
N2065=06-0135

Doc. no.: N2065=06-0135
Date: 2006-09-05
Project: Programming Language C++
Reply to: Alberto Ganesh Barbati

<abarbati@iaanus.com>

�

A proposal to add stream objects based

on �xed memory bu�ers

1 Motivation

The C++03 standard deprecates the strstream class templates, while the stringstream counterparts
are usually considered a replacement. The string-based streams indeed have a better interface, however
they have the following drawbacks:

� if the user has initial data stored in a character bu�er, using a basic_istringstream object to parse
the data requires copying the entire bu�er into a basic_string object

� if the user requires output data to be stored in a previously allocated character bu�er (for example
a member of some POD-struct used to call a legacy C function), the data must be copied out of the
basic_string object returned by basic_stringbuf::str() and into the bu�er.

Consider also that:

� basic_string objects might require dynamic allocations on the heap

� manipulation of basic_string objects might perform unnecessary hidden copies of the bu�er data.
For example, as basic_stringbuf::str() returns a string by-value, a typical non-refcounted im-
plementation of basic_string requires an additional copy of the bu�er data

� in the �xed-bu�er output scenario, the fact that both stringstreams and strstreams provide sup-
port for growable bu�ers is both unnecessary and a nuisance1). And you are probably going to pay
for it!

For these reasons, in the pre-allocated �xed bu�er scenario, users may prefer either the deprecated
strstreams or avoiding streams entirely.

This proposal is about providing a new set of class templates (one bu�er and three streams) that specif-
ically address direct reading from and writing to �xed memory bu�ers. The bu�er shall be provided by
the user and will always remain under his complete responsibility. In particular, the user shall ensure
that the bu�er exists for the entire lifetime of the stream bu�er object that manages access to it. The
proposed templates never try to allocate, grow, shrink, etc. the given bu�er. Any read/write operation
is done directly from/to the bu�er, with no intermediate copy. The proposed templates also don't try
to provide any view of the underlying bu�er as a string2). These assumptions allow to keep both the
interface very terse and the implementation very simple and performant.

Although it is conceivable that users can write such templates on their own, there are a few pitfalls in the
implementation (for example in seekoff() and seekpos()) that make them suitable for standardization.

1)For example, with the proposed omemstream class, output operations fail as soon as the bu�er space is exhausted. This
fact, which could be exploited for example in conjunction with the exceptions() member function, can't be obtained with
string-based (growable) streams.

2)In particular, null characters in the bu�er don't get any special treatment and there is no active e�ort to append
null-terminators.

1

N2065=06-0135

2 Impact on the standard

This proposal is a pure extension. All additions are limited to a single new header �le <memstream>,
which de�nes the new templates. It does not require changes in the core language and has been imple-
mented in standard C++ (see annex A).

This proposal does not depend on any other library extensions.

3 Proposed text

3.1 Changes in current standard

3.1.1 Changes to clause 27.5.2.4.2 [lib.streambuf.virt.bu�er]

In paragraphs 1, 3 and 5 (functions setbuf(), seekoff(), seekpos()), add to the list of forward refer-
ences (27.7.1.3, 27.8.1.4) a reference to the new clause [lib.membuf.virtuals].

3.2 Additions to standard

The following text should be added to clause 27.

3.2.1 Memory-based streams [lib.memory.streams]

The header <memstream> de�nes four class templates and six types, that associate stream bu�ers with
static memory bu�ers.

3.2.1.1 Header <memstream> synopsis

namespace std {

template <class charT , class traits = char_traits <charT > >

class basic_membuf;

template <class charT , class traits = char_traits <charT > >

class basic_imemstream;

template <class charT , class traits = char_traits <charT > >

class basic_omemstream;

template <class charT , class traits = char_traits <charT > >

class basic_memstream;

typedef basic_membuf <char > membuf;

typedef basic_imemstream <char > imemstream;

typedef basic_omemstream <char > omemstream;

typedef basic_memstream <char > memstream;

typedef basic_membuf <wchar_t > wmembuf;

typedef basic_imemstream <wchar_t > wimemstream;

typedef basic_omemstream <wchar_t > womemstream;

typedef basic_memstream <wchar_t > wmemstream;

}

3.2.1.2 Class template basic_membuf [lib.membuf]

namespace std {

template <class charT , class traits = char_traits <charT > >

class basic_membuf : public basic_streambuf <charT ,traits > {

public:

typedef charT char_type;

2

N2065=06-0135

typedef typename traits :: int_type int_type;

typedef typename traits :: pos_type pos_type;

typedef typename traits :: off_type off_type;

typedef traits traits_type;

// Constructors:

basic_membuf(charT* s, streamsize n,

ios_base :: openmode which = ios_base ::in | ios_base ::out);

basic_membuf(const charT* s, streamsize n,

ios_base :: openmode which = ios_base ::in);

// Capacity:

static streamsize max_size () const;

protected:

// Overridden virtual functions:

virtual pos_type seekoff(off_type off , ios_base :: seekdir way ,

ios_base :: openmode which = ios_base ::in | ios_base ::out);

virtual pos_type seekpos(pos_type sp,

ios_base :: openmode which = ios_base ::in | ios_base ::out);

virtual basic_streambuf <charT ,traits >* setbuf(charT*, streamsize);

private:

// ios_base::openmode mode; exposition only

};

}

1 The class basic_membuf is derived from basic_streambuf to associate possibly the input sequence and
possibly the output sequence with a sequence of arbitrary characters. A suitable memory bu�er that will
provide storage for the sequences shall be provided by the application as a parameter to a basic_membuf

constructor. The bu�er shall exists for the whole lifetime of the basic_membuf object. Every read
operation on the input sequence shall be performed by reading the bu�er contents. Every write operation
on the output sequence shall be immediately written to the bu�er. If the program modi�es the contents
of the bu�er by directly accessing it, the behaviour is unspeci�ed.

2 If member function setbuf() is called then all requirements in the previous paragraph are immediately
relieved from the current bu�er and transferred to the new bu�er speci�ed by the call.

3 For the sake of exposition, the maintained data is presented here as:

� ios_base::openmode mode, has in set if the input sequence can be read, and out set if the output
sequence can be written.

4 In additions to the required signatures, implementations are encouraged, but not required, to provide
optimized implementations of virtual functions xsgetn() and xsputn() (27.5.2.4.3 and 27.5.2.4.5 resp.).
Any such implementations shall copy bu�er elements using traits::copy().

3.2.1.3 basic_membuf constructors [lib.membuf.cons]

basic_membuf(charT* s, streamsize n,

ios_base :: openmode which = ios_base ::in | ios_base ::out);

1 Requires s is a valid pointer to an array of at least n elements, n <= max_size().

2 Throws invalid_argument if s is a null pointer, lenght_error if n > max_size().

3

N2065=06-0135

3 E�ects Constructs an object of class basic_membuf, initializing the base class with basic_streambuf()

(27.5.2.1), and initializing mode with which. Initializes the underlying sequence with the bu�er starting
at s and n elements long. If which & ios_base::out is true, initializes the output sequence with the
underlying sequence. If which & ios_base::in is true, initializes the input sequence with the underlying
sequence.

basic_membuf(const charT* s, streamsize n,

ios_base :: openmode which = ios_base ::in);

4 Requires s is a valid pointer to an array of at least n elements, n < max_size().

5 Throws invalid_argument if s is a null pointer or which & ios_base::out is true, lenght_error if
n > max_size().

6 E�ects Constructs an object of class basic_membuf, initializing the base class with basic_streambuf()

(27.5.2.1), and initializing mode with which. Initializes the underlying sequence with the bu�er starting
at s and n elements long with the underlying sequence3). If which & ios_base::in is true, initializes
the input sequence.

3.2.1.4 Capacity [lib.membuf.capacity]

static streamsize max_size () const;

1 Returns the maximum allowed size for a bu�er that can be managed by a basic_membuf object.

3.2.1.5 Overridden virtual functions [lib.membuf.virtuals]

pos_type seekoff(off_type off , ios_base :: seekdir way ,

ios_base :: openmode which = ios_base ::in | ios_base ::out);

1 E�ects Alters the stream position within one of the controlled sequences, if possible. E�ects are identical
to those prescribed for function basic_stringbuf::seekoff() (27.7.1.3).

2 Returns Returned value is identical that of function basic_stringbuf::seekoff() (27.7.1.3).

pos_type seekpos(pos_type sp ,

ios_base :: openmode which = ios_base ::in | ios_base ::out);

3 E�ects Alters the stream position within the controlled sequences, if possible. E�ects are identical to
those prescribed for function basic_stringbuf::seekpos() (27.7.1.3).

4 Returns Returned value is identical that of function basic_stringbuf::seekpos() (27.7.1.3).

basic_membuf <charT ,traits >* setbuf(charT* s, streamsize n);

5 Requires s is a valid pointer to an array of at least n elements, with n <= max_size()

6 Throws invalid_argument if s is a null pointer, length_error if n > max_size()

7 E�ects Initializes the underlying sequence with the bu�er starting at s and n elements long. If
mode & ios_base::out is true, initializes the output sequence with the new underlying sequence. If
mode & ios_base::in is true, initializes the input sequence with the new underlying sequence.

8 Returns this.

3.2.2 Class template basic_imemstream [lib.imemstream]

namespace std {

3)This operation may require casting away the const-ness of s. It's responsibility of the implementation to ensure that
no write operation is ever attempted on a derefenced pointer obtained by s.

4

N2065=06-0135

template <class charT , class traits = char_traits <charT > >

class basic_imemstream : public basic_istream <charT ,traits > {

public:

typedef charT char_type;

typedef typename traits :: int_type int_type;

typedef typename traits :: pos_type pos_type;

typedef typename traits :: off_type off_type;

typedef traits traits_type;

// Constructors:

basic_imemstream(const charT* s, streamsize n,

ios_base :: openmode which = ios_base ::in);

// Members:

basic_membuf <charT ,traits >* rdbuf() const;

private:

// basic_membuf<charT,traits> sb; exposition only

};

}

1 The class basic_imemstream supports reading from memory bu�ers. It uses a basic_membuf object to
manage access to the storage. For the sake of exposition, the maintained data is presented here as:

� sb the basic_membuf object.

3.2.2.1 basic_imemstream constructors [lib.imemstream.cons]

basic_imemstream(const charT* s, streamsize n,

ios_base :: openmode which = ios_base ::in);

1 E�ects Constructs an object of class basic_imemstream, initializing the base class with basic_istream(&sb)
and initializing sb with basic_membuf(s, n, which | ios_base::in) (27.9.1.1).

3.2.2.2 Member functions [lib.imemstream.members]

basic_membuf <charT ,traits >* rdbuf() const;

1 Returns &sb.

3.2.3 Class basic_omemstream [lib.omemstream]

namespace std {

template <class charT , class traits = char_traits <charT > >

class basic_omemstream : public basic_ostream <charT ,traits > {

public:

// Types:

typedef charT char_type;

typedef typename traits :: int_type int_type;

typedef typename traits :: pos_type pos_type;

typedef typename traits :: off_type off_type;

typedef traits traits_type;

// Constructors:

basic_omemstream(charT* s, streamsize n,

ios_base :: openmode which = ios_base ::out);

// Members:

basic_membuf <charT ,traits >* rdbuf() const;

5

N2065=06-0135

private:

// basic_membuf<charT,traits> sb; exposition only

};

}

1 The class basic_omemstream supports writing to memory bu�ers. It uses a basic_membuf object to
manage access to the storage. For the sake of exposition, the maintained data is presented here as:

� sb the basic_membuf object.

3.2.3.1 basic_omemstream constructors [lib.omemstream.cons]

basic_omemstream(charT* s, streamsize n,

ios_base :: openmode which = ios_base ::out);

1 E�ects Constructs an object of class basic_omemstream, initializing the base class with basic_ostream(&sb)
and initializing sb with basic_membuf(s, n, which | ios_base::out) (27.9.1.1).

3.2.3.2 Member functions [lib.omemstream.members]

basic_membuf <charT ,traits >* rdbuf() const;

1 Returns &sb.

3.2.4 Class template basic_memstream [lib.memstream]

namespace std {

template <class charT , class traits = char_traits <charT > >

class basic_memstream : public basic_iostream <charT ,traits > {

public:

// Types:

typedef charT char_type;

typedef typename traits :: int_type int_type;

typedef typename traits :: pos_type pos_type;

typedef typename traits :: off_type off_type;

typedef traits traits_type;

// Constructors:

basic_memstream(charT* s, streamsize n,

ios_base :: openmode which = ios_base ::out | ios_base ::in);

// Members:

basic_membuf <charT ,traits >* rdbuf() const;

private:

// basic_membuf<charT,traits> sb; exposition only

};

}

1 The class template basic_memstream supports reading and writing from/to memory bu�ers. It uses a
basic_membuf object to manage access to the storage. For the sake of exposition, the maintained data
is presented here as

� sb the basic_membuf object.

3.2.4.1 basic_memstream constructors [lib.memstream.cons]

basic_memstream(charT* s, streamsize n,

6

N2065=06-0135

ios_base :: openmode which = ios_base ::out | ios_base ::in);

1 E�ects Constructs an object of class basic_memstream, initializing the base class with basic_iostream(&sb)
and initializing sb with basic_membuf(s, n, which).

3.2.4.2 Member functions [lib.memstream.members]

basic_membuf <charT ,traits >* rdbuf() const;

1 Returns &sb.

4 Remarks

In principle, it should be possible to use as target/source whatever bu�er the user is able to allo-
cate. Unfortunately, the only portable way to reposition the output sequence is by using function
basic_streambuf::pbump(). As such function takes an int parameter, it e�ectively limits the size of the
bu�er to numeric_limits<int>::max(). This issue is closely related with LWG issue #255. Function
basic_membuf::max_size() has been introduced for the sole purpose to allow implementations based
only on the current standard, otherwise it should not be necessary. See also the comments in functions
setgpos() and setppos() in the reference implementation code. Notice that the problem only arises for
the output sequence, as the input sequence can be repositioned with basic_streambuf::setg(), which
does not su�er the limitations of basic_streambuf::gbump().

5 Unresolved issues

The following issues have been raised and not yet addressed:

a) About the basic_membuf constructor that takes a const pointer, the proposed text specify that an
exception is thrown if which & std::ios_base::out is true. Other solutions could be considered,
such as silently ignoring the case by assigning mode = which & ~std::ios_base::out.

b) Should the bu�er and possibly the stream templates provide an accessor to the underlying bu�er?
In that case the name should avoid any reference to strings. Among possible names, data, with
obvious analogy with basic_string::data, seems a good candidate.

c) Should the bu�er and possibly the stream templates provide an accessor to the underlying size? In
the reference implementation that would be possibile with little e�ort. The most natural name for
such accessor would be size.

d) The bu�er and possibly the stream templates could provide a constructor that takes a range in
addition or instead of the proposed pointer/size approach.

e) If the bu�er contents are directly modi�ed by the program then the behaviour is said to be unspeci-
�ed. Should it be speci�ed instead? The two other options (implementation-de�ned and unde�ned)
don't look very attractive.

6 Acknowledgements

The author would like to thank Howard Hinnant for his encouragement and support.

7

N2065=06-0135

Annex A
(informative)

Reference implementation

#ifndef INCLUDED_MEMSTREAM_HPP

#define INCLUDED_MEMSTREAM_HPP

#include <istream >

5 #include <ostream >

#include <streambuf >

#include <stdexcept >

#include <limits >

10 template <class charT , class traits = std:: char_traits <charT > >

class basic_membuf

: public std:: basic_streambuf <charT , traits >

{

public:

15 typedef std:: basic_streambuf <charT , traits > base_type;

typedef typename traits :: int_type int_type;

typedef typename traits :: pos_type pos_type;

typedef typename traits :: off_type off_type;

20 basic_membuf(charT* s, std:: streamsize n,

std:: ios_base :: openmode mode = std:: ios_base ::in | std:: ios_base ::out)

{

if (!s)

throw std:: invalid_argument("null -pointer not allowed");

25 if(n > max_size ())

throw std:: length_error("buffer size too large");;

bufsize_ = n;

if (mode & std:: ios_base ::out)

30 this ->setp(s, s + n);

if (mode & std:: ios_base ::in)

this ->setg(s, s, s + n);

}

35 basic_membuf(const charT* s, std:: streamsize n,

std:: ios_base :: openmode mode = std:: ios_base ::in)

{

if (!s)

throw std:: invalid_argument("null -pointer not allowed");

40 if ((mode & std:: ios_base ::out) != 0)

throw std:: invalid_argument("std:: ios_base ::out flag not allowed");

if(n > max_size ())

throw std:: length_error("buffer size too large");

45 bufsize_ = n;

if (mode & std:: ios_base ::in)

{

charT* muts = const_cast <charT*>(s);

this ->setg(muts , muts , muts + n);

50 }

}

static std:: streamsize max_size ()

{

55 // see setgpos/setppos

return static_cast <std:: streamsize >(std:: numeric_limits <int >:: max ());

}

protected:

60 virtual pos_type seekoff(

off_type off ,

8

N2065=06-0135

std:: ios_base :: seekdir way ,

std:: ios_base :: openmode which = std:: ios_base ::in | std:: ios_base ::out)

{

65 if ((which & (std:: ios_base ::in | std:: ios_base ::out))

== (std:: ios_base ::in | std:: ios_base ::out)

&& this ->gptr() && this ->pptr ())

{

// reposition both sequences

70 switch (way)

{

case std:: ios_base ::beg:

break;

75 case std:: ios_base ::cur:

off = -1; // this case is not allowed

break;

case std:: ios_base ::end:

80 off += bufsize_;

break;

}

if (off >= 0 && off <= bufsize_)

85 {

setgpos(off);

setppos(off);

}

else

90 {

off = -1;

}

}

else if ((which & std:: ios_base ::in) && this ->gptr ())

95 {

switch (way)

{

case std:: ios_base ::beg:

break;

100

case std:: ios_base ::cur:

off += this ->gptr() - this ->eback ();

break;

105 case std:: ios_base ::end:

off += bufsize_;

break;

}

110 if (off >= 0 && off <= bufsize_)

{

setgpos(off);

}

else

115 {

off = -1;

}

}

else if ((which & std:: ios_base ::out) && this ->pptr ())

120 {

switch (way)

{

case std:: ios_base ::beg:

break;

125

case std:: ios_base ::cur:

9

N2065=06-0135

off += this ->pptr() - this ->pbase ();

break;

130 case std:: ios_base ::end:

off += bufsize_;

break;

}

135 if (off >= 0 && off <= bufsize_)

{

setppos(off);

}

else

140 {

off = -1;

}

}

else

145 {

// no sequence can be repositioned

off = -1;

}

150 return pos_type(off);

}

virtual pos_type seekpos(

pos_type sp ,

155 std:: ios_base :: openmode which = std:: ios_base ::in | std:: ios_base ::out)

{

bool moved = false;

off_type off(sp);

160 if (off >= 0 && off <= bufsize_)

{

if ((which & std:: ios_base ::in) && this ->gptr ())

{

setgpos(off);

165 moved = true;

}

if ((which & std:: ios_base ::out) && this ->pptr ())

{

170 setppos(off);

moved = true;

}

}

175 return moved ? pos_type(off) : pos_type(off_type (-1));

}

virtual std:: streamsize xsgetn(char_type* s, std:: streamsize n)

{

180 if (this ->gptr ())

{

std:: streamsize pos = this ->gptr() - this ->eback ();

n = std::min(n, bufsize_ - pos);

traits ::copy(s, this ->gptr(), n);

185 setgpos(pos + n); // deliberately preferring setgpos to gbump

}

else

{

n = 0;

190 }

10

N2065=06-0135

return n;

}

195 virtual std:: streamsize xsputn(const char_type* s, std:: streamsize n)

{

if (this ->pptr ())

{

std:: streamsize pos = this ->pptr() - this ->pbase ();

200 n = std::min(n, bufsize_ - pos);

traits ::copy(this ->pptr(), s, n);

setppos(pos + n); // deliberately preferring setppos to pbump

}

else

205 {

n = 0;

}

return n;

210 }

virtual base_type* setbuf(char_type* s, std:: streamsize n)

{

if (!s)

215 throw std:: invalid_argument("null -pointer not allowed");

if(n > max_size ())

throw std:: length_error("buffer size too large");;

bufsize_ = n;

220 if (this ->pptr ())

this ->setp(s, s + n);

if (this ->gptr ())

this ->setg(s, s, s + n);

return this;

225 }

private:

std:: streamsize bufsize_;

230 void setgpos(std:: streamsize pos)

{

// these casts are required because gbump() takes an int argument

// the conversions are ok because max_size () == numeric_limits <int >::max()

this ->gbump(static_cast <int >(pos)

235 - static_cast <int >(this ->gptr() - this ->eback ()));

// alternatively this function could be written as:

// this ->setg(this ->eback(), this ->eback() + pos , this ->egptr ());

// notice that this form would not suffer the max_size () requirement

240 }

void setppos(std:: streamsize pos)

{

// these casts are required because pbump() takes an int argument

245 // the conversions are ok because max_size () == numeric_limits <int >::max()

this ->pbump(static_cast <int >(pos)

- static_cast <int >(this ->pptr() - this ->pbase ()));

// to avoid the max_size () requirement we would need some other way

250 // to reposition the put pointer. For example , the Dinkumware C++ library

// provides a non -standard setp() with three arguments that would make it

// possible to write:

// this ->setp(this ->pbase(), this ->pbase() + pos , this ->epptr ());

}

255 };

11

N2065=06-0135

template <class charT , class traits = std:: char_traits <charT > >

class basic_imemstream

: public std:: basic_istream <charT , traits >

260 {

typedef basic_membuf <charT , traits > buffer_type;

public:

basic_imemstream(const charT* s, std:: streamsize n,

265 std:: ios_base :: openmode mode = std:: ios_base ::in)

: std:: basic_istream <charT , traits >(0)

, buffer_(s, n, mode | std:: ios_base ::in)

{

this ->init(& buffer_);

270 }

basic_imemstream(const charT* begin , const charT* end ,

std:: ios_base :: openmode mode = std:: ios_base ::in)

: std:: basic_istream <charT , traits >(0)

275 , buffer_(begin , end - begin , mode | std:: ios_base ::in)

{

this ->init(& buffer_);

}

280 buffer_type* rdbuf() const

{

return &buffer_;

}

285 private:

buffer_type buffer_;

};

template <class charT , class traits = std:: char_traits <charT > >

290 class basic_omemstream

: public std:: basic_ostream <charT , traits >

{

typedef basic_membuf <charT , traits > buffer_type;

295 public:

basic_omemstream(charT* s, std:: streamsize n,

std:: ios_base :: openmode mode = std:: ios_base ::out)

: std:: basic_ostream <charT , traits >(0)

, buffer_(s, n, mode | std:: ios_base ::out)

300 {

this ->init(& buffer_);

}

basic_omemstream(charT* begin , charT* end ,

305 std:: ios_base :: openmode mode = std:: ios_base ::out)

: std:: basic_ostream <charT , traits >(0)

, buffer_(begin , end - begin , mode | std:: ios_base ::out)

{

this ->init(& buffer_);

310 }

buffer_type* rdbuf() const

{

return &buffer_;

315 }

private:

buffer_type buffer_;

};

320

template <class charT , class traits = std:: char_traits <charT > >

12

N2065=06-0135

class basic_memstream

: public std:: basic_iostream <charT , traits >

{

325 typedef basic_membuf <charT , traits > buffer_type;

public:

basic_memstream(charT* s, std:: streamsize n,

std:: ios_base :: openmode mode = std:: ios_base ::in | std:: ios_base ::out)

330 : std:: basic_iostream <charT , traits >(0)

, buffer_(s, n, mode)

{

this ->init(& buffer_);

}

335

basic_memstream(charT* begin , charT* end ,

std:: ios_base :: openmode mode = std:: ios_base ::out)

: std:: basic_iostream <charT , traits >(0)

, buffer_(begin , end - begin , mode)

340 {

this ->init(& buffer_);

}

buffer_type* rdbuf() const

345 {

return &buffer_;

}

private:

350 buffer_type buffer_;

};

typedef basic_membuf <char > membuf;

typedef basic_imemstream <char > imemstream;

355 typedef basic_omemstream <char > omemstream;

typedef basic_memstream <char > memstream;

typedef basic_membuf <wchar_t > wmembuf;

typedef basic_imemstream <wchar_t > wimemstream;

360 typedef basic_omemstream <wchar_t > womemstream;

typedef basic_memstream <wchar_t > wmemstream;

#endif // INCLUDED_MEMSTREAM_HPP

13

