clause, the attribute appertainsto the
lambda return type.
Modify 6 stmt.stmt paragraph 1 as indicated
Except asindicated, statements are executed in sequence.
statement:
label ed-statement
attribute-specifier o €xpression-statement
attribute-specifier o compound-statement
attribute-specifier o Selection-statement
attribute-specifier o iter ation-statement
attribute-specifier o jump-statement
declaration-statement
attribute-specifier oy try-block

The optional attribute-specifier appertainsto the respective statement.

Modify 6.1 stmt.label paragraph 1 as indicated:

A statement can be labeled.
| abel ed- st at enent :
attribute-specifieron identifier : statenent

attribute-specifierot case constant-expression :
st at enent
attribute-specifierop default : statenent

The optional attribute-specifier appertainsto the label. An identifier l1abel
declarestheidentifier. ...

Modify 6.4 stmt.select paragraph 1 as indicated:

condi ti on:

expr essi on

type-specifier-seq attribute-specifiery, declarator =

assi gnment - expr essi on
See 8.3 dcl.meaning for the optional attribute-specifier in a condition. In
clause 6, the term substatement refers to the contained statement or statements
that appear in the syntax notation. ...

Modify clause 7 dcl.dcl paragraph 1 asindicated:

decl arati on:
bl ock-decl arati on
function-definition
t enpl at e- decl arati on
explicit-instantiation
explicit-specialization
I i nkage- speci fication
nanespace-definition
attribute-declaration

bl ock- decl arati on:
si npl e-decl arati on
asmdefinition
nanespace- al i as-definition
usi ng-decl arati on
using-directive
static_assert-declaration

si mpl e-decl ar ati on:

attribute-specifierg decl-specifier-seqey attribute-
specifiergy init-declarator-listgy ;

attri but e-decl arati on:
attribute-specifier ;

[Note: ...] The simple-declaration

attribute-specifierg, decl-specifier-seqey attribute-
specifierqy init-declarator-listqy ;

isdivided into e four parts: decl-specifiers, the components of a decl-specifier-
seq, are described in 7.1; thefirst optional attribute-specifier, the second
optional attribute-specifier, and declarators, the components of an init-
declarator-list, are all described in clause 8.

Except wher e otherwise specified, the meaning of an attribute-declaration is
implementation-defined.

Modify 7 dcl.dcl paragraph 8 as indicated:

Only in function declarations for constructors, destructors, and type conversions
can the decl-specifier-seq be omitted. [Footnote: The "implicit int" rule of Cisno
longer supported.] If it isomitted, no attribute-specifier may appear .

Modify 7.1.6.3 dcl.type.elab paragraph 1 as indicated:

If an elaborated-type-specifier is the sole constituent of a declaration, the
declaration isill-formed unlessit is an explicit specialization (14.7.3), an explicit
instantiation (14.7.2) or it has one of the following forms:

cl ass-key identifier attribute-specifiergy, ;

friend class-key ::qy identifier

friend class-key ::o Sinple-tenplate-id ;

friend class-key ::,y nested-name-specifier identifier ;
friend class-key ::., nested-name-specifier tenplateg sinmple-
tenpl ate-id

In thefirst case, the attribute-specifier, if any, appertainsto the class being
declared; the attributesin the attribute-specifier are henceforth considered
attributes of the class whenever it is named.

Modify 7.2 dcl.enum paragraph 1 as indicated:

Drafting note: thisis based on updates from“ N2764: Forward Declaration of
Enumerations’ :

enum speci fier:

enum head { enumerator-list opt }
enum head { enunerator-list , }

enum head:

enum key identifierq, attribute-specifierg enum basegy
attribute-specifiergy

enum key nested-name-specifier identifier attribute-specifiergy
enum baseq, attribute-specifiergy

opaque- enum decl arati on:

enum key identifierq, attribute-specifierg enum baseg, ;

Thefirst optional attribute-specifier in the enum-head and opaque-enum-
declaration appertainsto the enumeration; the attributesin that attribute-
specifier are henceforth considered attributes of the enumeration whenever it
isnamed. The second optional attribute-specifier in the enum-head may only
appear if the enum-baseis present; it appertainsto the enum-base.

Modify 7.3.4 namespace.udir paragraph 1 as indicated:
usi ng-directive:

attribute-specifierg using namespace :@:,, nested-name-
speci fiero, nanmespace-nane ;

A using-directive shall not appear in class scope, but may appear in namespace
scope or in block scope. [Note: when looking up a namespace-name in a using-
directive, only namespace names are considered, see 3.4.6. -- end note]. The
optional attribute-specifier appertainsto the using-directive.

Add anew section 7.6 dcl.attr entitled "Attributes’ (not shown in bold below):

Attributes specify additional information for various source constructs such as
types, variables, names, blocks, or translation units.

attribute-specifier:
[[attribute-list]]

attribute-list:
attri but egp
attribute-list , attributegy

attribute
attribute-token attribute-argunment-cl ausegy

attri but e-t oken:
identifier
attri but e- scoped-token

attri but e- scoped-t oken:
attribute-nanespace :: identifier

attri but e- nanespace:
identifier

attri but e-argunent-cl ause:
(bal anced-t oken-seq)

bal anced-t oken-seq:
bal anced-t oken
bal anced-t oken- seq bal anced-t oken

bal anced-t oken:
(bal anced-t oken-seq)
[bal anced-t oken-seq]
{ bal anced-t oken-seq }
any token other than a parenthesis, bracket or brace

For each individual attribute, the form of the balanced-token-seq will be
specified.

An attribute-specifier that contains no attributes has no effect. The order in which
the attribute-tokens appear in an attribute-list is not significant. A keyword (2.11
lex.key) contained in an attribute-token is considered an identifier. No name
lookup (3.4 basic.lookup) is performed on any of the identifiers contained in an
attribute-token. The attribute-token determines additional requirements on the
attribute-argument-clause (if any). The use of an attribute-scoped-token is
conditionally-supported, with implementation-defined behavior. [Note: Each
implementation should choose a distinctive name for the attribute-namespace in
an attribute-scoped-token.]

Each attribute-specifier is said to appertain to some entity or statement, identified
by the syntactic context where it appears (clause 7 dcl.dcl, clause 8 dcl.decl). If an
attribute-specifier that appertains to some entity or statement contains an attribute
that does not apply to that entity or statement, the program isill-formed. If an
attribute-specifier appertainsto afriend declaration (11.4 class.friend), that
declaration shall be a definition. No attribute-specifier shall appertain to an
explicit instantiation (14.7.2 temp.explicit).

For an attribute-token not specified in this International Standard, the behavior is
implementation-defined.

In 8 dcl.decl paragraph 4, modify the grammar:

decl arat or:
ptr-decl arat or
noptr-decl arator paraneters-and-qualifiers -> attribute-
specifierq, type-id

ptr-decl arator:
nopt r - decl ar at or
ptr-operator ptr-declarator

noptr-decl arat or:
declarator-id attribute-specifiergy
noptr-decl arator paraneters-and-qualifiers
noptr-declarator [constant-expressiong,] attribute-specifiergy

(ptr-declarator)

par amet er s-and-qual i fiers:
(paraneter-declaration-clause) attribute-specifiergy cv-
qual ifier-seqey ref-qualifiery, exception-specificationgg

ptr-operator:
* attribute-specifierg cv-qualifier-seqop
&
&&
I lopt Nested-name-specifier * attribute-specifierg, cv-qualifier-
S€Qopt

Drafting note: Attributes cannot appertain to references. Thisis an update based
on Issue 681 “ Restrictions on declarators with |ate-specified return type.”

In 8.1 dcl.name paragraph 1, modify the grammar:

type-id:
type-specifier-seq attribute-specifiery, abstract-declarator gy

abstract -decl arator:
ptr-abstract-decl arator
noptr-abstract-decl arator,, paraneters-and-qualifiers ->
attribute-specifierg, type-id

ptr-abstract-decl arat or
nopt r - abstract - decl arat or
ptr-operator ptr-abstract-declarator gy

noptr-abstract - decl arat or
noptr-abstract-decl arat or o, parameters-and-qualifiers
noptr-abstract-declaratorq, [constant-expressiong,] attribute-
speci fier gy
(ptr-abstract-declarator)

Drafting note: Thisis an update based on Issue 681 “ Restrictions on declarators
with late-specified return type.”

Add at the end of 8.3 dcl.meaning paragraph 1:

... When the declarator-id is qualified, the declaration shall refer to a previously
declared member of the class or namespace to which the qualifier refers (or of an
inline namespace within that scope (7.3.1)), and the member shall not have been
introduced by a using-declaration in the scope of the class or namespace
nominated by the nested-name-specifier of the declarator-id. [Note: if the
gualifier isthe global :: scope resolution operator, the declarator-id refersto a
name declared in the global namespace scope. -- end note] The optional

attribute-specifier following a declarator-id appertainsto the entity that is
declared.

Modify 8.3 dcl.meaning paragraph 3:

Thus, adeclaration of a particular identifier has the form

TD

where T is of the form attribute-specifier,: decl-specifier-seq attribute-
specifierq,: and D is adeclarator. ...

Modify 8.3 dcl.meaning paragraph 5:

In adeclaration

attribute-specifiergy, T attribute-specifiergy, D

where D is an unadorned identifier the type of thisidentifier is" T." Thefirst
optional attribute-specifier appertainsto the entity being declared. The second
optional attribute-specifier appertainsto thetype T, but not to the class or
enumer ation declared in the decl-specifier-seqg, if any.

Modify 8.3.1 dcl.ptr paragraph 1 as indicated:

In adeclaration T D where D hastheform

* attribute-specifiergy cv-qualifier-seqey D1

and the type of the identifier in the declaration T D1 is "derived-declarator-type-
list T," then the type of the identifier of D is "derived-declarator-type-list cv-
qualifier-seq pointer to T." The cv-qualifiers apply to the pointer and not to the
object pointed to. Similarly, the optional attribute-specifier (7.6 dcl.attr)
appertainsto the pointer and not to the object pointed to.

Modify 8.3.3 dcl.mptr paragraph 1 as indicated:

In adeclaration T D where D hastheform

I lopt Nested-name-specifier * attribute-specifierg, cv-qualifier-
se(ey D1

and the nested-name-specifier names a class, and the type of the identifier in the
declaration T D1 is "derived-declarator-type-list T," then the type of the identifier
of D is"derived-declarator-type-list cv-qualifier-seq pointer to member of class
nested-name-specifier of type T." The optional attribute-specifier (7.6 dcl.attr)
appertainsto the pointer-to-member.

Modify 8.3.4 dcl.array paragraph 1 as indicated:

In adeclaration T D where D hasthe form

D1 [constant-expressiong] attribute-specifiergy

and the type of the identifier in the declaration T D1 is "derived-declarator-type-
list T," then the type of the identifier of D isan array type; if the type of the
identifier of D contains the auto type-specifier, the programisill-formed. ... If the
value of the constant expression is N, the array has N elements numbered O to N-
1, and the type of the identifier of D is "derived-declarator-type-list array of N T."
... If the constant expression is omitted, the type of the identifier of D is "derived-
declarator-type-list array of unknown bound of T," an incomplete object type. ...
The type "derived-declarator-type-list array of N T" is a different type from the
type "derived-declarator-type-list array of unknown bound of T," see 3.9
basic.types. Any type of the form "cv-qualifier-seq array of N T" is adjusted to
"array of N cv-qualifier-seq T," and similarly for "array of unknown bound of T."
The optional attribute-specifier appertainstothearray. ...

Modify 8.3.5 dcl.func paragraph 1 as indicated:

In adeclaration T D where D hastheform

D1 (paraneter-declaration-clause) attribute-specifierg, cv-
qualifier-seqe ref-qualifierq, exception-specificationgy

and the type of the contained declarator-id in the declaration T D1 is"derived-
declarator-type-list T," the type of the declarator-id in D is "derived-declarator-
type-list function of (parameter-declaration-clause) cv-qualifier-segoy: ref-
qualifierqy returning T." The optional attribute-specifier appertainsto the
function type.

Modify clause 8.3.5 dcl.func paragraph 2 to

In adeclaration T D where D hasthe form

D1 (parameter-declaration-clause) attribute-specifiergy cv-
qual ifier-seqe ref-qualifierg exception-specificationg ->
attribute-specifier, type-id

and the type of the contained declarator-id in the declaration T D1 is “ derived-
declarator-type-list T,” T shall be the single type-specifier auto. Then the type of
the declarator-id in D is“ function of (parameter-declaration-clause) cv-
qualifier-seqoy ref-qualifierqy returning type-id.” Such afunction type has alate-
specified return type. Thefirst optional attribute-specifier appertainsto the
function type. The second optional attribute-specifier appertainsto thereturn

type.

Modify clause 8.3.5 dcl.func paragraph 4 to

A type of either form is afunction type.®
par anet er - decl ar ati on- cl ause:

par amet er-decl aration-1iStgy ... qp
par anet er-decl aration-1ist ,

par anet er -decl aration-1i st:

par aret er - decl ar ati on
par anet er-decl aration-1ist , paraneter-declaration

par anet er - decl arati on:

decl -specifier-seq attribute-specifierg, declarator
decl -specifier-seq attribute-specifierg, declarator =
assi gnment - expr essi on

decl -specifier-seq attribute-specifierqy, abstract-
decl ar at or gy

decl -specifier-seq attribute-specifierg, abstract-
decl arator o, = assi gnment - expr essi on

Modify clause 8.4 dcl.fct.def paragraph 1 to

Function definitions have the form
function-definition

decl - specifier-seqey attribute-specifierg, declarator
function- body

decl - specifier-seqey attribute-specifiergy, declarator
defaul t ;

decl -specifier-seqey attribute-specifierg, declarator
delete ;

function-body:

ctor-initializery conpound-statenent
function-try-block

Any informal reference to the body of a function should be interpreted as a
reference to the non-terminal function-body.

Modify clause 8.4 dcl.fct.def paragraph 9 to

A function definition of the form:

decl -specifier-seqey attribute-specifierg, declarator = default

Modify clause 8.4 dcl.fct.def paragraph 10 to

A function definition of the form:

decl -specifier-seqey attribute-specifierg, declarator = delete

In clause 9 class paragraph 1, modify the grammar:

cl ass- head:
class-key identifierqy, attribute-specifierg base-clausegy
cl ass- key nested-nanme-specifier identifier attribute-specifiergy
base- cl auseqy
cl ass- key nested-nanme-specifierq, sinple-tenplate-id attribute-
specifierqy base-clauseqy

Add to clause 9 class paragraph 2 as indicated:

... A classis considered defined after the closing brace of its class-specifier has
been seen even though its member functions arein general not yet defined. The
optional attribute-specifier appertainsto the class; the attributesin the
attribute-specifier are henceforth considered attributes of the class whenever
it isnamed.

In 9.2 class.mem paragraph 1, modify the grammar

nember - decl ar ati on:

decl -specifier-seqey attribute-specifierg nmenber-declarator-
listopt ;

function-definition ;g

Iopt Nested-name-specifier tenplateg, unqualified-id

usi ng-decl aration

static_assert-declaration

t enmpl at e-decl arati on

nmemnber - decl ar at or:
decl arator pure-specifiergy
declarator constant-initializergy
i dentifiero, attribute-specifiergy: constant - expression

In 9.6 class.bit paragraph 1, modify the grammar

A member-declarator of theform

identifierqy, attribute-specifiery, : constant-expression

specifies a bit-field; its length is set off from the bit-field name by acolon. The
optional attribute-specifier appertainsto the entity being declared.

Modify clause 10 class.derived paragraph 1 as indicated:

A list of base classes can be specified in a class definition using the notation:
base-specifier:

I lopt Nested-name-specifiery, class-nane attribute-
specifier gy

virtual access-specifiergy, ::op Nested-name-specifiery
cl ass-nane attribute-specifierqy

access-specifier virtual oo ::op Nested-nanme-specifiergy
cl ass-nane attribute-specifiergy

The optional attribute-specifier appertainsto the base-specifier.
Modify 12.3.2 class.conv.fct paragraph 1 as indicated:

A member function of aclass X with a name of the form
conversi on-function-id:

operator conversion-type-id
conversi on-type-id:

type-specifier-seq attribute-specifiery conversion-
decl ar at or gy

conver si on-decl ar at or:

ptr-operator conversion-declarator gy
specifies a conversion from X to the type specified by the conversion-type-id. ...

Modify 13.3.1.1.2 over.call.object paragraph 2 as indicated:

In addition, for each conversion function declared in T of the form
operator conversion-type-id () attribute-specifiergy, cv-
qualifier ;
where cv-qualifier isthe same cv-qualification as, or agreater cv-qualification
than, cv, and ...

11.1 Alignment attribute

Editorial note: Please consider collecting all the attributes as subsections under 7.6. This
will include 7.1.7 through 7.1.9.

Removethe alignas asakeyword to 2.11 lex.key paragraph 1 Table 3: keywords.
Modify 3.2 basic.def.odr paragraph 4 Note

— thetype T isthe subject of anal i gnof expression (5.3.6) eran-alignas

Modify 3.11 basic.align paragraph 1:

Object types have alignment requirements (3.9.1, 3.9.2) which place restrictions
on the addressses at which an object of that type may be alocated. An alignment
is an implementation-defined integer val ue representing the number of bytes
between successive addresses at which a given object can be allocated. An object
type imposes an alignment requirement on every object of that type; stricter
alignment can be requested using aligras the alignment attribute (7.1.7).

Modify 7.1.7 dcl.align, to 7.1.7 dcl.attr.align:
7.1.7 Alignment Attribute specifier [dcl.attr.align]
Delete 7.1.7 dcl.align paragraph 1 and replace with:

The attribute-token align specifies alignment. The attribute shall have one of
the following forms:

align (type-id)
align (assignment-expression)

The attribute appliesto a variable that isneither a function parameter nor
declared with the register storage class specifier or to a class data member
that isnot a bit-field.

Modify 7.1.7 dcl.align paragraph 2:

When the alignment speeitier attributeisof theformal i gnas (
assignmenteenstant-expression):

— the assignment-expression shall be an integral constant expression
Modify 7.1.7 dcl.align paragraph 3:

When the alignment specifier attributeisof theformal i gnas(type-id), it shall
have the same effect asal i gnas(al i gnof (type-id)) (5.3.6).

Modify 7.1.7 dcl.align paragraph 4:

When multiple alignment attributes are specified for an object, the alignment
requirement shall be set to the strictest specified alignment.

Modify 7.1.7 dcl.align paragraph 5:

The combined effect of all alignment attributes in a declaration shall not specify
an alignment that is less strict than the alignment that would otherwise be required
for the object being declared.

Delete 7.1.7 dcl.align paragraph 6:

Modify 7.1.7 dcl.align paragraph 7:

If the defining declaration of an object has an alignment attribute, any non-
defining declaration of that object shall either specify equivalent alignment or
have no alignment attribute. No diagnostic is required if declarations of an object
have different alignment attributesin different trandation units.

Modify 7.1.7 dcl.align paragraph 8:

[Example: An aligned buffer with an alignment requirement of A and holding N
elements of type T other thanchar, si gned char, or unsigned char
can be declared as:

T ahigrasth-aligrastAy buffer [[aign(T), align (A)I] [N] ;

Specifying al i gnas(T) in the alighment-specifiertist attribute-list ensures that
the final requested alignment will not be weaker than al i gnof (T) , and
therefore the program will not beill-formed. —end example]

Modify 7.1.7 dcl.align paragraph 9:

[Note: the alignment of a union type can be strengthened by applying the
alignment attribute to any member of the union. —end note |

Add 7.1.7 dcl.align paragraph 10:

[Example:

void f [[align(double)]] ();

/1 error: alignment applied to function
unsi gned char ¢ [[align(double)]] [sizeof(double)];

/1 array of characters, suitably aligned for a double
ext ern unsi gned char c[sizeof (double)];

/1 no "align" necessary
extern unsigned char ¢ [[align(float)]] [sizeof(double)];

/1 error: different alignnment in declaration

]

In 20.5.7 meta.trans.other paragraph 1, change the example to use the al ign attribute.

[Note: atypical implementation would define aligned_storage as.
tenplate <std::size t Len, std::size_ t Aignnment>
struct aligned_storage {

typedef struct {

unsi gned char __data
[[align(Alignment)]] [Len];

} type;
b

—end note |

11.2 Noreturn attribute
Add a new section 7.1.8 dcl.attr.noreturn (not shown in bold below):

7.1.8 Thenor et ur n attribute

The attribute-token nor et ur n specifies that a function does not return. It shall appear at
most once in each attribute-list and no attribute-argument-clause shall be present. The
attribute appliesto the declarator-id in a function declaration. The first declaration of a
function shall specify the nor et ur n attribute if any declaration of that function specifies
the nor et ur n attribute. If afunction is declared with the nor et ur n attribute in one
tranglation unit and the same function is declared without the nor et ur n attributein
another trandation unit, the program isill-formed; no diagnostic required.

If afunction f is called where f was previously declared with the nor et ur n attribute, and
f eventualy returns, the behavior is undefined. [Note: The function may terminate by
throwing an exception. |

[Example:
void f [[noreturn]] () {
throw "error"; /1 ok
void g [[noreturn]] (int i) { // ill-formed if called with i <=0
if (i >0

throw "positive";
}
]

11.3 Final attribute
Add a new section 7.1.9 dcl.attr.final (not shown in bold below):

7.19Thefi nal attribute

The attribute-token f i nal specifies overriding semantics for avirtual function. It shall
appear at most once in each attribute-list and no attribute-argument-clause shall be
present. The attribute applies to class definitions and to virtual member functions being
declared in a class definition. If the attribute is specified for a class definition, it is
equivalent to being specified for each virtual member function of that class, including
inherited member functions.

If avirtual member function f in some class B ismarked fi nal and in aclass D derived
from B, afunction D::f overrides B::f, the program isill-formed; no diagnostic required. [
Footnote: If an implementation does not emit a diagnostic, it is encouraged to execute the
program asif fi nal were absent.]

[Example:

struct B {
virtual void f [[final]] ();

b
struct D: B {
void f(); /1 ill-forned
b
]

Acknowledgement

We would like to recognize the following people for their help in urging this work, their
extended discussions and recommendations: Alisdair Meredith, Lawrence Crowl, Clark
Nelson, Tom Plum, Attilla Feher, Ettore Tiotto, Sasha Kasapinovic, Yan Liu, Jeff Heath,
Zbigniew Sarbinowski, Christopher Cambly, Sean Perry, Barry Hedquist, Francis

Glassborow, Michael Spertus, Lois Goldthwaite, Bill Seymour, Walter Brown, Raymond
Mak, Edison Kwok, Howard Nasgaard, Christian Terboven, Dieter An-Mey, Bern Mohr,
Raul Silvera, Paul McKenney, Herb Sutter, Daveed Vandevoorde, Bjarne Stroustrup. We
would also like to recognize WG14 members and the C/C++ liasions who contributed to
improving this proposal for both languages. Daniel Krugler made valuable corrections
and adaptations for the interaction between the new Ox features and this feature.

Reference

[C++03] 1SO C++ 2003 Standard

[GNU] Section 5.25: Attribute Syntax, http://gcc.gnu.org/onlinedocs/gcc-
4.1.2/gcc/Attribute-Syntax.html#Attribute-Syntax

[MS] http://msdn2.microsoft.com/en-ug/library/dabb5z75(V S.80).aspx
[C#H] http://msdn2.microsoft.com/en-ug/library/aa287992(V S.71).aspx
[n2224] Seeking a Syntax for Attributesin C++09, http://www.open-
std.org/jtcl/sc22/wg21/docs/papers/2007/n2224.html

[OpenMP] http://www.openmp.org/drupal/node/view/8

http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Attribute-Syntax.html#Attribute-Syntax
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Attribute-Syntax.html#Attribute-Syntax
http://msdn2.microsoft.com/en-us/library/dabb5z75(VS.80).aspx
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2224.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2224.html

	1 Overview
	2 The Problem
	3 The industry’s solution
	4 GNU’s attribute syntax
	4.1 Attribute specifiers as part of aggregate types, and enumerations
	4.2 Attribute specifiers in comma separated list of declarations
	4.3 Attribute specifiers immediately before a comma, = or semicolon
	4.4 Attribute specifiers at the start of a nested declarator applies to the outermost adjacent declarator
	4.5 Attribute specifiers list following a label
	4.6 Problems with GNU __attribute__

	5 Microsoft __DeclSpec syntax
	6 This Proposal
	6.1 Complex examples

	7 Guidance on when to use/reuse a keyword and when to use an attribute
	8 Alternative Syntax and controversial issues
	9 OpenMP binding to C++
	10 Introduction of specific new attributes
	11 Proposed Wording changes
	11.1 Alignment attribute
	11.2 Noreturn attribute
	11.3 Final attribute

