Memory Model for C++:
Status update

Hans-J. Boehm

HP Labs

Hans. Boehm@p. com
WG21/N1911=J16/05-0171
2005-10-20

With help from Bill Pugh, Doug Lea, Peter
Dimov, Alexander Terekhov, ...

Goals of this talk

-Outline where we have been.
What are the difficulties?
*Tradeoffs for atomic operations

& why those are fundamental
-Current status

A note on assumptions

‘In spite of N1834, we concentrate on threads.
‘| believe these reflect the most common
approach to concurrency, though there are
others:

‘Message passing (e.g. MPI): Different

ISSues.

-Partially shared address space:
Sometimes useful, partially addressed.
*Pointers and virtual functions broken.
*Share many of the same issues.

Approach, from last time:
(still a bit tentative)

‘"Pthreads-like" memory model.

*Data race: A store to a memory location
concurrent with another load or store to a
memory location.

*Data races have undefined semantics.

*Otherwise: Sequential consistency.

-Careful and restrictive definition of "data

race" and "memory location".
*Only bit-fields share a "memory location."
*Data races defined for seq. consistent exec.

Reasons for this approach

We can get away with it, kind of.
*No type-safety required.

Remain consistent with current practice.
-Java-like approach disallows some compiler
optimizations:

*Register "rematerialization".

*Code hoisting (sometimes).

Requires memory barriers on object
construction to ensure vtable visibility.
*Avoid (?) complex causality treatment.
*Avoid atomicity constraints.

The Problem: Atomic Operations
Library.

Some low level code requires data races for
performance.
Common example: "double-checked locking"
1f (!'x initialized) {

| ock() ;

if (!x_initialized) x = ...;

X Initiralized = true;

unl ock();

}
X

‘l ncorrect as 1s: Data race!

Double-checked locking:
Why It has to be illegal as is.

Compiler/hardware may reorder
if (!x initialized) {
|l ock(); [// Not real syntax
if (Ix initialized) x = ...;
X initialized = true;
unl ock();

}

D S
‘E.g., compiler may load x early after
discovering that it misses cache.
Some architectures allow reordering.

The solution: atomic operations

‘Loads and stores of X _initialilzed mustbe
done specially:
‘Tell compiler (and programmer) that a race
IS involved.
‘Ensure atomicity.
-Specify ordering constraints.
-Use either a special vol ati | e variant, or
calls to a standard atomic operations library.
‘We are concentrating on the library for now.

Double-checked locking:
Correct, with atomic operations

-Use atomic operations (not real syntax):
I1f (!load acquire(x_initialized)) {
| ock() ;

I1f (!'x initialized) x = ..

store_rel ease(x_ |n|t|aI|zed true);
unl ock() ;

}

X ...

-Store _release ensures that preceding stores

are visible to aload acquire reading variable
In another thread.

A controversial part: Memory

ordering constraints:

-Different hardware can cheaply enforce
different types of ordering constraints.
*Argues for many different supported variants:
‘E.qg. order load with respect to later operations

"control-dependent” on it.

*But:

*These often don't make sense at source level.

Sometimes they constrain separate compilation.

*Synchronization operations that allow
reordering complicate semantics.

*More variety complicates semantics more.

Atomic operation semantics

Variables x, y, and z initially O

*Thread 1: *Thread 2:
store_unordered(x, 1); store_unordered(y, 1);
rl =load_unordered(y); r2 =load_unordered(x);
If (rl==0)z=17, if (r2==0) z =42,

Does this have a data race?

* Simultaneous accesses through atomics don't count.

*No race on z under sequentially consistent interpretation.

* But simultaneous accesses are really possible.

* This must have undefined semantics in order to preserve the
compilers optimization ability.

Current approach

-Definition of data race assumes

-Sequential consistency for ordinary memory
accesses.

-Java-like semantics for atomic operations.
*(this is technically tricky.)

Causality

‘Problem: This brings back the complexity of
Java memory model.

Initially x =y =0

Thread 1: Thread 2:
store(x, load(y)); store(y, load(x));
z[x] = 17, z[42] = 23;

-Solutions under consideration:
*Simply say "no speculation on atomics" (vague)
*Try for simpler model that overconstrains optimization of
atomics.

Issues related to atomics:

‘Fine control vs. ease of use?
*How many ordering constraints?
Do we want higher level facilities, like Lawrence
Crowl's proposal?
*In addition to or instead of lower level package?
‘Templatized w.r.t. location type?
catomic<T> vs atomic_ptr or both?
*Operations parameterized w.r.t. ordering?
*load_acquire vs. load<acquire> vs. load(acquire, ...)
Emulated operations & feature tests.
*Don't have compare-and-swap everywhere.

Current status

‘Web page at

http://ww. hpl . hp. cond per sonal / Hans_Boehnl c++mm
‘Includes (still informal) proposal
‘Needs further scrutiny
‘Very preliminary atomic operations library
Interface

‘Want more C compatibility.
Would like opinions on:

*Atomics interface.

*Required precision of atomics memory model.

