
Document Number: J16/05-0148 = WG21 N1888

Date: 1 October, 2005

Reply to: William M. Miller

Edison Design Group, Inc.

wmm@edg.com

Defining Members of Explicit Specializations

I. Background and Analysis

When a class template or a member class of a class template is explicitly specialized, it’s a rea-

sonable expectation that the static data members, member functions, and nested classes of the ex-

plicit specialization can be defined at namespace scope, just like the members of other classes

and class templates. It appears that the only explicit guidance given by the Standard on how

these definitions are to be written is found in 14.7.3¶4:

A member of an explicitly specialized class is not implicitly instantiated from the

member declaration of the class template; instead, the member of the class tem-

plate specialization shall itself be explicitly defined. In this case, the definition of

the class template explicit specialization shall be in scope at the point of declara-

tion of the explicit specialization of the member. The definition of an explicitly

specialized class is unrelated to the definition of a generated specialization. That

is, its members need not have the same names, types, etc. as the members of a

generated specialization. Definitions of members of an explicitly specialized class

are defined in the same manner as members of normal classes, and not using the

explicit specialization syntax. [Example:

template <class T> struct A {

 void f(T) { /* . . . */ }
};

template <> struct A<int> {
 void f(int);
};

void h()
{
 A<int> a;

 a.f(16); // A<int>::f must be defined somewhere
}

// explicit specialization syntax not used for a member of

// explicitly specialized class template specialization

void A<int>::f () { /* . . . */ }

—end example]

It is not immediately clear from this paragraph exactly which kinds of explicit specializations are

Defining Members of Explicit Specializations J16/05-0148 = WG21 N1888

page 2 of 6

in view in this prohibition of “using the explicit specialization syntax.” There are three distinct

kinds of explicit specializations that can have members, i.e., that might plausibly be the object of

this specification:

1. An explicit specialization of a class member of a class template. For example,

template <typename T> struct S {
struct X { };

};

template<>
struct S<int>::X {

void f();
};

2. An explicit specialization of a class template (which might be a non-member, a member

of a class, or a member of a class template) that is fully specialized, i.e., specialized as a

class. For example,

template <typename T1> struct S {
template <typename T2> struct X { };

};

template<> template<>
struct S<int>::X<int> {

void f();
};

3. An explicit specialization of a class template member of a class template that “remains

unspecialized” (14.7.3¶18), i.e., that is specialized as a class template. For example:

template <typename T1> struct S {
template <typename T2> struct X { };

};

template<>
template <typename T> struct S<int>::X {

void f();
};

The question that must be answered for each of these examples is whether 14.7.3¶4 specifies

how the member function X::f() is to be defined. This question primarily depends on the mean-

ing of “explicitly specialized class” (“Definitions of members of an explicitly specialized class...

[do not use] the explicit specialization syntax”).

One clue is the example that is given, which is a class template specialized as a class. Another is

the fact that the first sentence of the paragraph uses the terms “explicitly specialized class” and

“class template specialization” as synonyms. From this we can conclude that an “explicitly spe-

cialized class” is not a member class that has been explicitly specialized (example #1), because it

is not a “class template specialization” – i.e., the entity that is specialized is a class, not a class

template. Similarly, it would appear that an “explicitly specialized class” cannot be a member

class template that has been explicitly specialized as a template (example #3), because neither the

entity being specialized nor the result of the specialization is a “class.” This leaves only example

Defining Members of Explicit Specializations J16/05-0148 = WG21 N1888

page 3 of 6

#2 affected by this paragraph; while the example in the Standard shows a non-member class tem-

plate, it seems reasonable to conclude that “an explicitly specialized class” should also apply to

specializations of class templates that are members of classes or class templates. For example,

X::f() in example #2 should presumably be defined as

void S<int>::X<int>::f() { }

i.e., without “the explicit specialization syntax” (template<> prefix).

Given that the Standard does not explicitly specify how to handle examples #1 and #3, are there

any inferences that can be drawn from what the Standard does say? Such conclusions must al-

ways be made cautiously, but a few extrapolations seem possible.

First, all three of the examples above are essentially similar in structure, differing only with re-

spect to whether the entity being specialized and the result of the specialization are a class or a

class template. Given that the Standard explicitly says that one of the three is to be defined with-

out template<>, one’s initial inclination might be to conclude that the other two examples ought

also to be defined without template<>.

This conclusion is supported by the observation that the template<> prefix is referred to as “the

explicit specialization syntax,” and the definition of a member of an explicit specialization is not

itself an explicit specialization. In fact, nowhere in the Standard is there any suggestion that

template<> is to be used for anything other than an explicit specialization, neither in normative

text nor in non-normative notes or examples.

Yet another way of approaching this question is based on the observation that the difference be-

tween the first two examples and example #3 is that the earlier specializations are classes, while

in #3 it is a class template. With ordinary classes and class templates, i.e., not the result of ex-

plicit specialization, the difference in member definitions is straightforward: a member of a class

template is defined just like a member of a class except that the declaration is prefixed by a tem-

plate parameter clause and the nested-name-specifier is a template-id naming the template param-

eter(s) instead of an identifier. That is, all that is needed to transform the definition of a member

of a class into the definition of a member of a class template is to add the underlined portions as

follows:

template <typename T>
void C<T>::f() { }

Example #3 relates to the other two examples in exactly the same way that a class template re-

lates to a class: the result of the specialization is a class template rather than a class. Analogy

would therefore suggest that the parallel transformation for the definition of f() in example #3

would be:

template <typename T>
void S<int>::X<T>::f() { }

All of these considerations seem to lead to the conclusion that the explicit specialization syntax,

template<>, should be used only for explicit specializations and never for defining members of

Defining Members of Explicit Specializations J16/05-0148 = WG21 N1888

page 4 of 6

explicit specializations.

II. Implementation Survey

In order to ascertain how different implementations handle these definitions, several participants

on the Core Language Working Group email reflector compiled code samples, both with and

without a template<> prefix in the member function definitions, and reported their results. The

examples were as follows (Sample A corresponds with Example #1, while Sample B reflects Ex-

ample #3):

// Sample A:

template <typename T1> struct A {
struct C {

void f() { }
};

};

template <>
struct A<int>::C {

void f();
};

// template <>
void A<int>::C::f() { }

// Sample B:

template <typename T1> struct B {
template <typename T2> struct C {

void f() { }
};

};

template <>
template <typename T2> struct B<int>::C {

void f();
};

// template <>
template <typename T2> void B<int>::C<T2>::f() { }

The results of the survey were as follows:

without template<> with template<>

Implementation Sample A Sample B Sample A Sample B

Compaq C++ 6.5 accept reject reject accept

Digital Mars reject accept accept accept

EDG 3.3 accept reject reject accept

EDG 3.4 accept reject reject accept

Defining Members of Explicit Specializations J16/05-0148 = WG21 N1888

page 5 of 6

EDG 3.5 accept reject reject accept

EDG 3.6 accept reject reject accept

g++ 2.95.2 accept reject reject reject

g++ 3.0 accept reject reject reject

g++ 3.3.1 accept reject reject accept

g++ 3.4.4 accept reject reject accept

g++ 4.0.0 reject reject reject accept

g++ 4.0.1 reject reject reject accept

HP aCC 3.27 reject reject reject reject

HP aCC 5.57 reject reject reject reject

HP aCC 6.0 accept reject reject accept

IBM VAC++ 5.0 accept accept accept reject

IBM VAC++ 6.0 accept accept accept reject

IBM XL C/C++ 7.0 accept accept accept accept

Metrowerks 3.2.6 accept reject accept accept

Metrowerks 4.0.1 accept reject accept accept

MIPSpro 7.41 accept reject reject accept

MSVC++ 7.1 accept reject accept accept

MSVC++ 8.0 beta accept reject accept accept

Sun 5.3 accept reject accept reject

Sun 5.4 accept reject accept reject

Sun 5.5 accept reject reject reject

Sun 5.6 accept reject reject reject

Sun 5.7 accept reject reject reject

Sun Studio 11 accept reject reject reject

Sun (unreleased) accept reject reject reject

While it is clear that there is a good deal of variability among the implementations regarding the

handling of these examples, some trends are apparent. Among current versions, only two imple-

mentations (Digital Mars and IBM) accept Sample B without the template<> prefix, while only

two (Digital Mars and g++) reject Sample A without template<>. The only implementation

(Sun) that rejects Sample B with template<> also rejects it without template<>, so it does not

Defining Members of Explicit Specializations J16/05-0148 = WG21 N1888

page 6 of 6

shed much light on whether the prefix should or should not be included; otherwise, all implemen-

tations accept Sample B with template<>. The most variability among implementations is in

the handling of Sample A with template<>, with some rejecting and some accepting it.

III. Summary

There are three distinct cases in which an explicitly-specialized entity might declare members

that can be defined in namespace scope; however, the current wording of the Standard only speci-

fies the syntax to be used in such member definitions for one of the three cases. Arguments from

consistency and analogy can be made that the other two cases ought to follow the same pattern as

the one that is explicitly specified, namely, that template<> should not be used in the definition

of a member of an explicit specialization.

Current implementation practice, however, varies from this analysis. Most implementations re-

quire template<> on the definition of a member of a member class template specialized as a

template (Sample B), and several accept template<> on the definition of a member of a special-

ized member class of a class template (Sample A). However, there is a substantial amount of

variability among implementations, and the Standard should make clear if these namespace-

scope definitions are permitted and, if so, the syntax that they require.

