
A Proposal to Improve const_iterator Use from C++0X
Containers

Document #: WG21/N1674 = J16/04-0114
Date: August 31, 2004
Revises: None
Project: Programming Language C++
Reference: ISO/IEC IS 14882:2003(E)
Reply to: Walter E. Brown<wb@fnal.gov >

CEPA Dept., Computing Division
Fermi National Accelerator Laboratory
Batavia, IL 60510-0500

Contents

1 Introduction 1

2 Proposal 3

3 Design alternatives 3

4 Proposed wording 5

5 Summary and conclusion 6

6 Acknowledgments 6

Bibliography 6

Sometimes a good idea comes to you when you are not looking for it.

— KARY B. MULLIS

1 Introduction

This paper proposes to improve user access to the const versions of C++ container iterator s
and reverse_iterator s.

This proposal was initially motivated by an example that arose in conjunction with the pro-
posals for decltype /auto [JSGS03, JS03, JS04]. Intended primarily to demonstrate the con-
venience aspect of the proposed new use for the auto keyword, that example exhibited such
looping code as:

1 // Listing 1
2 vector <MyType> v;
3 // fill v ...
4 for(auto it = v. begin (); it != v. end (); ++ it) {
5 // use * it ...
6 }

In that context, the simple auto would replace today’s rather unwieldy equivalent:

1

mailto:wb@fnal.gov

2 N1674: A Proposal to Improve const_iterator Use from C++0X Containers

1 // Listing 2
2 vector <MyType> v;
3 // fill v ...
4 typedef vector <MyType>:: iterator iter ;
5 for(iter it = v. begin (); it != v. end (); ++ it) {
6 // use * it ...
7 }

However, when a container traversal is intended for inspection only, it is a generally preferred
practice1 to use a const_iterator in order to permit the compiler to diagnose const -correctness
violations:

1 // Listing 3
2 vector <MyType> v;
3 // fill v ...
4 typedef vector <MyType>:: const_iterator c_iter ;
5 for(c_iter it = v. begin (), end = v. end (); it != end ; ++ it) {
6 f (* it); // error if f takes its argument by non- const reference
7 * it = g(); // always an error
8 }

If a formulation such as shown above more clearly expresses the programmer’s intent, there
ought to be a way to obtain such expression using the more convenient auto as proposed. Alas,
we find no straightforward way of doing so at the moment.

We initially felt that this counterexample demonstrated a weakness in the proposed use of
auto . Upon further reflection, we now realize that the counterexample more likely demonstrates
a weakness (i.e., an omission) in the iterators portion of the interfaces to today’s standard con-
tainers [ISO03, Clause 23]. In particular, unless a container has been declared const , there is
today no means of directly obtaining a const_iterator via a call to its begin member.

Representative workarounds in common use today include (1) a const_cast of the container
before calling begin , or (2) a (possibly implicit) static_cast of the iterator that results from
such a call to begin :

1 // Listing 4
2 typedef vector <MyType> vect ;
3 typedef vect :: const_iterator c_iter ;
4 vect v;
5 // alternatives:
6 c_iter it = const_cast< vect const &>(v). begin (); // 1
7 c_iter it = static_cast< c_iter >(v. begin ()); // 2 (explicit)
8 c_iter it = v. begin (); // 2 (implicit)

Of these workaround alternatives, the implicit cast seems generally preferred by programmers.
We postulate that this is due to the (deliberately) inconvenient syntax of modern C++ casts. We
believe that programmers today lack a convenient means of directly expressing the use of a
const_iterator in such contexts as we have described, and that the decltype /auto proposals
would exacerbate such an omission from C++0X.

It is not only in connection with the decltype /auto proposals that this omission manifests.
Indeed, every input iterator argument to a generic nonmodifying algorithm (such as those in
Clause 25, section [lib.alg.nonmodifying], and elsewhere) provides another context in which pro-
grammers might reasonably prefer to provide an instance of a const_iterator rather than of
an iterator . The accumulate algorithm provides one common example:

1 As Herb Sutter succinctly exhorts, “Be const correct. In particular, use const_iterator when you are not modi-
fying the contents of a container” [Sut05, p. 8].

N1674: A Proposal to Improve const_iterator Use from C++0X Containers 3

1 // Listing 5
2 vector <double> v;
3 // fill v ...
4 cout << accumulate (v. begin (), v. end (), 0.0);

The const -correctness aspect of type-safety would argue that it would be safer, in this example,
to employ const_iterator s than the iterator s actually used above.2

A second illustration focuses on a user error in the context of the for_each algorithm:

1 // Listing 6
2 void reset (double & d) { d = 0.0; }
3 void resee (double d) { cout << ’ ’ << d; }
4 vector <double> v;
5 // fill v ...
6 for_each (v. begin (), v. end (), reset); // oops: resee intended

Such erroneous code is today typically not caught at compile-time. Were const_iterator s
furnished instead of iterator s, contemporary compilers would routinely diagnose this form
of erroneous usage. However, as noted previously, it is currently at best inconvenient for a
programmer to obtain a const_iterator from a non-const container.

2 Proposal

We believe that the C++ standard library should provide support, absent from C++03, so that
a programmer can directly obtain a const_iterator from even a non-const container. We
therefore propose to augment C++ containers’ interfaces with new (member) functions cbegin
and cend , and with analogous (member) functions crbegin and crend :

1 // Listing 7
2 const_iterator cbegin () const;
3 const_iterator cend () const;

5 const_reverse_iterator crbegin () const;
6 const_reverse_iterator crend () const;

3 Design alternatives

We believe that the desired functionality can be provided via either of two basic approaches.
The alternatives are not mutually exclusive and, in fact, both could be adopted. (However, in
Section 4 we provide proposed wording for our preferred Alternative 1 only.)

Additionally, either alternative could, in theory, replace the const overloads of the extant
container member functions begin , end , rbegin , and rend . This is because the proposed func-
tions would subsume these overloads’ functionality. However, in order to preserve backwards
compatibility, we prefer to retain all present forms of these member functions (although we are
open to the possibility of deprecating their const overloads).

2 Indeed, it has been (emphatically!) argued to us that the standard library should diagnose the use of iterators-to-
non-const in the context of calls to standard nonmutating algorithms. We suggest to revisit this notion should C++0X
be augmented with some form of concept-checking for template arguments.

4 N1674: A Proposal to Improve const_iterator Use from C++0X Containers

3.1 Alternative 1: new container member functions

This first alternative proposes to augment each standard library container template with four
new member functions (cbegin , cend , crbegin , and crend) as described above. This would
permit user code of the form:

1 // Listing 8
2 vector <MyType> v;
3 // fill v ...
4 for(auto it = v. cbegin (), end = v. cend (); it != end ; ++ it) {
5 // use * it ...
6 }

We find such code very appealing, for it makes clear to a reader that the loop is non-mutating
with respect to the container being traversed.

We also note that use of these proposed member functions in an inappropriate context such
as the earlier:

1 // Listing 9
2 void reset (double & d) { d = 0.0; }
3 void resee (double d) { cout << ’ ’ << d; }
4 vector <double> v;
5 // fill v ...
6 for_each (v. cbegin (), v. cend (), reset); // oops: resee intended

would now yield a compile-time diagnostic as desired.

3.2 Alternative 2: new generic adapter templates

This second alternative proposes to augment the standard library with four new function tem-
plates (cbegin , cend , crbegin , and crend) to provide a common interface to all containers. For
example, a generic cbegin adapter might be implemented via a generic function such as:

1 // Listing 10
2 template< class C >
3 inline
4 typename C:: const_iterator cbegin (C const & c) {
5 return c. begin ();
6 }

Availability of such adaptors would lead to client code of the form:

1 // Listing 11
2 vector <MyType> v;
3 // fill v ...
4 for(auto it = cbegin (v), end = cend (v); it != end ; ++ it) {
5 // use * it ...
6 }

While this generic adapter alternative seems quite straightforward, we nonetheless favor the
member function approach as proposed above. It seems more in keeping with current C++
programming idioms, such as the parallel use of rbegin as a container member function rather
than as a generic adapter.

We note that this generic adapter approach permits overloading so as to enable its use in
connection with native arrays:

N1674: A Proposal to Improve const_iterator Use from C++0X Containers 5

1 // Listing 12
2 template< class T, size_t N >
3 inline
4 T const * cend (T const (& a)[N]) {
5 return a + N;
6 }

Whether this provides an advantage or a drawback is a matter of viewpoint. However, should this
Alternative 2 be selected, then we would additionally propose, for consistency, to provide similar
generic adapters for today’s member functions begin , end , rbegin , and rend .

4 Proposed wording

The following few additions constitute the necessary changes to standardize our recommended
proposal (Alternative 1 above) with respect to C++03. Because analogous additions would be de-
sirable for homogeneous sequential containers3 that might in the future be adopted into C++0X,
we intend that approval of the present proposal constitute authorization for the Project Editor to
make such additions at the appropriate time.

4.1 Container requirements

Add the following two new rows to Table 65—Container requirements in Clause 23, section
[lib.container.requirements]:

expression return type assertion/note . . . complexity

a.cbegin(); const_iterator const_cast<X const &>(X).begin(); constant

a.cend(); const_iterator const_cast<X const &>(X).end(); constant

4.2 Reversible container requirements

Add the following two new rows to Table 66—Reversible container requirements in Clause 23,
section [lib.container.requirements]:

expression return type assertion/note . . . complexity

a.crbegin(); const_reverse_iterator const_cast<X const &>(X).rbegin(); constant

a.crend(); const_reverse_iterator const_cast<X const &>(X).rend(); constant

4.3 Synopses

Add the following four declarations to the iterators part of Clause 21, section [lib.basic.string], as
well as to the iterators parts of Clause 23, sections [lib.deque], [lib.list], [lib.vector], [lib.vector.bool],
[lib.map], [lib.multimap], [lib.set], and [lib.multiset]:

const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;

3 For example, the unordered associative containers and fixed size arrays in [Aus04].

6 N1674: A Proposal to Improve const_iterator Use from C++0X Containers

5 Summary and conclusion

This paper has described the utility of container begin and end variations whose return types
are always const_iterator s, independent of a container’s const ness. The paper has presented
use cases based on today’s C++03 as well as on the significant C++0X decltype /auto proposals.

Two means of providing such missing functionality have been described herein: per-container
member functions and generic adapter functions. In order to maintain parallelism with existing
approaches, the former mechanism was recommended.

Finally, this paper has proposed wording consistent with that recommendation. We respect-
fully urge the C++ standards bodies to consider our proposals in a time frame consistent with
that of the forthcoming C++0X standard.

6 Acknowledgments

I am pleased to acknowledge, with sincere thanks, a number of my Fermilab colleagues for their
able advice and assistance during the production of this paper: Philippe Canal, Mark Fischler,
Chris Green, John Marraffino, and Marc Paterno. I also wish to thank the Fermi National
Accelerator Laboratory’s Computing Division, sponsor of our participation in the C++ standards
effort, for its support. Finally, many thanks to Richard Brown for his careful proofreading of
several earlier drafts of this paper.

Bibliography

[Aus04] Matt Austern. (Draft) technical report on standard library extensions. Paper N1660,
JTC1-SC22/WG21, July 16 2004. Online: http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2004/n1660.pdf ; same as ANSI NCITS/J16 04-0100.

[ISO98] Programming Languages — C++, International Standard ISO/IEC 14882:1998(E). Inter-
national Organization for Standardization, Geneva, Switzerland, 1998. 732 pp. Known
informally as C++98.

[ISO03] Programming Languages — C++, International Standard ISO/IEC 14882:2003(E). Inter-
national Organization for Standardization, Geneva, Switzerland, 2003. 757 pp. Known
informally as C++03; a revision of [ISO98].

[JS03] Jaako Järvi and Bjarne Stroustrup. Mechanisms for querying types of expres-
sions: Decltype and auto revisited. Paper N1527, JTC1-SC22/WG21, September 21
2003. Online: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/
n1527.pdf ; same as ANSI NCITS/J16 03-0110.

[JS04] Jaako Järvi and Bjarne Stroustrup. Decltype and auto (revision 3). Paper N1607,
JTC1-SC22/WG21, February 17 2004. Online: http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2004/n1607.pdf ; same as ANSI NCITS/J16 04-0047.

[JSGS03] Jaako Järvi, Bjarne Stroustrup, Douglas Gregor, and Jeremy Siek. Decltype and auto.
Paper N1478, JTC1-SC22/WG21, April 28 2003. Online: http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf ; same as ANSI NCITS/J16 03-
0061.

[Sut05] Herb Sutter. Exceptional C++ Style: 40 New Engineering Puzzles, Programming Prob-
lems, and Solutions. Addison-Wesley, Reading, MA, USA, 2005. ISBN 0-201-76042-8.
xiv + 325 pp. LCCN QA76.73.C153S885 2005.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1660.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1660.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1607.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1607.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf

	1 Introduction
	2 Proposal
	3 Design alternatives
	4 Proposed wording
	5 Summary and conclusion
	6 Acknowledgments
	Bibliography

