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Editor’s Note: The cover page text needs to be written. 

The aim of this report is to give its readers a model of time and space overheads 
implied by use of various C++ language and library features, to debunk widespread 
myths about performance problems, to present techniques for use of C++ in 
applications where performance matters, and to present techniques for implementing 
C++ language and standard library facilities to yield efficient code. 

As far as run-time and space performance is concerned, if you can afford to use C for 
an application, you can afford to use C++ in a style that uses C++’s facilities 
appropriately for that application. 

This report first discussed areas where performance issues matters, such as various 
forms of embedded systems programming and high-performance numerical 
computation. After that, the main body of the report considered the basic cost of using 
language and library facilities, techniques for writing efficient code, and the special 
needs of embedded systems programming. 

Performance implications of object-oriented programming are presented.  This 
discussion rests on measurements of key language facilities supporting OOP, such as 
classes, class member functions, class hierarchies, virtual functions, multiple 
inheritance, and run-time type information (RTTI).  It is demonstrated that, with the 
exception of RTTI, current C++ implications can match hand-written low-level code 
for equivalent tasks.  Similarly, the performance implications of generic programming 
using templates are discussed.  Here, however, the emphasis is on techniques for 
effective use.  Error handling using exceptions is discussed based on another set of 



measurements.  Both time and space overheads are discussed.  In addition, the 
predictability of performance of a given operation is considered. 

The performance implications of IOStreams and locales are examined in some detail 
and many generally useful techniques for time and space optimisations are discussed 
here. 

Finally, the special needs of embedded systems programming are presented, including 
ROMability and predictability.  And appendices present general C and C++ interfaces 
to the basic hardware facilities of embedded systems. 
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1 Introduction 
Definition of terminology and scope of the report: 

?? Description of potential resource limitations 
?? Problems often encountered in resource- limited environments 
?? Criteria used in the selection of an appropriate programming language 

"Performance" has many aspects - execution speed, code size, data size, and memory 
footprint at runtime, or time and space consumed by the edit/compile/link process.  It 
could even refer to the time necessary to find and fix code defects.  Most people are 
primarily concerned with execution speed, although program footprint and memory 
usage can be critical for small embedded systems where the program is stored in 
ROM, or where ROM and RAM are combined on a single chip. 

Efficiency has been a major design goal for C++ from its earliest days; also, the 
principle of "zero overhead" for any feature that is not used in a program.  It has been 
a guiding principle from the earliest days of C++ that "you don't pay for what you 
don't use".  

Language features that are never used in a program should not have a cost in extra 
code size, memory size, or runtime.  If there are places where C++ cannot guarantee 
zero overheads for unused features, this paper will attempt to document them.  It will 
also discuss ways in which compiler writers, library vendors, and programmers can 
minimize or eliminate performance penalties, and will discuss the trade offs among 
different methods of implementation. 

Programming for resource-constrained environments is another focus of this paper.  
Typically, it is very small or very large programs that run into resource limits of some 
kind.  Very large programs, such as database servers, may run into limits of disk space 
or virtual memory.  At the other extreme, an embedded application may be 
constrained to run in the ROM and RAM space provided by a single chip, perhaps a 
total of 64K of memory, or even smaller. 

Apart from the issues of resource limits, some programs must interface with system 
hardware on a very low level.  Historically the interfaces to hardware have been 
implemented as proprietary extensions to the compiler (often as macros).  This led to 
the situation that code has not been portable, even for programs written for a given 
environment, because each compiler for that environment has implemented different 
sets of extensions. 



Technical Report on C++ Performance (DRAFT) 01-0023/N1309 

Page 8 of 87 

1.1 How do we Characterise Application Areas? 
Embedded Systems: 

Embedded Systems have many restrictions on memory-size and timing requirements 
that are more significant than are typical for non-Embedded systems.  Some areas of 
concern the Embedded Systems are as follows1: 

?? Scale: 

o small 

These systems typically use single chips containing both ROM and 
RAM.  Single-chip systems in this category typically hold 
approximately 32KBytes for RAM and 32, 48 or 64KBytes for ROM. 

Note (Lois): The numbers relate to the C8051 chip family, which has a market 
share of approximately two-thirds of the embedded controllers in the 
world (according to Detlef quoting Chris Hills). 

Examples of applications in this category are: 

o Engine control for automobiles 
o Hard disk controllers 
o Consumer electronic appliances 
o Smart cards, also called Integrated Chip (IC) cards – about the 

size of a credit card, they usually contain a processor system 
with code and data embedded in a chip which is embedded (in 
the literal meaning of the word) in a plastic card.  A typical size 
if 4KBytes of RAM, 96KBytes of ROM and 32KBytes 
EEPROM. 

o medium 

These systems typically use separate ROM and RAM chips to execute 
a fixed application, where size is limited. There are different kinds of 
memory chip, and systems in this category are typically composed of 
several kinds to achieve different objectives for cost and speed.  
Examples of applications in this category are: 

o Hand-held digital VCR 
o Printer 
o Copy machine 
o Digital still camera – one common model uses 32MBytes of 

flash memory to hold pictures, plus faster buffer memory for 
temporary image capture, and a processor for on-the-fly image 
compression. 

                                                 
1 Typical systems during the Year 2000 
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o large 

These systems typically use separate ROM and RAM chips, where the 
application is flexible and the size is relatively unlimited.  Examples of 
applications in this category are: 

o Personal Digital Assistant (PDA) – equivalent to a personal 
computer without a screen, keyboard, or hard disk. 

o Digital television 
o Set-top box 
o Car navigation system 
o Central controllers for large production lines 

Note (Lois): The last item is meant to refer to the central CPU that manages a 
collection of manufacturing machines in a production line.  Each 
machine of course may have its own embedded brain. 

?? Timing: 

Note (Lois): Of course, systems with real-time or hard real-time constraints are 
not necessarily embedded systems; they may run on hosted 
environments.  Anton (who?) made the comment that timing-critical 
hard real-time systems are more applicable to industry. 

 “Real-Time” refers to a system in which average performance and 
throughput must meet defined goals, but some variation in 
performance of individual components can be tolerated. 

 “Hard Real-Time” means the every operation must meet specified 
timing constraints. 

o critical (real-time and hard real-time systems) 

Examples of applications in this category are: 

o Motor control 
o Engine control – minimum cycle of engine (3ms; 10,000rpm; 4 

cyclinders) 
o Hand-held digital VCR 
o Mobile phone 
o CD or DVD player 
o Electronic musical instruments 
o Hard disk controllers 
o Digital television 

o non-critical 

Examples of applications in this category are: 

o Digital still camera 
o Copy machine 
o Printer 
o Car navigation system 
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Note (Lois) Eliminated table here.  Its purpose appeared to be to show a cross-
section of applications in terms of both size and timing constraints.  I 
think Anton is putting together a revised version.  Maybe it should 
come last so it can include the large-end applications as well? 

Servers: 

For server applications, the performance-critical resources are typically speed 
(e.g. transactions per second?), and working-set2 size (which also impacts 
throughput and speed).  In such systems, memory and data storage are 
expressed in terms of megabytes or even gigabytes. 

Often there are soft real-time constraints, bounded by the need to provide 
service to many clients in a timely fashion.  Some examples of such 
applications include the central computer of a public lottery where transactions 
are heavy, or large scale high-performance numerical applications such as 
weather forecasting where the calculation must be completed within a certain 
time. 

[Note (Lois): If it takes 26 hours to forecast the next 24 hours’ weather, there’s no 
point] 

These systems are often described in terms of dozens or even hundreds of 
multiprocessors, and the prime limiting factor may be the Mean Time Between 
Failure (MTBF) of the hardware (increasing the amount of hardware results in 
a decrease of the MTBF – in such a case, high-efficiency code would result in 
greater robustness). 

 

                                                 
2 the term “working set” refers to the amount of the application which is held in active (not swapped-out virtual) memory at any 
given time. 
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2 Overheads – Cost of Using C++ 
Features 

Does the C++ language have inherent complexities and overheads, which make it 
unsuitable for performance-critical applications?  For a program written in the C-
conforming subset of C++, will penalties in code size or execution speed result from 
using a C++ compiler instead of a C compiler?  Does C++ code necessarily result in 
"unexpected" functions being called at runtime, or are certain language features, like 
multiple inheritance or templates, just too expensive (in size or speed) to risk using?  
Do these features impose overheads even if they aren't explicitly used? 

This paper examines the major features of the C++ language that are perceived to 
have an associated cost, whether real or not.  Some of the language features are 
complex and are discussed in a section of their own, while other are discussed in the 
following brief: 

?? Namespaces 
?? Type Conversion Operators 
?? Inheritance 

o Run-Time Type Identification (RTTI) 
?? Exception Handling (EH) 
?? Templates 
?? The Standard Library (IOStreams) 

2.1 Overheads from Namespaces 
Namespaces do not add any space or time overheads to code.  They do, however, add 
some complexity to the rules for name lookup.  The principal advantage of 
namespaces is that they provide a mechanism for partitioning names in large projects 
so as to avoid name clashes. 

Namespace qualifiers enable programmers to use shorter identifier name when 
compared with alternative mechanisms.  In the absence of namespaces, the 
programmer has to explicitly alter the names to ensure that name clashes do not occur, 
and this usually takes the form of a canonical prefix being used, or the names being 
placed inside a class and used in their qualified form.  [for example: 

static char* mylib_name      = “My Really Useful Library”; 
static char* mylib_copyright = “June 15, 2000”; 
 
class ThisLibInfo { 
    static char*  name; 
    static char* copyright; 
}; 
 
char* ThisLibInfo::name      = “Another Useful Library”; 
char* ThisLibInfo::copyright = “December 18, 2000”; 
 
end example] 
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With namespaces, the number of characters necessary is similar to the class 
alternative, but unlike the class alternative, qualification can be avoided by the use of 
using which moves the unqualified names into the current scope, thus allowing the 
names to be referenced by their shorter form.  This has the effect of actually 
“reducing” the number of characters in the source program. 

2.2 Overheads from Type Conversion Operators 
C and C++ permit explicit type conversion using cast notation (§IS-5.4).  [for 
example: 

int i = (int)3.14159; 
 
end example] 

Standard C++ adds four additional type conversion operators, using syntax that looks 
like function-templates3 [for example: 

int i = static_cast<int> ( 3.14159 ); 
 
end example] 

The four syntactic forms are: 

??const_cast<Type>(expression)       // §IS-5.2.11 
??static_cast<Type>(expression)      // §IS-5.2.9 
??reinterpret_cast<Type>(expression) // §IS-5.2.10 
??dynamic_cast<Type>(expression)     // §IS-5.2.7 

The semantics of cast notation (which is still recognized) are the same as the type 
conversion operators, but distinguish between the different purposes for which the 
cast is being used.  The type conversion operator syntax is easier to identify in source 
code, and thus contributes to writing programs that are more correct4. 

It should be noted that as in C, a cast may create a temporary object of the desired 
type, so casting can have runtime implications. 

                                                 
3 Indeed, prototype implementations of the type conversion operators  were often implemented as function-templates. 
4  If the compiler does not provide the type conversion operators nat ively, it is possible to implement them using function-
templates. 
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The first three forms of type conversion operator have no size or speed penalty versus 
the equivalent cast notation.  Indeed, it is typical for a compiler to transform cast 
notation into one of the other type conversion operators when generating object code.  
However, dynamic_cast<T> may incur some overhead at runtime if the required 
conversion involves using RTTI mechanisms [for example, cross-casting: 

class Left  { ... }; 
class Right { ... }; 
... 
void func ( Left* pL ) { 
    Right* pR = dynamic_cast<Right*>( pL ); 
} 
... 
class Merged: Left, Right {}; 
Merged m; 
func ( &m ); 
 
end example] 

Note: Perhaps some pseudo code would be useful here to show how the 
compiler transforms the code?  How much overhead is a 
dynamic_cast in a single-inheritance hierarchy?  Or when virtual 
base classes are involved? 

2.3 Overheads from Inheritance 

2.3.1 Overhead examples 
?? runtime type identification (RTTI) 
?? multiple inheritance 
?? virtual template member functions 
?? virtual inheritance 
?? class hierarchies 
?? unnecessary costs for empty base 

Editor’s Note: The cost of empty-bases is not elaborated. 

2.3.2 RTTI overheads 
?? Typically, a pointer to a type_info object is stored in a class' “virtual table” 

or vtbl.  RTTI can only be used with classes that have at least one virtual 
function5.  This restriction is the result of a deliberate compromise that 
minimizes the cost per object6 necessary for RTTI. 

?? One typical implementation costs one static table per class with enough 
storage for the class-name (its typeid) plus 20 bytes, with a resulting cost of 

                                                 
5 This is not an unnatural situation, as the need to determine the dynamic type of an entity is most typical of class hierarchies 
where it is probable that virtual functions are used; indeed, it is often recommended that polymorphic classes always provide a 
virtual destructor. 
6 Since a class with a virtual function already has the associated cost of a vptr (in a typical implementation), adding RTTI 
support need have no extra impact on the cost of an instance of that class.  Conversely, adding RTTI for non-class data types, and 
classes with no virtual functions could incur a significant cost to the program and/or instances of that data type. 
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approximately 40 data bytes times the number of RTTI enabled classes in the 
application. 

?? Often, RTTI is used with dynamic_cast; and if dynamic_cast is used, the 
RTTI mechanism is used to determine whether the cast is valid or not.  One 
important thing to note, is that some typical implementations share common 
mechanisms between RTTI and EH, and the use of RTTI may implicitly 
require the overheads of Exception Handling to be present also. 

?? Whole-Program Analysis (WPA) can help; there is no need to generate RTTI 
tables for types not tested, and WPA techniques can determine this, with 
potentially significant reduction in costs and overheads.  Tools providing 
WPA are not yet commonly available, but implementers are encouraged to 
develop such WPA capable tools. 

?? A class without any virtual functions is equivalent to a simple C struct. 

The size of an object of the class is the sum of the sizes of its data members, 
(plus any padding required for correct alignment by the implementation). 

?? Some observations from tests on commonly available implementations 

o Downcasts cost between three and four function calls.  This is 
independent of: 

?? whether the class uses single or multiple inheritance 
?? which branch of MI 
?? the depth of inheritance (MI and SI) 

o Cross-casts are more expensive.  A cross-cast costs between 6 and 50 
times a single function call, depending on the implementation.  They 
vary with how deep you start and finish in the hierarchy.  Each level 
adds about 60% to overhead. 

2.3.3 General Overheads from Inheritance 
In a typical implementation, data members of a base class occupy space at the 
beginning of an object of a derived class.  This need not cost any more data 
space than the alternate design of creating a data member of the base class 
type.  In the simplest case, inheritance may save in code size and execution 
speed, since delegating functionality to a member object requires pass-through 
functions in the containing class.  Calls to non-virtual functions are resolved at 
compile-time, so there is no runtime penalty from single inheritance. 

Indeed, in some cases, an implementation may be able to place new data 
members of the deriving class into “holes” in the base-class7; thus costing less 
than an equivalent C-style struct. 

                                                 
7 Holes may be present dues to alignment restrictions of the implementation.  However, these holes may be of appropriate size 
and alignment for new data members introduced by the deriving class. 
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?? Do virtual functions add overhead? 

Calls to virtual member functions are resolved at runtime, depending on the 
dynamic type of the object.  In a typical implementation, each object in the 
hierarchy acquires an extra data member, a vptr, pointing to a table (the vtbl) 
that lists the appropriate versions of the virtual functions for objects of that 
class type.  So, the cost of virtual functions is an extra data pointer per object, 
plus a vtbl per class8. 

At runtime, there is a cost associated with calling the virtual function by 
indirection through the vptr, indexing into the vtbl, and calling the function 
through a pointer.  This cost, in a typical implementation, adds between 3 and 
10 instructions per call, versus a direct call to a class-specific function, 
resolved at compile-time.  Alternate mechanisms of determining the 
appropriate function to call, such as an if-statement or a switch-statement also 
have overheads however, and these alternative mechanisms have a comparable 
cost, while lacking the natural extensibility of a virtual function.  If a virtual 
function is called repeatedly inside a tight loop, a possible “Programmer 
Directed Optimisation” (PDO) is to determine the runtime type of the object 
outside the time-critical section, and use class-specific direct calls inside the 
loop. 

Compiler implementations, and especially WPA enabled compilers can 
sometimes determine the static type of the object, and automatically perform 
this optimisation.  However, PDOs can make use of knowledge about the 
program that a compiler will never be able to determine. 

?? “The principal disadvantage of virtual functions is that they prevent the 
compiler from inlining code, since the type of the object won't be known 
until runtime.” 

This argument is often levelled at virtual functions.  Typically, virtual 
functions are not also declared inline, due to the fact that a virtual function is 
normally called indirectly, requiring that the function be instantiated. 

However, whether the programmer directs the implementation by qualifying 
the name of a virtual function, or the implementation determines the static type 
of the function to be called by other means, it becomes possible for the virtual 
function to be called statically, and hence inlined. 

Contrary to popular belief, virtual and inline need not be considered mutually 
exclusive. 

?? Some observations from tests on commonly available implementations 

o Static function calls with no arguments are slightly faster than ordinary 
member functions (less than 25%) with no arguments (the member 
function has an implicit object pointer). 

                                                 
8 The cost of the vtbl is typically a static data cost.  On some older implementations, there may be an instance of the vtbl for 
each translation unit in which an instance of the associated data type is created or destroyed.  Modern implementations typically 
have only one instance of the vtbl per program. 



Technical Report on C++ Performance (DRAFT) 01-0023/N1309 

Page 16 of 87 

o Function calls are cheaper than they used to be (compared to inline). 

o These figures have improved a lot from what they were a few years 
ago. 

o People should make “less” use of explicit inlining these days, as 
modern compilers have got a lot better at determining when inlining is 
appropriate. 

o Locality – forcing code out of cache.  A virtual function call (through a 
pointer) had overhead of 20% compared to a plain function call9.  
Maybe even 30% if you do a lot of other work in the loop and in the 
function call and then factor it out.  But still no overhead specific to 
Multiple-Inheritance. 

2.3.4 Overheads from Multiple-Inheritance 
?? Properly implemented, multiple- inheritance should have very little extra cost 

over single inheritance.  Such small costs can also be restricted to only a part 
of the MI graph; typically, the left most branch having the same cost as SI (no 
adjustment), with other branches incurring a simple “offset adjustment” to the 
object pointer. 

?? There is an "offset adjustment" in virtual calls to ensure that the this pointer 
passed to the called function is correct.  Typical implementations use a 
“thunk” to perform this adjustment.  A “thunk” is a simple piece of code that 
is called instead of the actual function, and which performs the actual constant 
adjustment to the object pointer before transferring control to the intended 
function. 

?? Some observations from tests on commonly available implementations 

o No significant differences in runtime speed between ordinary member 
function calls, virtual function calls, and virtual function calls among 
different branches of multiply inherited (MI) classes. 

o The difference diminishes with the number of arguments being passed 
to the function; the associated cost of the call becomes proportionally 
smaller as the number of arguments increase. 

2.3.5 Overheads from Virtual-Inheritance 
Virtual base classes add additional overhead.  The “adjustment” for the branch in a MI 
class can be determined statically by the implementation, so it becomes a simple add 
of a constant when needed.  With virtual bases, the position of the base object with 
respect to the complete object is dynamic, and requires more evaluation than for the 
MI adjustment. 

                                                 
9 This is sometimes the result of “block level linking” that attempt to place called code physically closer in memory to the code 
that makes the call, a technique that is defeated by indirect calls.  A cache “miss” can result in costly reloads or even operating 
system intervention. 
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2.3.6 Overheads from Virtual Functions of class-templates 
Virtual functions of a class-template can incur an overhead: 

?? If a class-template has virtual member functions, then each time the class-
template is specialised it will have to generate new specialisations of the 
member functions, and their associated support structures such as the virtual 
function table (vtbl). 

?? A naïve library implementation could produce hundreds of Kbytes in this case, 
much of which is pure replication at the instruction level of the program. 

?? The problem is a library modularity issue.  Putting code into the template 
when it doesn't depend on template parameters, and could be separate code 
may cause each instantiation to contain potentially large, redundant code 
sequences.  One PDO suggestion is to use non-template helper functions, and 
describe the template implementation in terms of these helper functions. 

2.4 Overheads from Exception Handling 

2.4.1 Myths and Realities of Exception Handling Overheads 

2.4.1.1 Preliminary Remarks 
Exception Handling provides a systematic and robust approach to error handling. 

Editor’s Note:  Error Handling and Exception Handling are not the same thing.  
Errors are a normal occurrence in a program exceptions are not. 

Note (Lois): The sort of errors that can normally be expected to occur – file not 
found, erroneous input, etc.—may more aptly be described as ‘status’ 
rather than ‘errors’.  Exceptions are highly unusual, and often 
unrecoverable-from problems that arise in exceptional conditions – 
out of memory, network failure, etc.  Often the only reasonable 
response is to exit gracefully, or at least roll back to an earlier state 

The traditional C style of indicating runtime problems is to return an error code.  This 
error code must be checked each time the function is invoked, and this check is quite 
often ignored or forgotten.  EH isolates the rare problem-handling code from the 
normal flow of program execution, and unlike the error code approach, it cannot be 
ignored or forgotten.  Also, automatic destruction of stack objects when an exception 
is thrown renders a program less likely to leak memory or other resources.  With EH, 
once a problem is identified, it can't be ignored - failure to catch and handle an 
exception results in program termination. 

Early implementations of Exception Handling resulted in sizable increases in code 
size.  This led some programmers to avoid it and compiler vendors to provide 
switches to suppress the feature.  In some embedded and resource-constrained 
environments, EH was deliberately excluded. 

It is difficult to discuss EH overheads without a rough idea about possible 
implementations. 
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Presuming that exceptions are not the norm, we need to distinguish: 

?? Try overhead:  data and code associated with setting up each 
try-block or catch-clause (i.e. getting ready for catching exceptions that may 
never occur) - this is true overhead. 

?? Regular function overhead: data and code associated with the normal 
execution of functions that do not specify any exception related feature (i.e. 
recompiling pre-EH code, thus breaking the "pay as you go" principle) – this 
is true overhead. 

?? Throw cost:   data and code associated with actually throwing 
an exception.  This can hardly be regarded as an overhead!  But different 
implementations will have different costs, the relative value or impact of 
which depends on the problem domain. 

2.4.1.2 Compile-Time Overhead 
?? Compilation is more difficult, depending on the complexity of the 

implementation. 

?? Some compile-time optimisations may become trickier (or even impossible?): 

o we need examples 

Editor’s Note: This section is never developed, should we remove it? 

2.4.2 Exception Handling Issues Common to all Implementations 
?? try-block Establishes the context for associated catch-clauses 

?? catch-clause The EH implementation must provide some runtime type-
information mechanism for finding catch-clauses when an exception is 
thrown. 

There is some overlapping, but not identical information needed by both RTTI 
and EH features.  But, the EH type- information mechanism must be able to 
match derived classes to base classes even for types without virtual functions, 
and to identify built- in types such as int.  On the other hand, the EH type-
information does not need support for down-casting or cross-casting. 

Because of this overlap, some implementations require that RTTI be enabled 
when EH is enabled. 
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?? Cleanup of handled exceptions Exceptions, which are not re-thrown, 
must be destroyed upon exit of the catch-clause.  Since there is no declaration 
for the exception object, some "Magic Memory" for the exception object must 
be managed by the EH implementation. 

?? Automatic and temporary objects with non-trivial destructors Destructors 
must be called if an exception occurs after construction and before destruction, 
even if no try/catch is present.  The EH implementation is required to keep 
track of all such objects. 

?? Construction of objects with non-trivial destructors If an exception 
occurs during construction, all comple tely constructed base classes and sub-
objects must be destroyed.  This means that the EH implementation must track 
the current state of construction of an object. 

?? throw-expression A copy of the exception object being thrown must be 
allocated in the "Magic Memory" provided by the EH implementation.  The 
closest matching catch-clause must then be found using the EH type-
information.  Finally, the destructors for automatic, temporary, and partially 
constructed objects must be executed before control is transferred to the catch-
clause. 

?? Enforcing exception specifications Conformance of the thrown types to the 
list of types permitted in the exception-specification must be checked.  If a 
mismatch is detected, the unexpected-handler must be called. 

A similar mechanism to the one implementing try/catch can be used, but if a 
mismatch does occur, the unexpected-handler is called. 

?? operator new After calling the destructors for the partially constructed 
object, the corresponding operator delete must be called if an exception is 
thrown during construction. 

Again, a similar mechanism to the one implementing try/catch can be used. 

2.4.3 Implementation Strategies 
Implementations vary in how costs are allocated across these elements. 

The two main strategies are the “dynamic” approach often implemented using the 
setjmp family of functions and “static” approach that uses compiler generated static 
tables. 

There are also various hybrid approaches.  This paper discusses only the twp principal 
implementation approaches. 

2.4.3.1 The "dynamic" Approach. 
Implementations using this approach have to dynamically maintain auxiliary data-
structures to manage the capture and transfer of the execution contexts, and the 
dynamic maintenance of data-structures involved in tracking the objects that need to 
be unwound in the event of an exception. 
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?? try-block Save the execution environment and reference to catch code on 
EH stack at try-block entry (by calling setjmp or equivalent). 

?? Automatic and temporary objects with non-trivial destructors Push each 
constructed object, with the address of its destructor onto a stack for later 
destruction.  Pop them upon destruction.  Typical implementations use a 
linked list structure for the stack. 

?? Construction of objects with non-trivial destructors One well-known 
implementation increments a counter for each base-class and sub-object as 
they are constructed.  If an exception is thrown during construction, the 
counter is used to determine which parts need to be destructed. 

?? throw-expression After the catch-clause has been found, pop objects from 
the stack, invoking their destructors, until all objects between the throw-
expression and the associated catch-clause are removed from the stack. 

Restore execution environment of associated catch-clause (by calling longjmp 
or equivalent). 

2.4.3.1.1 Space Overhead 
?? No EH cost is associated with an object, so object size is unaffected 
?? EH implies a form of RTTI, implying some increase in code and data size 
?? The setjmp model implies code generation for try/catch 
?? The setjmp model implies dynamic data structures to store the jmp_buf 

environments and their mapping to catch-clauses 
?? The setjmp model implies the registration of local objects to be destroyed 
?? A cost is associated with checking the throw-specifications of the functions 

that are called 

2.4.3.1.2 Time Overhead 
?? On entry to each try-block 

o commit changes to variables enclosing the try-block 
o stack the jmp_buf execution context 
o stack the associated catch-clauses 

?? On exit from each try-block 
o remove the associated catch-clauses 
o remove the stacked execution context 

?? On entry to each catch-clause 
o remove the associated catch-clauses 

?? On exit from each catch-clause 
o retire the current exception object (destruct if necessary) 

?? When calling regular functions 
o if the function has an exception-specification, register it for checking 

?? As each local and temporary object is created 
o register with the current exception context as they are created 
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?? On throw 
o locate the corresponding catch-clause (if any) - this involves some 

RTTI-like check 
if found: 
?? destruct the registered local objects 
?? check the exception-specifications of the functions called in-

between 
?? use the associated jmp_buf to longjmp to the execution context 

of the catch-clause 
if not found: 
?? call the unexpected-handler 

Advantages of this method are that it is relatively simple, portable, and compatible 
with implementations that translate C++ to C or another language. 

Disadvantages are that the stack space and runtime costs for try-block entry, and for 
the bookkeeping of automatic, temporary and partially constructed objects as the EH 
stack is modified tends to be quite high. 

One vendor reports speed impact of about 6% for a C++ to ANSI C translator.  
Another vendor reports that speed and stack space impacts can be greatly reduced by 
fine-tuning the code for saving the execution environment and doing object 
bookkeeping 

Editor’s Note: How should we include information such as the comment above? 

2.4.3.2 The "static" Approach 
Typical implementations using the static approach will generate read-only tables for 
determining the current execution context, locating catch-clauses, and tracking 
objects needing destruction. 

?? try-block This method incurs no runtime cost.  All bookkeeping is pre-
computed as a mapping between program counter and code to be executed in 
event of an exception.  Tables increase program image size but may be moved 
away from working set to improve locality.  Tables can be placed in ROM, 
and on hosted systems with Virtual Memory, can remain swapped out until an 
exception is actually thrown. 

?? Automatic and temporary objects with non-trivial destructors No runtime 
costs associated with normal execution.  Only in the event of an exception is it 
necessary to intrude on normal execution. 

?? Construction of objects with non-trivial destructors No runtime costs – 
see previous bullet. 

?? throw-expression The statically generated tables are used to locate 
matching handlers and intervening objects needing destruction.  Again, no 
runtime costs are associated with normal execution. 
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2.4.3.2.1 Space Overhead 
?? No EH cost is associated with an object, so object size is unaffected 
?? EH implies a form of RTTI, implying some increase in code and data size 
?? The static model implies static table generation and some common library 

runtime support 
?? A cost is associated with checking the throw-specifications of the functions 

that are called 

2.4.3.2.2 Time Overhead 
?? On entry to each try-block 

o some implementations commit changes to variables in the scopes 
enclosing the try-block - other implementations use a more 
sophisticated state table10 

?? On exit from each try-block 
o no overhead 

?? On entry to each catch-clause 
o no overhead 

?? On exit from each catch clause 
o no overhead 

?? When calling regular functions 
o no overhead 

?? As each local and temporary object is created 
o no overhead 

?? On throw 
o using the tables, determine if the current frame has an appropriate 

catch-clause 
If it does, then: 
?? destruct each local, temporary and partially constructed objects 

that occur between the throw-expression and the catch-clause 
?? transfer control to the catch-clause 

Otherwise, check that the exception honours the exception-
specification of the current function, and call the unexpected-handler if 
it does not. 
Otherwise, if there is a previous frame, repeat the above steps, 
otherwise call the unexpected-handler 

Advantages of this method are that no stack or runtime costs are associated with 
managing the try/catch or object bookkeeping. 

Disadvantages are that the implementation is more complicated, and does not lend 
itself well to implementations that translate to an intermediate language.  The static 
tables can be quite large, and while this may not be a burden on hosted systems with a 
VM, the cost may be a significant factor for embedded systems.  All runtime costs 
associated occur when an exception is thrown, but because of the need to examine 
                                                 
10 In such implementations, this effectively makes the variables partially volatile and may prejudice other optimisations as a 
result. 
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potentially complex state tables, the time it takes to respond to an exception may be 
large – this needs to be factored in to the probable frequency of exceptions. 

One vendor reports a code and data space impact of about 15% for the generated 
tables.  This is an upper limit, since in the vendor’s environment there was no need to 
reduce the image size of programs provided the working set wasn’t increased 

Editor’s Note: How should we include information such as the comment above? 

2.4.4 Predictability of Exception Handling Overhead 

2.4.4.1 Prediction of throw/catch Performance 
One of the reservations expressed about EH is the unpredictable time that may elapse 
after a throw and before control passes to the catch clause, while automatic objects are 
being destroyed.  It is important in some systems, especially those with “Real Time” 
requirements, to be able to predict accurately how long operations will take. 

These concerns are well founded.  However, if the call tree can be statically 
determined, and the table method of EH implementation is used, it is possible to 
statically ana lyse the sequence of events necessary to transfer control from a given 
throw-expression to the corresponding catch-clause.  Each of the events could then be 
statically analysed to determine their contribution to the cost, and the whole sequence 
of events aggregated into a single cost domain (worst-case & best-case, unbounded, 
indeterminate). 

It should be possible to accurately determine the costs of the EH mechanism itself, 
and the cost of any destructors invoked would need to be determined in the same way 
as the cost of any other functions is determined. 

Given such analyses, the term “unpredictable” is inappropriate.  The cost may be quite 
predictable, with a well-determined upper and lower bound.  In some cases (recursive 
contexts, or conditional call trees), the cost may not be determined statically.  For RT 
applications, it is generally most important to have a determinate time domain, with a 
small deviation between the upper and lower bound.  The actual speed of execution is 
often less important. 

Another reservation concerns the memory footprint of the necessary data structures.  
This has more to do with non-Real-Time embedded applications, where the system 
constraints may place a premium on the amount of space that the programs and/or 
data may take.  Both approaches incur a space cost.  The dynamic approach is likely 
to have a smaller “data-size” cost and a larger “code-size” cost, than the 
corresponding static approach. 

Editor’s Note: We do not appear to have comparative “size” costs for the dynamic 
versus the static approaches. 

2.4.4.2 Empty exception-specification Considerations 
Can empty exception-specifications help a compiler produce more optimal code? 
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The use of an empty exception-specification should reduce overheads.  If the called 
function ensures (statically or dynamically) that it will never throw an exception that 
invalidates its exception-specification, then the caller can build on that guarantee, 
performing optimisations based on the knowledge that a called function will never 
throw any exception. 

However, a less capable implementation might produce “worse” code if it produces an 
extra try-catch for functions that don't need it. 

For example: 
int g() throw(); 
 
void f() { 
    int n = g();  
} 
 
// May be implicitly (and poorly) rewritten as ---> 
void f () { 
    int n; 
    try { 
       n = g(); 
    } catch (...) { 
        unexpected(); 
    } 
} 
 

2.4.4.3 Exception Specifications 
The need to enforce exception-specifications at runtime has costs as described above.  
However, they can allow optimisation of other code by making catch-clauses 
unreachable and violations of other exception-specifications impossible.  Empty 
exception-specifications can be especially helpful for optimisation. 

2.4.4.4 The "you don’t pay for what you don’t use" Principle 
Exception-Handling in general imposes costs even if it is not used.  For example, if a 
function that constructs automatic objects then calls another function, and it cannot be 
proven by the compiler that the called function does not throw an exception then the 
calling function will incur object bookkeeping costs, even though the function may 
never participate in context where an exception is thrown.  With the static approach, a 
possible optimisation is to strip the associated tables and runtime support code from 
the program if it is known that exceptions will never be thrown. 

2.4.4.5 Other Error Handling Strategies 
All approaches to error handling involve some runtime and static costs.  Return codes, 
global error values; process termination and ignoring errors all have associated costs 
in runtime, space, program correctness, maintenance, and readability.  In evaluating 
the costs of exception handling, the costs of the alternatives should not be ignored.  If 
EH is not used, some other mechanisms are invariably required11. 

                                                 
11 And ignoring error conditions does not make for robust code 
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2.4.4.6 Missing stuff 
There were some items discussed in the working group, which we were unable to 
flesh out.  These include: 

?? Advice to implementers, specifically references to literature on EH (e.g. ‘C’ 
Language Translation) 

?? Potential implementation pitfalls 
?? A comparison of the costs of other strategies 

Editor’s Note: Do we really need this section?  It doesn’t get elaborated anywhere. 

2.5 Overheads from Templates 

2.5.1 Template Overheads 
class-templates or function-templates will generate a new instantiation of code each 
time it is specialised with different template parameters.  This can lead to an 
unexpectedly large amount of code and data12.  A typical way to illustrate this problem 
is to create a large number of Standard Library containers to hold pointers of various 
types.  Each type can result in an extra set of code and data being generated. 

In one experiment, a program instantiating 100 instances of a single specialisation of 
std::list<T*> for some type T, was compared with a second program instantiating a 
single instance of std::list<T*> for 100 different types T.  These programs were 
compiled with a number of different compilers and a variety of different compiler 
options.  The results varied widely, with one compiler producing code for the second 
programs that was over 19 times as large as the first program; and another compiler 
producing code for the first program that was nearly 3 times as large as the second. 

The optimisation here is for the compiler to recognise that while there may be many 
specialisations with different types, at the leve l of machine code-generation, the 
specialisations may actually be identical (the type system is not relevant to machine 
code). 

While it is possible for the compiler or linker to perform this optimisation 
automatically, the optimisation can also be performed by the Standard Library 
implementation or by the application programmer. 

If the compiler supports partial specialization and member-function-templates, the 
library implementor can provide partial specialisations of containers of pointers to a 
single underlying implementation that uses void*.  This technique is described in 
C++ PL 3rd edition. 

The same technique can be employed as a PDO, where it is possible to write a class-
template called, perhaps, plist<T>, that is implemented using std::list<void*> to 
which all operations of plist<T> are delegated. 

                                                 
12 Virtual function tables, EH state tables, etc. 
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Source code must then refer to plist<T> rather than std::list<T*>, so the 
technique is not transparent, but it is a workable solution in the absence of tool or 
library support.  Variations of this technique can be used with other templates too. 

2.5.2 Templates vs. Inheritance 
Any non-trivial program needs to deal with data structures and algorithms.  Because 
data structures and algorithms are so fundamental, it is important that their use be as 
simple and error- free as possible.  

The template containers in the Standard C++ Library are based on principles of 
generic programming, rather than the inheritance approach used in other languages 
such as Smalltalk.  An early set of foundation classes for C++, called the National 
Institutes of Health Class Library (NIHCL), was based on a class hierarchy after the 
Smalltalk tradition. 

Of course, this was before C++ had added templates to the language; but it is useful in 
illustrating how inheritance compares to templates in the implementation of 
programming idioms such as containers. 

In the NIH library, all classes in the tree inherited from a root class Object, which 
defined interfaces for identifying the real class of an object, comparing objects, and 
printing objects.  [The Object class itself inherited from class NIHCL, which 
encapsulated some static data members used by all classes.]  Most of the functions 
were declared virtual, and had to be overridden by deriving classes13.  The hierarchy 
also included a class Class that provided a library implementation of RTTI (which 
was also not yet part of the C++ language).  The Collection classes, themselves 
derived from Object, could hold only other objects derived from Object which 
implemented the necessary virtual functions. 

                                                 
13 Presumably, had the NIHCL been written today, these would have been pure virtual functions. 
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But the NIHCL had several disadvantages due to its use of inheritance versus 
templates for the implementation of container classes. 

The following is a portion of the NIHCL hierarchy (taken from the README file): 
NIHCL - Library Static Member Variables and Functions 
    Object - Root of the NIH Class Library Inheritance Tree 
        Bitset - Set of Small Integers (like Pascal's type SET) 
        Class - Class Descriptor 
        Collection - Abstract Class for Collections 
            Arraychar - Byte Array 
            ArrayOb - Array of Object Pointers 
            Bag - Unordered Collection of Objects 
            SeqCltn - Abstract Class for Ordered, Indexed 
                      Collections 
                Heap - Min-Max Heap of Object Pointers 
                LinkedList - Singly-Linked List 
                OrderedCltn - Ordered Collection of Object Pointers 
                    SortedCltn - Sorted Collection 
                        KeySortCltn - Keyed Sorted Collection 
                Stack - Stack of Object Pointers 
            Set - Unordered Collection of Non-Duplicate Objects 
                Dictionary - Set of Associations 
                    IdentDict - Dictionary Keyed by Object Address 
                IdentSet - Set Keyed by Object Address 
        Float - Floating Point Number 
        Fraction - Rational Arithmetic 
        Integer - Integer Number Object 
        Iterator - Collection Iterator 
        Link - Abstract Class for LinkedList Links 
            LinkOb - Link Containing Object Pointer 
        LookupKey - Abstract Class for Dictionary Associations 
            Assoc - Association of Object Pointers 
            AssocInt - Association of Object Pointer with Integer 
        Nil - The Nil Object 
        Vector - Abstract Class for Vectors 
            BitVec - Bit Vector 
            ByteVec - Byte Vector 
            ShortVec - Short Integer Vector 
            IntVec - Integer Vector 
            LongVec - Long Integer Vector 
            FloatVec - Floating Point Vector 
            DoubleVec - Double-Precision Floating Point Vector 
 

Thus the class KeySortCltn (roughly equivalent to std::map), is seven layers deep 
in the hierarchy: 

NIHCL 
    Object 
       Collection 
           SeqCltn 
               OrderedCltn 
                    SortedCltn 
                        KeySortCltn 
 

Because a linker cannot know which virtual functions will be called at runtime, it 
typically includes the functions from all the preceding levels of the hierarchy for each 
class in the executable program.  This can lead to code bloat without templates. 
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There are other performance disadvantages to inheritance based collection classes: 

?  Primitive types cannot be inserted into the collections.  Instead, these must be 
replaced with classes in the Object hierarchy, which are programmed to have 
similar behaviour to primitive arithmetic types, such as Integer and Float.  
This circumvents processor optimisations for arithmetic operations on 
primitive types.  It is also difficult to exactly duplicate the behaviour of 
arithmetic data types through class member functions and operators. 

?  Because C++ has compile-time type checking, providing type-safe containers 
for different contained data types requires code to be duplicated for the same 
reason that template containers are instantiated multiple times.  To avo id this 
duplication of code, the NIHCL collections hold pointers to a generic type - 
the base Object class.  However, this is not type safe, and requires runtime 
checks to ensure objects are type compatible with the contents of the 
collections.  It also leads to many more dynamic memory allocations, which 
can hinder performance.  Furthermore, type checking is always dynamic 
adding further cost to the program using the collections. 

?? Because classes used with the NIHCL must inherit from Object and are 
required to implement a number of virtual functions, this solution is intrusive 
on the design of classes from the problem domain.  The C++ Standard Library 
containers do not impose such requirements on their contents14 [A class used 
in a Standard container must be assignable and copy-constructible; often it 
additionally needs to have a default constructor and implement operator == 
and operator < ].  For this reason alone, the obligation to inherit from 
class Object often means that the use of Multiple Inheritance also becomes 
necessary, since domain specific classes may have their own hierarchical 
organization. 

The C++ Standard Library lays out a set of principles for combining data 
structures and algorithms from different sources.  Inheritance-based libraries 
from different vendors, where the algorithms are implemented as member 
functions of the containers; can be difficult to integrate and difficult to extend. 

Templates can provide powerful facilities for evaluation at compile-time.  Doing more 
of the work at compile-time means less work at runtime. 

Hints can be exchanged between the compiler and the library to select a more efficient 
specialisation, or to select linkage with a reduced-footprint version of the library.  In 
C, it's possible to optimise printf this way – printf with floating point support vs. 
printf without floating point support. 

When the linker sees printf, if the symbol __crt_float (or equivalent) is defined, 
then invoke printf_float, else invoke printf_int.  Defining a float f; has the 
side effect of defining __crt_float. 

                                                 
14 A class used in a Standard container must be assignable and copy-constructible; often it additionally needs to have a default 
constructor and implement operator == and operator <. 
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2.6 Overheads from The Standard IOStreams Library 
The Standard IOStreams library (§IS-27) has a well-earned reputation of being 
inefficient!  Most of this reputation is, however, due to misinformation and naïve 
implementation of this library component.  Rather than tackling the whole library, this 
report addresses efficiency considerations related to a particular aspect used 
throughout the IOStreams library, namely those aspects relating to the IOStream's use 
of the Locales library (§IS-22).  An implementation approach for removing most, if 
not all, efficiency problems related to locales is discussed in 3.2. 

The efficiency problems come in several forms. 

2.6.1 Overview - Executable Size 
Typically, using anything from the IOStreams library drags in a huge amount of 
library code, most of which is not actually used.  The principle reason for this is the 
use of std::locale in all base classes of the IOStreams library (e.g. std::ios_base 
and std::basic_streambuf).  In the worst case, the code for all required facets from 
the Locales library (§IS-22.1.1.1.1¶4) is included in the executable.  A milder form of 
this problem merely includes code of unused functions from a facet, from which one 
or more functions are used.  This is discussed in 3.2.2. 

2.6.2 Overview - Execution Speed 
Since certain aspects of IOStream processing are distributed over multiple facets, it 
seems that the standard mandates an inefficient implementation.  This is not the case 
and using some form of pre-processing, lots of the work can be avoided.  In addition, 
with a slightly smarter linker than is typically used, it is possible to remove additional 
inefficiencies.  This is discussed in 3.2.3 and 3.2.5. 

2.6.3 Overview - Object Size 
The standard seems to mandate an std::locale object being embedded in each 
std::ios_base and std::basic_streambuf object, in addition to several options 
used for formatting and error reporting.  This makes for fairly large stream objects.  
Using a more advanced organization for stream objects can shift the costs to those 
applications actually using the corresponding features.  Depending on the exact 
approach taken, the costs are shifted to one or more of: 

?  compilation time 
?  higher memory usage when actually using the corresponding features 
?  execution speed 

This is discussed in 3.2.6. 

2.6.4 Overview – Compile-Time 
A widespread approach to cope with the lack of support for the separation model is to 
include the template implementation in the headers.  This can results in very long 
compile and link times if, for example, the IOStreams headers are included, and 
especially if optimisations are enabled.  With an improved approach using pre-



Technical Report on C++ Performance (DRAFT) 01-0023/N1309 

Page 30 of 87 

instantiation and consequent decoupling techniques, the compile-time can be reduced 
significantly.  This is discussed in 3.2.4. 
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3 Performance – Techniques & 
Strategies 

Description of current approaches: 

?? Code generation control, including memory placement, initialisation 
characteristics, et al. 

?? #pragma, and other language modifications 
?? Application of measurement results in making choices 
?? Transforming virtual calls into non-virtual calls 
?? Alternatives to exception handling 
?? Effects of restrictions upon character types 
?? Characterization of performance guarantees 
?? Coding style can affect performance 

Editor’s Note: There is no further mention of these, other than a bit about 
transforming virtual calls into non-virtual calls, and snippets 
showing how coding style can affect performance. 

3.1 Programmer Directed Optimisations 
Programmers are sometimes surprised when their programs call functions they haven't 
specified, maybe even haven't written.  While a line of C code typically translates to a 
few machine instructions, a single innocuous-looking line of C++ code may translate 
to a fairly large number of machine instructions.  Simply declaring a variable such as: 

C c; 
 

has the potential to be quite expensive15 in C++ if, for instance, the class C has a 
default constructor which requires a large amount of code or data to initialise the 
object c. 

                                                 
15 It is important to remember however, that in C the object would still need to be initialised, but that code would have to be 
explicitly called and is hence visible to the programmer. 



Technical Report on C++ Performance (DRAFT) 01-0023/N1309 

Page 32 of 87 

Understanding what a C++ program is doing is important for optimisation.  If you 
know what functions C++ silently writes and calls, careful programming can keep the 
unexpected code to a minimum.  Some of the works cited in the bibliography 
(Appendix C:) provide more extensive guidance, but the following provides some 
suggestions for writing more efficient code: 

?? In constructors, prefer initialisation of data members to assignment.  Members 
of const and reference types must be initialised in the member initialisation 
list, but it is advisable to list other members as well.  The sequence of steps 
taken to construct a variable of class type is as follows: 

o the base classes for the class are initialised using their default 
constructors unless an explicit initialiser has been provided in the mem-
initializer-list; 

o the data members for the class are initialised using their default 
constructors16 unless an explicit initialiser has been provided in the 
mem-initializer-list; 

o finally, the body of the constructor is executed. 

Therefore, an assignment to a data member within the constructor body means 
that member is effectively initialised twice17. 

?? As a general principle, don't define a variable before you are ready to initialise 
it.  This prevents effectively initialising the variable twice. 

?? Use the direct initialisation syntax T a(b); rather than the copy initialisation 
syntax T a = b;.  Copy-initialisation is permitted to create an intermediate 
temporary object, while direct initialisation is not. 

?? Shift expensive computations from the most time-critical parts of a program to 
the least time-critical parts (often, but not always, program start-up). 

?? Whenever possible, compute values and catch errors at translation time rather 
than runtime.  With sophisticated use of templates, a complicated block of 
code can be compiled to a single constant in the executable. 

?? Know what functions the C++ compiler silently generates and calls.  Simply 
defining a variable of some class type may invoke a potentially expensive 
constructor function. 

?? Passing arguments to a function by value [e.g. void f(T x) ] is cheap for 
built- in types, but potentially expensive for class types since they may have a 
non-trivial copy constructor.  Passing by address [e.g. void f(T const* x) ] 
is light-weight, but changes the way the function is called.  Passing by 
reference-to-const [e.g. void f(T const& x) ] combines the safety of 
passing by value with the efficiency of passing by address.  But be careful not 

                                                 
16 Built-in data types do not have a default constructor, so unless they are explicitly initialised, they will have an unspecified or 
undefined value (according to their type). 
17 Actually, an object can only be initialised once – this is really an initialisation followed by an assignment, a distinction that is 
not so clear in C, but can very different in C++. 
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to create unnecessary temporary objects, by using an argument that must be 
converted to the type of the function parameter. 

?? Unless you need automatic type conversions, make all one-argument 
constructors18 explicit.  This will prevent calling them accidentally.  
Conversions can still be done when necessary by stating them explicitly in the 
code, avoiding the penalty of hidden and unexpected conversions. 

?? Understand how and when the compiler generates temporary objects.  Often 
small changes in coding style can prevent the creation of temporaries, with 
consequent benefits for runtime speed and memory footprint.  Temporary 
objects may be generated when passing parameters to functions, returning 
values from functions, or initialising objects. 

?? Rewriting expressions can reduce or eliminate the need for temporary objects.  
For example, if a, b, and c are objects of class T: 

T a;              // inefficient: don't create an object before 
                  // its initialization is really needed 
a = b + c;        // inefficient: (b + c) creates a temporary 
                  // object and then assigns it to a 
T a( b ); a += c; // better:      no temporary objects created 
 

?? Use the return value optimisation to give the compiler a hint that temporary 
objects can be eliminated.  The trick is to return constructor arguments instead 
of objects, like this: 

const Rational operator * ( Rational const & lhs, 
                            Rational const & rhs ) 
{ 
    return Rational( lhs.numerator() * rhs.numerator(), 
                 lhs.denominator() * rhs.denominator() ); 
} 
 

Less carefully written code might create a local Rational variable to hold the 
result of the calculation, use the assignment operator to copy it to a temporary 
variable holding the return value, then copy that into a variable in the calling 
function.  But with the suggested hints, the compiler is able to construct the 
return value directly into the variable that is specified to receive it. 

?? Prefer pre-increment and -decrement to postfix operators. 

Postfix operators like i++ copy the existing value to a temporary object, 
increment the internal value, and then return the temporary.  Prefix operators 
like ++i increment the actual value first and return a refe rence to it.  With 
objects such as iterators, creating temporary copies is expensive compared 
to built- in ints. 

?? Dynamic memory allocation and de-allocation can be a bottleneck.  Consider 
writing class-specific operator new() and operator delete() functions, 
optimised for objects of a specific size or type.  It may be possible to recycle 

                                                 
18 This refers to any constructor that may be called with a single argument.  Multiple parameter constructors with default 
arguments can be called as one-argument constructors. 
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blocks of memory instead of releasing them back to the heap whenever an 
object is deleted. 

?? Sometimes it is helpful to “widen” a class' interface with functions that take 
different data types to prevent automatic conversions (such as adding an 
overload on char * to a function which takes a std::string parameter).  The 
numerous overloads for operators +, ==, !=, and < in the <string> header are 
an example of such a "fat" interface19.  If the only supported parameters were 
std::strings, then characters and pointers to character arrays would have to 
be converted to full std::string objects before the operator was applied. 

?? The Standard string class is not a lightweight component.  Because it has a 
lot of functionality, it comes with a certain amount of overhead (and because 
Standard Library container classes throw C++ std::strings, and not C-style 
string literals, this overhead may be included in a program inadvertently). 

In many applications, strings are created, stored, and referenced, but never 
changed.  As an extension, or as a PDO, it might be useful to create a lighter-
weight unchangeable-string class. 

?? Reference counting is a widely used optimisation technique.  In a single-
threaded application, it can prevent making unnecessary copies of objects.  
However, in multi- threaded applications, the overhead of locking the shared 
data representation may add unnecessary overheads, negating the performance 
advantage of reference counting20. 

?? Pre-compute values that won't change.  To avoid repeated function calls, 
rather than writing: 

while( myListIterator != myList.end() ) ... 
for( size_t n = 0; n < myVector.size(), ++n ) ... 
 

instead call myList.end() or myVector.size() once “before” the loop, 
storing the result in a variable which can then be used in the comparison. 

?? Small forwarding functions can usually be inlined to advantage, especially if 
they occupy less code space than preparing the stack frame for a function call. 

?? The use of dynamic binding and virtual functions has some overhead that can 
affect performance.  In a typical implementation, every object (which has 
virtual functions) in the hierarchy needs an extra member for the vptr, and 
dynamic selection of functions at runtime involves de-referencing this vptr.  
But the biggest overhead factor, is that compilers are often unable to inline 
virtual functions (§2.3.3). 

?? Use function objects with the Standard Library algorithms rather than function 
pointers.  The data flow-analysers of many optimisers are defeated by function 

                                                 
19 It is also worth noting, that even if a conversion is needed, it is so metimes better to have the conversion performed in one 
place, where an overloaded “wrapper” function calls the one that really performs the work.  This can help to reduce program size, 
where each caller would otherwise perform the conversion. 
20 Of course, if space is the resource being optimised, reference counting may still be the best choice. 
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pointers, but function objects are passed by value and optimisers can easily 
handle inline functions on objects. 

?? Templates provide compile-time polymorphism, wherein type selection does 
not incur any runtime penalty.  If appropriate to the design, consider using 
templates as interfaces instead of abstract base classes.  Templates have 
several useful properties: they impose no space or code overhead on the class 
used as a template argument, and they can be attached to the class for limited 
times and purposes.  If the class does not provide the needed functionality, it 
can be defined externally through template specialization.  If certain functions 
in the template interface are never used for a given class, they need not be 
defined because they will not be instantiated. 

An old rule of thumb is that there is a trade-off between program size and execution 
speed -- that techniques such as declaring code inline can make the program larger 
but faster.  But now that processors make extensive use of on-board cache and 
instruction pipelines, the smallest code is often the fastest as well.  Furthermore, tests 
indicate that the cost of function calls has greatly reduced, and that modern optimisers 
are very good at deciding when and where to inline functions automatically (§2.3.3). 

Compilers typically use a heuristic process in optimising code that may be different 
for small and large programs.  Therefore, it is difficult to recommend any techniques 
that are guaranteed to improve performance in all environments.  It is vitally 
important to measure a performance-critical application in the target environment and 
concentrate on improving performance where bottlenecks are discovered.  Because so 
many factors are involved, measuring actual performance can be difficult but remains 
an essential part of the performance tuning process. 

The best way to optimise a program is to use efficient algorithms.  An algorithm with 
quadratic performance may be acceptable for small data sets, but gives abysmal 
performance on large inputs.  Small local optimisations may be effective if profiling 
reveals a bottleneck. 

3.2 Efficient Implementation of Locales and IOStreams 
The definition of Locales in the C++ Standard (§IS-22) seems to imply a pretty 
inefficient implementation.  This is however not true.  It is possible to create efficient 
implementations of the Locales library, both in terms of runtime efficiency and 
executable size.  This does take some thought and this reports discusses some of the 
possibilities that can be used to improve the efficiency of std::locale 

implementations with a special focus on the functionality as used by the IOStreams 
library. 

The approaches discussed in this report are primarily applicable to statically bound 
executables as are typically found in for example, embedded systems.  If shared, or 
dynamically loaded libraries are used, different optimisation goals have precedence, 
and some of the approaches described here could be counterproductive.  Clever 
organization of the shared libraries might deal with some efficiency problems too  - 
however, this is not discussed in this report. 
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Nothing described in this report involves magic or really new techniques.  It just 
discusses how well known techniques may be employed to the benefit of the library 
user.  It does however involve additional work compared to a trivial implementation, 
for the library implementer as well as for the library tester, and in some cases for the 
compiler implementer.  Some of the techniques focus on just one efficiency aspect 
and thus not all techniques will be applicable in all situations (e.g. certain 
performance improvements can result in “additional” code).  Depending on the 
requirements, the library writer or possibly even the library user, has to choose which 
optimisations are the most appropriate. 

3.2.1 Locale Implementation Basics 
Before going into the details of the various optimisations, it is worth introducing the 
implementation of locales describing features implicit to the Standard definition.  
Although some of the material presented in this section is not strictly required and 
there are other implementation alternatives, this section should provide the necessary 
details to understand where the optimisations should be directed. 

An std::locale object is an immutable collection of immutable objects - or more 
precisely - of immutable facets.  This immutability trait is important in multi- threaded 
environments, because it removes the need to synchronize most accesses to locales 
and their facets.  The only operations needing multi-threading synchronization are 
copying, assigning, and destroying std::locale objects and the creation of modified 
locales. 

Instead of modifying a locale object to augment the object with a new facet or to 
replace an existing one, std::locale constructors or member functions are used, 
creating new locale objects with the modifications applied.  As a consequence, 
multiple locale objects can share their internal representation and multiple internal 
representations can (actually - have to) share their facets.  When a modified locale 
object is created, the existing facets are copied from the original and then the 
modification is applied possibly replacing some facets.  For correct maintenance of 
the facets, the Standard mandates the necessary interfaces allowing reference counting 
or some more or less equivalent techniques for sharing facets.  The corresponding 
functionality is implemented in the class std::locale::facet, the base class for all 
facets. 

The copying, assigning, and destroying std::locale objects reduces to simple 
pointer and reference count operations.  When copying a locale object, the reference 
count is incremented and the pointer to the internal representation is assigned.  When 
destroying a locale object, the reference count is decremented and when it drops to 0, 
the internal representation is released.  Assignment is an appropriate combination of 
these two.  What remains is the default construction of an std::locale which is just 
the same as a copy of the current global locale object.  Thus, the basic lifetime 
operations of std::locale objects are reasonably fast. 

Individual facets are identified using an ID, more precisely an object of type 
std::locale::id which is available as a static data member in all base classes 
defining a facet.  A facet is a class derived from std::locale::facet which has a 
publicly accessible static member called id of type std::locale::id (§IS-
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22.1.1.1.2¶1).  Although explicit use of a locale's facets seems to use a type F as an 
index, the Locales library internally uses F::id.  The std::locale::id simply 
stores an index into an array identifying the location of a pointer to the corresponding 
facet or 0 if a locale object does not store the corresponding facet. 

Taken together, a locale object is basically a reference counted pointer to an internal 
representation consisting of an array of pointers to reference counted facets.  In a 
multi threaded environment, the internal representation and the facets might store a 
mutex (or some similar synchronization facility) thus protecting the reference count.  
A corresponding excerpt of the declarations might look something like this (with 
namespace std and other qualifications or elaborations of names omitted): 

class locale { 
public: 
    class facet { 
    // ... 
    private: 
        size_t  refs; 
        mutex   lock;    // optional 
    }; 
 
    class id { 
    // ... 
    private: 
        size_t  index; 
    }; 
 
    // ... 
private: 
    struct internal { 
    // ... 
        size_t refs; 
        mutex  lock;    // optional 
        facet* members; 
    }; 
    internal*  rep; 
}; 
 

These declarations are not really required and there are some interesting variations: 

?  Rather than using a double indirection with an internal struct, a pointer to an 
array of unions can be used.  The union would contain members suitable as 
reference count and possible mutex lock, as well as pointers to facets.  The 
index 0 could, for example, be used as “reference count” and index 1 as 
“mutex”, with the remaining array members being pointer to facets. 

?  Instead of protecting each facet object with its own mutex lock, it possible to 
share the locks between multiple objects.  For example, there may be just one 
global mutex lock, because the need to lock facets is actually relatively rare 
(only when a modified locale object is necessary is there a need for the mutex) 
and it is unlikely that this global lock remains held.  If this is too coarse 
grained, it is possible to place a mutex lock into the static id object, such that 
an individual mutex lock exists for each facet type. 
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?  If atomic increment and decrement/check are available, the reference count is 
sufficient, because the only operations needing multi- threading protection are 
incrementing and decrementing the reference count. 

?  The locale objects only need a representation if there are modified locale 
objects.  If such an object is never created, it is possible to use an empty 
std::locale object.  Whether or not this is the case can be determined using 
some form of "whole program optimisation" (§3.2.5). 

?  Whether an array or some other data structure is used internally does not really 
matter.  What is important is that there is a data structure indexed by 
std::locale::id. 

?  A trivial implementation could use a null pointer to indicate that a facet is 
absent in a given locale object.  If a pointer to a dummy facet is used instead, 
std::use_facet() can simply use a dynamic_cast<>() to produce the 
corresponding std::bad_cast exception. 

In any case, it is reasonable to envision a locale object as being a reference counted 
pointer to some internal representation containing an array of reference counted 
facets.  Whether this is actually implemented so as to reduce runtime by avoiding a 
double indirection and whether there are mutex locks and where these are does not 
really matter to the remainder of this discussion.  It is, however, assumed that the 
implementer chooses an efficient implementation of the std::locale. 

It is worth noting that the Standard definition of std::use_facet() and 
std::has_facet() differ from the CD2 (Committee Draft 2 – pre-IS) version quite 
significantly.  If a facet is not found in a locale object, it is not available for this 
locale.  In CD2, the global locale object was searched for a facet not present a given 
locale object.  The Standard version can be more efficient - to determine whether a 
facet is available for a given locale object, a simple array lookup is sufficient.  
Basically, the functions std::use_facet() and std::has_facet() could look 
something like: 

extern std::locale::facet dummy; 
template <typename F> 
bool has_facet(std::locale const& loc) { 
    return loc.rep->facets[F::id::index] == &dummy; 
} 
template <typename F> 
F const& use_facet(std::locale const& loc) { 
    return dynamic_cast<F const&>(*loc.rep->facets[Facet::id::index]); 
} 
 

Editor’s Note: Should the reference to the CD2 definition be removed, or relegated 
to a footnote? 

This version of the functions is tuned for speed.  A simple array lookup, together with 
the necessary dynamic_cast<>() is used to obtain a facet.  Since this implies that 
there is a slot for each facet possibly used by the program in the array, it may be 
somewhat wasteful with respect to memory.  Other techniques might check the size of 
the array first or store id/facet pairs.  In extreme cases, it is possible to locate the 
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correct facet using dynamic_cast<>() and storing only those facets that are actually 
available in the given locale. 

3.2.2 Reducing Executable Size 
Linking unused code into an executable can have a significant impact on the 
executable size.  Thus, it is best to avoid having unused code in the executable 
program.  One source of unused code results from trivial implementations.  The 
default facet std::locale::classic() includes a certain set of facets as described 
in IS-22.1.1.1.1¶2.  It is tempting to implement the creation of the corresponding 
locale with a straightforward approach, namely explicitly registering the listed facets: 

std::locale const& std::locale::classic() { 
    static std::locale object; 
    static bool uninitialized = true; 
 
    if (uninitialized) { 
        object.intern_register(new collate<char>); 
        object.intern_register(new collate<wchar_t>); 
        // ... 
    } 
    return object; 
} 
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This approach however can result in a very large executable, as it drags in all facets 
listed in the table.  The advantage of this approach is that a relatively simple 
implementation of the various locale operations is possible.  An alternative is to 
include only those facets that are really used.  A simple approach for doing this is to 
provide specialized versions of use_facet() and has_facet() which might be 
appropriate for has_facet() anyway, for example: 

template <typename F> struct facet_aux { 
    static F const& use_facet(locale const& l) { 
        return dynamic_cast<F const&>(*l.rep 
                                          ->facets[Facet::id::index]); 
    } 
    static bool has_facet(locale const& l) { 
        return l.rep->facets[F::id::index] == &dummy; 
    } 
}; 
template <> struct facet_aux<ctype<char> > { 
    static ctype<char> const& use_facet(locale const& l) { 
        try { 
            return dynamic_cast<F const&>(*l.rep 
                                          ->facets[Facet::id::index]); 
        } catch (bad_cast const&) { 
            locale::facet* f = l.intern_register(new ctype<char>); 
            return dynamic_cast<ctype<char>&>(*f); 
        } 
    } 
    static bool has_facet(locale const&) { return true; } 
}; 
// similarly for the other facets 
 
template <typename F> 
F const& use_facet(locale const& l) { 
    return facet_aux<F>::use_facet(l); 
} 
template <typename F> 
bool has_facet(locale const& l) { 
    return facet_aux<F>::has_facet(l); 
} 
 

Again, this is just one example of many possible implementations for what is 
basically a recurring theme.  A facet is created only if it is really referenced from the 
program.  This particular approach is suitable in implementations where exceptions 
cause a runtime overhead only if they are indeed thrown because like the normal 
execution path, if the lookup of the facet is successful, it is not burdened by the extra 
code used to initialise the facet.  Although the above code seems to imply that 
struct facet_aux has to be specialized for all required facets individua lly, this need 
not be the case.  By using an additional template argument, it is possible to use partial 
specialization together with some tagging mechanism, to determine whether the facet 
should be created on the fly if it is not yet present. 

Different implementations of the lazy facet initialisation include the use of static 
initialisers to register used facets.  In this case, the specialised versions of the function 
use_facet() would be placed into individual object files together with an object 
whose static initialisation registers the corresponding facet.  This approach implies 
however, that the function use_facet() is implemented out-of-line, possibly causing 
unnecessary overhead both in terms of runtime and executable size. 
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The next source of unused code is the combination of several related aspects in just 
one facet due to the use of virtual functions.  Normally, instantiation of a class 
containing virtual functions requires that the code for all virtual functions be present, 
even if they are unused.  This can be relatively expensive as for example, in the case 
of the facet dealing with numeric formatting.  Even if only the integer formatting 
functions are used, the typically bigger code for the floating point formatting gets 
dragged in just to resolve the symbols referenced from the "virtual function table”. 

A better approach to avoid linking of unused virtual functions involves changing the 
compiler such that it generates appropriate symbols, allowing the linker to determine 
whether a virtual function is really called.  If it is, the reference from the virtual 
function table is resolved; otherwise, there is no need to resolve it because it will 
never be called anyway. 

Author’s Note: Details for this are described elsewhere (currently, I don't have a 
reference I can point to but I know that Nathan Myers has dealt with 
this for gcc). 

For the Standard facets however, there is a “Poor Man's” alternative that comes close 
to having the same effect.  The idea is to provide a stub implementation for the virtual 
functions, which is placed in the library such that it is searched fairly late.  The real 
implementation is placed before the stub implementation in the same object file along 
with the implementation of the forwarding function.  Since a use of the virtual 
function has to go through the forwarding function, this symbol is also un-referenced, 
and resolving it brings in the correct implementation of the virtual function. 

Unfortunately, it is not totally true that the virtual function can only be called through 
the forwarding function.  A class deriving from the facet can directly call the virtual 
function because these are protected rather than private.  Thus, it is still necessary 
to drag in the whole implementation if there is a derived facet.  To avoid this, another 
implementation can be placed in the same object file as the constructors of the facet, 
which can be called using a hidden constructor for the automatic instantiation.  
Although it is possible to get these things to work with typical linkers, a modified 
compiler and linker provide a much-preferred solution, which if often outside of the 
scope of the library implementers. 

Basically, most of the normally visible code bloat can be removed using these two 
techniques, i.e. by including only used facets and avoiding the inclusion of unused 
virtual functions.  Some of the approaches described in the other sections can also 
result in a reduction of executable size, but the focus of those optimisations is on a 
different aspect of the problem.  Also, the reduction in code size for the other 
approaches is not as significant. 
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3.2.3 Pre-Processing for Facets 
Once the executable size is reduced, the next observation is that the operations tend to 
be slow.  Take numeric formatting as an example: to produce the formatted output of 
a number, three different facets are involved: 

?  num_put which does the actual formatting; i.e. determining which digits and 
symbols are there; doing padding when necessary; etc. 

?  numpunct which provides details about local conventions, such as the need to 
put in thousands separators; which character to use as a decimal point; etc. 

?  ctype which transforms the characters produced internally by num_put, into 
the appropriate "wide" characters. 

Each of the ctype or numpunct functions called is basically a virtual function.  A 
virtual function call can be an expensive way to determine whether a certain character 
is a decimal point; or to transform a character between a narrow and wide 
representation.  Thus, it is necessary to avoid these calls wherever possible for 
maximum efficiency. 

At first examination there does not appear to be much room for improvement.  
However, on closer inspection, it turns out that the Standard does not mandate calls to 
numpunct or ctype for each piece of information.  If the num_put facet has widened a 
character already, or knows which decimal point to use, it is not required to call the 
corresponding functions.  This can be taken a step further.  When creating a locale 
object, certain data can be cached using for example, an auxiliary hidden facet.  
Rather than going through virtual functions over and over again, the required data is 
simply stored in an appropriate data structure. 

For example, the cache for the numeric formatting might consist of a character 
translation table resulting from widening all digit and symbol characters during the 
initial locale set-up.  This translation table might also contain the decimal point and 
thousands separator - combining data obtained from two different facets into just one 
table.  Taking it another step further, the cache might be set up to use two different 
functions depending on whether thousands separators are used according to the 
numpunct facet or not.  Some pre-processing might also improve the performance of 
parsing strings like the Boolean values if the std::ios_base::boolalpha flag is set. 

Although there are many details to be handled like for example, distinguishing 
between normal and cache facets when creating a new locale object, the effect of 
using a cache can be fairly significant.  It is important that the cache facets are not 
generally shared between locale representations.  To share the cache, it has to be 
verified that all facets contributing to the cached data are identical in each of the 
corresponding locales.  Also, certain things like, the use of two different functions for 
formatting with or without thousands separators only work if the default facet is used. 

3.2.4 Compile-Time Decoupling 
It may appear strange to talk about improving compile-times when discussing the 
efficiency of locales but there are good reasons for this.  First of all, compile-time is 
just another concern for performance efficiency, and it should be minimized where 
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possible.  More important to this paper however, is that some of the techniques 
presented below, rely on certain aspects that are related to the compilation process. 

The first thing that improves compile-time is the liberal use of declarations, avoiding 
definitions wherever possible.  A Standard header may be required to include other 
headers that provide a needed definition (§IS-17.4.4.1¶1), however, this does not 
apply to declarations.  As a consequence, a header need not be included just because it 
defines a type which is used only a as return or argument type where a declaration is 
sufficient.  Likewise, a declaration is sufficient if only a pointer or a class is used as a 
member. 

Looking at the members imbue() and getloc() of the class std::ios_base, it 
would seem that an object of this type is required to include <locale> simply for the 
definition of std::locale, because apparently, an std::ios_base object stores an 
object of this type in a member variable.  This is, not required!  Instead, 
std::ios_base could store the pointer to the locale's internal representation and 
construct an std::locale object on the fly.  Thus, there is no need for the header 
<ios> to include the header <locale>.  The header <locale> will be used elsewhere 
with the implementation of the std::ios_base class but that is a completely different 
issue. 

Why does it matter?  Current compilers lacking support for the export keyword 
require the implementation of the template members of the other stream classes in the 
headers anyway and the implementation of these classes will need the definitions 
from <locale> - won't they?  It is true that some definitions of the template members 
will indeed require definitions from the header <locale>.  However, this does not 
imply that the implementation of the template members is required to reside in the 
header files - a simple alternative is to explicitly instantiate the corresponding 
templates in suitable object files. 

Explicit instantiation obviously works for the template arguments mentioned in the 
Standard, for example, explicit specialisation of std::basic_ios<char> and 
std::basic_ios<wchar_t> works for the class-template std::basic_ios.  But 
what happens when the user tries some other type as the character representation, or a 
different type for the character traits?  Since the implementation is not inline but 
requires explicit instantiation, it cannot always be present in the Standard library 
shipped with the compiler.  The usual approach to this problem is to use the export 
keyword but in the absence of this, an entirely different approach is necessary.  One 
such approach is to instruct the user on how to instantiate the corresponding classes 
using for example, some environment specific implementation file, and suitable 
compiler switches.  For instance, instantiating the IOStream classes for the character 
type mychar and the traits type mytraits might look something like: 

c++ -o io-inst-mychar-mytraits.o io-inst.cpp \ 
      -DcharT=mychar -Dtraits=mytraits -Dinclude="mychar.hpp" 
 

Using such an approach causes some trouble to the user and more work for the 
implementor, which seems to be a fairly high price to pay for a reduction in 
dependencies, and a speed up of compile-time.  But note that the improvement in 
compile-time is typically significant when compiling with optimisations enabled.  The 
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reason for this is simple: with all those inline functions, the compiler causes huge 
chunks of codes to be passed on to the optimiser which then has to work extra hard to 
improve them.  Bigger chunks provide better optimisation possibilities, but they also 
cause significantly longer compile-times due to the non- linear increase in the 
complexity of the optimisation step as the size of the chunks increases.  Furthermore, 
the object files written and later processed by the linker are much bigger when all 
used instantiations are present in each object file.  This can also impact the executable 
size, because certain code may be present multiple times embedded in different inline 
functions which are different but which have some code from just one other function 
in common. 

Another reason for having the IOStream and Locale functions in a separate place, is 
that it is possible to tell from the undefined symbols, which features are used in a 
program, and which are not.  This information can then be used by a smart- linker to 
determine which particular implementation of a function is most suitable for a given 
application. 

3.2.5 Smart Linking 
The discussion above already addresses how to avoid unused code using a slightly 
non-trivial implementation of locales and virtual functions.  It does not address how to 
avoid unnecessary code.  The term “unnecessary code” refers to code that is actually 
executed, but which does not really have any effect.  For example, the code for 
padding formatted results does not have an effect if the width() is never set to a non-
zero value.  Similarly, there is no need to go through the virtual functions of the 
various facets, if only the default locale ever used.  As for all other aspects of C++, it 
is reasonable to avoid the costs in code size and performance when the corresponding 
feature is not used. 

The basic idea for coping with this is to provide multiple implementations of the same 
function that avoids unnecessary overheads where possible.  Since writing multiple 
implementations of the same function can easily become a maintenance nightmare, it 
makes sense to write one implementation, which is configured at compile-time to 
handle different situations.  For example, a function for numeric formatting that 
optionally avoids the code for padding might look like this: 

template <typename cT, typename OutIt> 
num_put<cT, OutIt>::do_put(OutIt it, ios_base& fmt, 
                           cT fill, long v) const 
{ 
    char buffer[some_suitable_size]; 
    char* end = get_formatted(fmt, v); 
    if (need_padding && fmt.width() > 0) 
        return put_padded(it, fmt, fill, buffer); 
    else 
        return put(it, fmt, buffer); 
} 
 

The value need_padding is a constant Boolean which is set to false if the 
compilation is configured to avoid padding code.  With a clever compiler (normally 
requiring optimisation to be enabled) any reference to put_padded() is avoided, as is 



01-0023/N1309 Technical Report on C++ Performance (DRAFT)  
 
 

  Page 45 of 87 

the check for whether the width() is greater than zero.  The library would just supply 
two versions of this function and the smart- linker would need to choose the right one. 

To choose the right one, the linker has to be told under what circumstances it should 
use the one avoiding the padding, i.e. the one where need_padding is set to false.  A 
simple analysis shows that the only possibility for width() being non-zero is the use 
of the std::ios_base::width() function with a parameter.  The library does not set 
a non-zero variable, and hence the simpler version can be used if 
std::ios_base::width() is never referenced from user code. 

The example of padding is pretty simple.  Other cases are more complex but still 
manageable.  Another issue worth considering is whether the Locales library has to be 
used or if it is possible to provide the functionality directly, possibly using functions 
that are shared internally between the Locales and the IOStreams library.  That is, if 
only the default locale is used, the IOStream functions can call the formatting 
functions directly, bypassing the retrieval of the corresponding facet and associated 
virtual function call - moreover, bypassing any code related to locales - avoiding the 
need to drag in the corresponding locale maintenance code. 

The analysis necessary to check if only the default locale is used is more complex 
however.  The simple test is to check for the locale's constructors.  If only the default 
and copy constructors are used, then only the default locale is used because one of the 
other constructors is required to even create a different locale object.  Even then, if 
another locale object is constructed, it is not necessarily used with the IOStreams.  
Only if the global locale is ever changed, or if std::ios_base::imbue(), 
std::basic_ios<...>::imbue(), or std::basic_streambuf<...>::imbue() are 
ever called, can the streams be affected by the non-default locale object.  Although it 
this is somewhat more complex to determine, it is still manageable.  There are other 
things which might be exploited too, for example, whether the streams have to deal 
with exceptions in the input or output functions (this depends on the stream buffer and 
locales possibly used); whether calling of callback functions is needed (only if 
callbacks are ever registered, is this necessary); etc. 

The approach taken by the linker to decide which functionality is used by the 
application requires using a set of “rules” provided by the library implementor to 
exclude functions.  It is important to base these rules only on the application code to 
avoid unnecessary restrictions imposed by unused library code.  This however results 
in more rules and rules that are more complex.  To determine which functionality is 
used by the application code, the unresolved symbols referenced by the application 
code are examined.  This requires that any function used as a “rule” is indeed 
unresolved and results in the corresponding functions being non- inline. 

There are basically three problems with this approach: 

?  The maintenance of the implementation becomes more complex because extra 
work is necessary.  This can be reduced to a more acceptable level by relying 
on clever compilers eliminating code for branches that the compiler can 
determine, are never used. 
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?  The analysis of the conditions under which code can be avoided is sometimes 
non-trivial.  Also, the conditions have to be made available to the linker, 
which introduces another potential cause of error. 

?  Even simple functions used to exclude a simple implementation of the 
function std::ios_base::width() cannot be inline.  This might result in less 
efficient and sometimes even bigger code (for simple functions the cost of 
calling the function can be bigger than the  actual function).  See 3.2.7 for an 
approach for avoiding this problem. 

The same approach can be beneficial to other libraries, and to other areas of the 
Standard C++ library than just the IOStreams and Locales library.  In general, it can 
simplify the library interface by removing similar functions applicable in different 
situations, while still retaining the same efficiency.  It is however, not always 
applicable in such situations and should be used carefully where appropriate. 

3.2.6 Object Organization 
A typical approach to organise a class is to have member variables for all attributes to 
be maintained.  This may seem to be a natural approach, but it can result in a bigger 
footprint than necessary.  For example, in an application where the width() is never 
changed, there is no need to actually store the width().  When looking at the 
IOStreams library, it turns out that each std::basic_ios object might store a 
relatively large amount of data to provide functionality that many C++ programmers 
using IOStreams are not even aware of, for example: 

?  A set of formatting flags is stored in an std::ios_base::fmtflags object. 

?  Formatting parameters like the width() and the precision() are stored in 
std::streamsize objects. 

?  An std::locale object (or some suitable reference to its internal 
representation) is stored. 

?  The pword() and iword() lists are stored. 

?  A list of callbacks is stored. 

?  The error flags and exception flags are stored in objects of type 
std::ios_base::iostate.  Since these basically consist of just three bits, 
they may be folded into just one word. 

?  The fill character used for padding is stored. 

?  A pointer to the used stream buffer is stored. 

?  A pointer to the tie()ed std::basic_ostream is stored. 

This results in at least eight extra 32-bit words, even when folding multiple data into 
just one 32-bit word where possible (the formatting flags, the state and exception 
flags, and the fill character can fit into 32-bits for the character type char).  These are 
32 bytes for every stream object even if there is just one stream, for example, 
std::cout which never uses a different precision, width (and thus no fill character), 
or locale; probably does not set up special formatting flags using the pword() or 
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iword() facilities; almost certainly does not use callbacks, and is not tie()ed to 
anything.  It might get away with being an object needing no members at all, and in 
such a case - which is not very unlikely in an embedded application - by just sending 
string literals somewhere! 

A different organization could be the use of an array of unions and using the 
pword()/iword() mechanism to store the data.  Each of the pieces of data listed 
above is given an index of its position in an array of unions (possibly, several pieces 
can share just one union like they shared just one word in the conventional setting).  
Only the pword()/iword() pieces would not be stored in this array because they are 
required to access the array.  A feature never accessed does not get an index and thus 
does not require any space in the array.  The only complication is how to deal with the 
std::locale, because it is the only non-POD data.  This can be handled using for 
example, a pointer to the locale's internal representation. 

Depending on the exact organization, the approach will show different runtime 
characteristics.  For example, the easiest approach for assigning indices is to do it on 
the fly when the corresponding data is initialised or first accessed.  This may however, 
result in arrays which are smaller than the maximum index and thus the access to the 
array has to be bounds-checked (in case of an out-of-bound access, the array might 
have to be increased; it is only an error to access the corresponding element if the 
index is bigger than the biggest index provided so far by 
std::ios_base::xalloc()). 

An alternative is to determine the maximum number of slots used by the Standard 
library at link time or at start-up time before the first stream object is initialised.  In 
this case, there would be no need to check for out-of-bound access to the IOStream 
features.  However, this initialisation is more complex. 

A similar approach can be applied to the std::locale objects. 

3.2.7 Library Recompilation 
So far, the techniques described assume that the application is linked to a pre-
packaged library implementation.  Although the library might contain different 
variations on some functions, it is still pre-packaged (the templates possibly 
instantiated by the user can also be considered to be pre-packaged).  This is however, 
often not a necessary assumption!  If the library code is available, the Standard library 
can also be recompiled. 

This leads to the “two phase” building of an application; where in a first phase, the 
application is compiled against a "normal", fully-fledged implementation.  The 
resulting object files are automatically analysed for features actually used, by looking 
at the unresolved references.  The result of this analysis is some configuration 
information (possible a file), which uses conditional compilation to remove all unused 
features from the Standard library; in particular, removing unused member variables 
and unnecessary code.  In the second phase, this configuration information is then 
used to recompile the Standard library and the application code for the final program. 

This approach does not suffer from drawbacks due to dynamic determination of what 
are effectively static features.  For example, if it is known at compile-time which 
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IOStream features are used, the stream objects can be organised to include members 
for exactly those features.  Thus, it is not necessary to use a lookup in a dynamically 
allocated array, possibly using a dynamically assigned index.  Also, in the final 
compilation phase, it is possible to inline functions that were not previously inlined 
(in order to produce the unresolved symbol references). 

3.3 ROMability 
For the purposes of this paper, the terms “ROMable” and “ROMability” refer to 
entities that are appropriate for placement in “Read-Only-Memory” and to the process 
of placing entities into Read-Only-Memory so as to enhance the performance of 
programs written in C++. 

There are two principal domains that benefit from this process: 

?? Embedded programs which have constraints on available memory, where code 
and data must be stored in physical ROM whenever possible. 

?? Modern operating systems which support the sharing of code and data among 
many instances of a program, or among several programs sharing invariant 
code and data. 

The subject of ROMability therefore has performance application to all programs, 
where immutable aspects of the program can be placed in a shared and “Read-Only” 
space.  On hosted systems, Read-Only is enforced by the memory manager, while in 
embedded systems, it is enforced by the physical nature of ROM devices. 

For embedded programs where memory requirements are scarce, it is critical that 
compilers identify strictly ROMable objects and allocate only ROM area for them.  
For hosted systems, the requirement to share ROMable information is not as critical, 
but there are inevitable performance advantages to hosted programs as memory 
footprint and the time it takes to load a program can be greatly reduced.  All the 
techniques described in this section will benefit such programs. 

3.3.1 ROMable Objects 
Most constant information is ROMable.  Obvious candidates for ROMability are 
objects of static extent that are declared const, and which have constant initialisers; 
but there are several other significant candidates too. 

Objects which are not declared const can be modified, and are consequently not 
ROMable.  But these objects may have constant initialisers, and those initialisers may 
be ROMable.  This paper considers those entities in a program that are obviously 
ROMable such as global const objects; entities that are generated by the compilation 
system to support functionality such a switch-statements; and also places where 
ROMability can be applied to intermediate entities which are not so obvious. 
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3.3.1.1 User-defined objects 
Objects declared const that are initialised with constant expressions.  Examples: 

?? An aggregate (§IS-18.5.1) object with static storage duration (§IS-3.7.1) 
whose initialisers are all constants: 

static const int tab[] = {1,2,3}; 
 

?? Objects of scalar type with external linkage: 

A const-qualified object of scalar type has internal (§IS-7.1.5.1) or no 
(§IS-3.2¶5) linkage and thus can usually be treated as a compile time constant, 
i.e. object data areas are not allocated, even in ROM.  For example: 

const int tabelsize = 48 
double table[tablesize];  // table has space for 48 doubles 
 

However, if an object of scalar type is used for initialisation or assignment of 
pointer or reference variables, it has internal linkage and is ROMable.  For 
example: 

extern const int a = 1;   // extern linkage 
const int b = 1;          // internal linkage 
const int *c = &b;        // variable b should be allocated 
const int tbsize = 256;   // it is expected that tbsize is not 
                          // allocated at runtime 
char ctb[tbsize]; 
 

?? String literals: 

An ordinary string literal has the type “array of n const char“ (§IS-2.13.4), 
and so they are ROMable.  A string literal used as the initialiser of a character 
array if ROMable, but if the variable to be initialised is not a const-qualified 
array of char, then the variable being initialised is not ROMable: 

const char *str1 = "abc"; // both str1 and “abc” are ROMable 
char str2[] = "def";      // str2 is not ROMable 
 

A compiler may achieve further space savings by sharing the representation of 
string literals in ROM.  For example: 

const char* str1 = “abc”; // only one copy of “abc” needs 
const char* str2 = “abc”; // to exist, and it is ROMable 
 

Yet further possibilities for space saving exists if a string literal is identical to 
the trailing portion of a larger string literal, as only the larger string literal is 
necessary, as the smaller one can reference the common sub-string of the 
larger.  For example: 

const char* str1 = “Hello World”; 
const char* str2 = “World”; 
 
// Could be considered to be implicitly: 
const char* str1 = “Hello World”; 
const char* str2 = str1 + 6; 
 



Technical Report on C++ Performance (DRAFT) 01-0023/N1309 

Page 50 of 87 

3.3.1.2 Compiler-generated objects 
?? Jump tables for switch statements: 

If a jump table is generated to implement switch statement, the table is 
ROMable, since it consists of a fixed number of constants known at compile-
time. 

?? Virtual function tables: 

Virtual function tables of a class are usually ROMable. 

Note: For some implementations, the virtual function tables may not be 
ROMable where dynamic linking is involved, and the virtual function 
tables are in a shared library. 

Note also: It may be appropriate to discuss flash cards here, and how they can 
introduce code into a system. 

?? Type identification tables: 

When a table is generated to identify RTTI types, the table is usually 
ROMable. 

Note: For some implementations, the type identification tables may not be 
ROMable where dynamic linking is involved, and the type 
identification tables are in a shared library. 

?? Exception tables: 

When exception handling is implemented using a static table, the table is 
usually ROMable. 

Note: For some implementations, the exception tables may not be ROMable 
where dynamic linking is involved, and the exception tables are in a 
shared library. 

?? Reference to constants: 

If a constant expression is specified as the initialiser for a const-qualified 
reference, a temporary object is generated (§IS-8.5.3). 

This temporary object is ROMable, for example: 
// The declaration: 
const double & a = 2.0; 
 
// May be represented as: 
static const double tmp = 2.0; // ‘tmp’ is ROMable 
const double & b = tmp; 
 

?? Initialisers for aggregate objects with automatic storage duration: 

If all the initialisers for an aggregate object that has automatic storage duration 
are constant expressions, a temporary object that has the value of the constant 
expressions and a code that copies the value of the temporary object to the 
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aggregate object may be generated.  This temporary object ROMable, for 
example: 

struct A { 
    int a; 
    int b; 
    int c; 
}; 
void test() { 
    A a = {1,2,3}; 
} 
 
// May be interpreted as: 
void test () { 
    static const A tmp = {1,2,3};  // ‘tmp’ is ROMable 
    A b = tmp; 
} 
 

Thus, the instruction code for initialising the aggregate object can be replaced 
by a simple bitwise copy, saving both code space and execution time. 

?? Constants created during code generation: 

Some literals such as integer literals, floating point literals and addresses can 
be implemented as either instruction code or data.  If they are represented as 
data, then these objects are ROMable.  For example: 

void test() { 
    double a; 
    a += 1.0; 
} 
 
// May be interpreted as: 
void test () { 
    static const double tmp1  = 1.0;  // ‘tmp1’ is ROMable 
    const double *tmp2        = &tmp1; 
    double a; 
    a += *tmp2; 
} 
 

Editor’s Note: Why does it need the intermediate ‘tmp2’?  I think that this would be 
better interpreted as (quite apart from the undefined nature of adding 
1.0 to an un-initialised double): 

     void test () { 
         static const double tmp = 1.0;  // ‘tmp’ is ROMable 
         double a; 
         a += tmp; 
     } 
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3.3.2 Constructors and ROMable Objects 
In general, objects of classes with constructors must be dynamically initialised.  
However, in some cases the initialisation could be performed if static analyses of the 
constructors resulted in constant values being used.  In this case, the object could be 
ROMable.  Similar analyses would need to be performed on the destructor. 

class A { 
    int a; 
public: 
    A(int v) : a(v) { } 
}; 
const A tab[2] = {1,2}; 
 

Editor’s Note: If sufficient analyses reveals that the object eventually gets a 
particular value, and the program cannot detect whether it acquired 
that value by constant or dynamic means, then it is quite legitimate 
for it to be ROMable21. 

 Furthermore, even if it is not a const object, the initialisation 
“pattern” may be ROMable, and bitwise copied to the object when it 
is initialised.  For example: 

     class X { 
         int a; 
         char* p; 
     public: 
         A () 
         : a ( 7 ) 
         { std::cout << “Hello World” << std::endl”; 
           p = “Hi”; } 
     }; 
     A not_const; 
  
  In this case, all objects are initialised to a constant value (the pair 

{7,&”Hi”}).  This constant initial value is ROMable, and the 
constructor could perform a bitwise copy of that constant value and 
the calls to the IOStream library. 

3.4 Hard Real-Time Considerations 
For most embedded systems, only a very small part of the software is really real-time 
critical.  But for that part of the system, it is important to exactly determine the time a 
specific piece of software needs to run.  Unfortunately, this is not an easy analysis to 
do for modern computer architectures using multiple pipelines and different types of 
caches.  Nevertheless, for a lot of code sequences it is still quite straightforward to do 
a worst-case analysis. 

Note (Detlef): Bjarne’s Phrase goes here. 

Editor’s Note: What is “Bjarne’s Phrase”? 

                                                 
21 This is an optimisation, and is subject to the so -called “as if rule” (§IS-1.9¶1) 
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This statement also holds for C++.  Here is a short description of several C++ features 
and their time predictability. 

3.4.1 C++ Features for which an Accurate Timing Analysis is Easy 

3.4.1.1 Templates 
As pointed out in detail in 2.5, there is no real-time relevant overhead for calling 
template functions or member functions of class templates.  On the contrary, 
templates often allow for better inlining and therefore reduce the overhead of the 
function call. 

If the function is a virtual function, the normal rules for virtual functions apply. 

3.4.1.2 Inheritance 
Converting a pointer to a derived class to a pointer to base-class22 will not introduce 
any run-time overhead in most implementations (see 2.3.3).  If there is an overhead 
(very few implementations), it is a fixed number of machine instructions (typically 
one) and can be easily tested with a test program.  Being a fixed overhead, this 
overhead does not depend on the deepness of the derivation. 

3.4.1.2.1 Multiple-Inheritance 
Converting a pointer to a derived class to a pointer to base class might introduce run-
time overhead (see 2.3.4).  This overhead is a fixed number of machine instructions 
(typically one). 

3.4.1.2.2 Virtual-Inheritance 
Converting a pointer to a derived class to a pointer to a virtual base class will 
introduce run-time overhead in most implementations (see 2.3.5).  This overhead is 
typically a fixed number of machine instructions. 

3.4.1.3 Virtual Functions 
Calling a virtual function often does not produce any run-time overhead (see 2.3.3).  If 
it does, it will typically be a fixed number of machine instructions. 

3.4.2 C++ Features, for which Real-Time Analysis is More Complex 
The following features are often considered to be prohibitively slow for hard real-time 
code sequences.  But this is not always true.  For one, the run-time overhead of these 
features is often quite small, and on the other-hand even in the real-time parts of your 
program, you might have quite a number of CPU cycles to spend.  And if you have a 
complex job to do in your real-time code, a clean structure that allows for an easier 
overall timing analysis is often better than a hand-optimised but complicated code – as 
long as the former is fast enough.  The hand-optimised code might run faster but is in 
most cases more difficult to analyse correctly.  And the features mentioned below 
often allow for clearer designs. 
                                                 
22 Such a conversion is also necessary if a function is called for a derived-class object that is implemented in a base-class.  
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3.4.2.1 Dynamic Casts 
In most implementations, dynamic casts from a pointer (or reference) to base-class to 
pointer (or reference) to derived-class (i.e. a downcast) will produce an overhead that 
is not fixed but depends on the details of the implementation and there is no general 
rule to test the worst case. 

The same is true for cross-casts (see 2.2). 

As an alternate option to using dynamic-casts, you should consider the typeid 
operator.  If you know your target’s dynamic type exactly, this is a much cheaper way 
to check for it. 

3.4.2.2 Dynamic Memory Allocation 
Dynamic memory allocation has in typical implementations a run-time overhead that 
is not easy to analyse.  In most cases, for the purpose of real-time analysis it is 
appropriate to assume dynamic memory allocation (and also memory de-allocation) to 
be non-deterministic. 

The most obvious way to avoid dynamic memory allocation is to pre-allocate the 
memory – either statically at compile- (or more correctly link-) time or during the 
general set-up-phase of your system.  If you want to defer the initialisation, you can 
pre-allocate raw memory and initialise it later using placement new. 

If you really need to do dynamic memory allocation in your real-time code, you need 
to use an implementation for which you know all the implementation details.  The 
best way to know all the implementation details is to write your own memory 
allocation mechanism.  This is easily done in C++ by overriding operator new in 
your own class (or globally) or by providing an allocator argument in standard library 
containers. 

But in all cases, if you use dynamic memory allocation you need to consider the case 
when no more memory is available. 

3.4.2.3 Exceptions 
Enabling exceptions for compilation may introduce overhead on each function call in 
your code (see 2.4).  In general, it is not so difficult to analyse the overhead of 
exception handling as long as you don't throw exception.  But you should only enable 
exception handling for real-time critical programs if you really use exceptions, and 
therefore a complete analysis must always include the throwing of an exception, and 
this analysis will always be implementation dependent.  On the other hand, the 
requirement to act within a deterministic time might loosen in the case of an exception 
(e.g. you don’t need to handle any more input from a device when a connection broke 
down). 

An overview of alternatives for exception handling is given in [Note (Detlef): Insert 
Bjarne’s new section].  But as shown there, all options have their run-time costs, and  
throwing exceptions might still be the best way to deal with exceptional cases.  And 
as long as you don’t throw a long way (i.e. if you only leave very few functions in 
your throw), it might be even cheap in run-time. 
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Note (Detlef): Is this list complete? 

3.4.3 Testing Timing 
For those features that compile to a fixed number of machine instructions, the number 
and nature of these instructions (and therefore an exact worst-case timing) can be 
tested with a simple program that includes just this specific feature and then looking 
at the created code.  In general, for those simple cases, optimisation should not make a 
difference.  But e.g. if a virtual function call can be resolved to a static function call at 
compile time, the overhead of the virtual function call will not show up in the code.  
So, you need to make sure that you really test what you want to test. 

For the more complex cases, testing the timing is not so easy.  Compiler optimisation 
can make a big difference, and a simple test case might produce comple tely different 
code than the real production code.  To test those cases, you must really know the 
details for your specific implementation.  Given this information, you can normally 
produce test programs that produce code from which you can correctly derive the 
timing information you need. 
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4 Embedded Systems – Special Needs 
4.1 BASIC I/O-HARDWARE ADDRESSING 

4.1.1 Scope 
As the C language has matured over the years, various extensions for accessing basic 
I/O-Hardware (iohw) registers have been added to address deficiencies in the 
language.  Today almost all C compilers for freestanding environments and embedded 
systems support some method of direct access to iohw registers from the C source 
level.  However, these extensions have not been consistent across dialects.  As a 
growing number of C++ compiler vendors are now entering the same market, the 
same I/O driver portability problems become apparent for C++. 

This report provides an approach to codifying common practice and providing a 
single uniform syntax for basic iohw register addressing. 

4.1.2 Rationale 

Ideally, it should be possible to compile C or C++ source code that operates directly 
on iohw registers with different compiler implementations for different platforms and 
get the same logical behaviour at runtime.  As a simple portability goal, the driver 
source code for some given I/O-Hardware should be portable to all processor 
architectures where the hardware itself can be connected. 

The problem areas are the same for C and C++, and the standardization method 
proposed is applicable for both languages.  A proposed iohw addressing interface for 
the C language is described in: 

Technical Report ISO/IEC WDTR 18037 

“ Extensions for the programming language C to support embedded 
processors ” 

Although this interface is based on C macros, the C++ language provides features 
which make it possible to create more efficient and flexible implementations of this 
interface, while maintaining I/O driver source code portability. 

4.1.3 Basic Standardisation Objectives 
A standardisation method for basic I/O-Hardware addressing must be able to fulfil 
three requirements at the same time: 

?? A standardised interface must not prevent compilers from producing machine 
code that has no additional overhead compared to code produced by existing 
proprietary solutions.  This requirement is essential in order to get widespread 
acceptance from the embedded programming community. 

?? The I/O driver source code modules should be completely portable to any 
processor system without any modifications to the driver source code being 
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required  [i.e. the syntax should promote I/O driver source code portability 
across different execution environments]. 

?? A standardised interface should provide an “encapsulation” of the underlying 
access mechanisms to allow different access methods, different processor 
architectures, and different bus systems to be used with the same I/O driver 
source code  [i.e. the standardisation method should separate the characteris-
tics of the I/O register itself from the characteristics of the underlying 
execution environment (processor architecture, bus system, addresses, 
alignment, endian, etc.)]. 

4.2 Basic I/O-Hardware Addressing Header — <ciohw> 
The purpose of the iohw access functions defined in the iohw header file is to promote 
portability of iohw driver source code across different execution environments. 

4.2.1 Overview and Principles 
The iohw access functions create a simple and platform independent interface between 
I/O driver source code and the underlying access methods used when addressing the 
I/O registers in a given platform. 

The primary purpose of the interface is to separate characteristics which are portable 
and specific for a given I/O register, for instance the register bit width; from 
characteristics which are related to a specific execution environment, such as the I/O 
register address; processor bus type and endian; device23 bus size and endian, address 
interleave; compiler access method; etc.  Use of this separation principle enables I/O 
driver source code itself to be portable to all platforms where the I/O registers can be 
connected. 

In the driver source code, an I/O register must always be referred to using a symbolic 
name.  The symbolic name must refer to a complete definition of the access method 
used with the given register.  A standardised I/O syntax approach creates a 
conceptually simple model for I/O registers: 

symbolic name for I/O register ?  complete definition of the access method 

When porting the I/O driver source code to a new platform, only the definition of the 
access method (definition of the symbolic name) needs to be updated. 

4.2.2 The Abstract Model 
The standardisation of basic iohw addressing is based on a three layer abstract model: 

?  The users portable source code 

?  The users I/O register definitions 

?  The vendors iohw implementation 

                                                 
23 In this document, the term device is used to mean either a discrete I/O chip or an I/O function block in a single chip processor 
system.  The data bus width has significance to the access method used for the I/O device. 
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The top layer contains the I/O driver code written by the compiler user.  The source 
code in this layer is fully portable to any platform where the I/O-Hardware can be 
connected.  This code may only access iohw registers via the standardized functions 
described in this section.  Each I/O register must be identified using a symbolic name. 

The bottom layer is the compiler vendors implementation of the <ciohw> header.  It 
provides prototypes for the functions defined in this section and specifies the various 
access methods supported by the given processor and platform architecture (access 
methods refers to the various ways of connecting and addressing I/O registers or I/O 
devices in the given processor architecture). 

Appendix A: contains some general considerations that should be addressed when a 
compiler vendor implements the iohw functionality. 

The middle layer contains the users specification of the symbolic I/O register names 
used by the source code in the top layer.  This layer associates the symbolic names 
with access-specifications for the I/O register on the given platform.  The syntax 
notation and access-specification parameters used in this layer are specific to the 
platform architecture and are defined by the compiler vendor in the <ciohw> header.  
The user must update these I/O register access-specifications when the I/O driver 
source code is ported to a different platform. 

Appendix B: proposes a generic C++ syntax for I/O register access-specifications.  
Using a general syntax on this layer may extend portability to include users I/O 
register specification, so it can be used with different compiler implementations for 
the same platform. 

4.2.2.1 The Module Set 
A typical I/O driver operates with a minimum of three modules, one for each of the 
abstraction layers.  For example, it is convenient to locate all I/O register name 
definitions in a separate header file (called ”iohw_ta.h” in this example): 

1. I/O Driver Module 

?  The I/O driver source code 
?  Portable across compilers and platforms 
?  Includes <ciohw> and “iohw_ta.h” 

2. <ciohw> 
?  Defines I/O functions and access methods 
?  Typically specific for a given compiler 
?  Implemented by the compiler vendor 

3. “iohw_ta.h” 
?  Defines symbolic I/O register names and their corresponding access 

methods 
?  Specific to the execution environment 
?  Implemented and maintained by the programmer 
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And might be used as follows: 
#include <ciohw> 
#include “iohw_ta.h”   // my I/O register definitions for target 
 
unsigned char mybuf[10]; 
//... 
iowr(MYPORT1, 0x8);                  // write single register 
for (int i = 0; i < 10; i++) 
    mybuf[i] = iordbuf(MYPORT2, i);  // read register array 
 

The programmer only sees the characteristics of the I/O register itself.  The 
underlying platform, bus architecture, and compiler implementation do not matter 
during driver programming.  The underlying system hardware may later be changed 
without modifications to the I/O driver source code being necessary. 

4.2.3 I/O Register Characteristics 
The principle behind the <ciohw> interface is that all I/O register characteristics 
should be visible to the driver source code, while all platform specific characteristics 
are encapsulated by the header files and the underlying <ciohw> implementation. 

I/O registers often behave differently from the traditional memory model.  They may 
be “read-only”, “write-only” or “read-modify-write”, often read and write operations 
are only allowed once for each event, etc. 

All such I/O register specific characteristics should be visible at the I/O driver code 
level and should not be hidden by the <ciohw> interface implementation. 

4.2.4 The Most Basic I/O Operations 
The most common operations on I/O-Hardware registers are “read” and “write”. 

Bit-set, bit-clear and bit-invert of individual bits in an iohw register are also 
commonly used operations.  Many processors have special machine instructions for 
doing these. 

For the convenience of the programmer, and in order to promote good compiler 
optimisation of bit operations, the basic logical operations “or”, “and” and “xor” are 
defined by the <ciohw> interface in addition to “read” and “write”. 

All other arithmetic and logical operations used by the driver source code can be built 
on top of these few basic I/O operations. 

4.2.5 The access-specification 
The access-specifications defined in the header <ciohw> are used only as parameters 
in the functions for defining I/O register access. 

The access_spec parameter represents or references a complete description of how 
the iohw register should be addressed in the given hardware platform.  It is an abstract 
data type with a well-defined behaviour24. 

                                                 
24 This use of an abstract data type is similar to the philosophy behind the well-known FILE type in C.  Some general properties 
for FILE and streams are defined in the Standard, but the Standard deliberately avoids describing how the underlying file system 
should be implemented. 
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The definition method and the implementation of access-specifications are processor 
and platform specific. 

In general, an access_spec definition will specify at least the following 
characteristics:  

?  Register size (mapping to a data type) 
?  Access limitations (read-only, write-only)  
?  Bus address for register 

Other access characteristics typically specified via the access_spec: 

?  Processor bus (if more than one) 
?  Access method (if more than one) 
?  I/O register endian (if register width is larger than the device bus width) 
?  Interleave factor for I/O register buffers (if bus width for the device is smaller) 
?  User supplied access driver functions 

The definition of an I/O register object may or may not require a memory 
instantiation, depending on how a compiler vendor has chosen to implement access-
specifications.  For maximum performance, this could be a simple definition based on 
compiler specific address range and type qualifiers, in which case no instantiation of 
an access_spec object would be needed in data memory. 

See also Appendix A: for further details and implementation considerations. 

4.3 The <ciohw> Interface 
The header <ciohw> declares several functions, which together create a data-type-
independent interface for basic iohw addressing.  The provider of <ciohw> may 
choose to use inline functions, macros or function-templates to implement these 
functions.  I/O driver modules using the functions defined by this header can 
potentially be compiled with both C and C++ compilers. 

Editor’s Note: Why is it a requirement that the C++ Hardware I/O has to be C 
compatible? 

4.3.1 Functions for Single Register Access 
Synopsis: 

#include <ciohw> 
//... 
iord(  access_spec ) 
iowr(  access_spec, value ) 
ioor(  access_spec, value ) 
ioand( access_spec, value ) 
ioxor( access_spec, value ) 
 

Description: 

These names map an iohw register operation to an underlying (platform specific) 
implementation which provides access to the I/O register identified by access_spec, 
and perform the basic operations READ, WRITE, OR, AND or XOR as identified by the 
function named on this register. 



Technical Report on C++ Performance (DRAFT) 01-0023/N1309 

Page 62 of 87 

The data type (the I/O register size) for value parameters and the value returned by the 
function iord are defined by the access-specification definition for the given register.  
The functions iowr, ioor, ioand and ioxor do not return a value. 

4.3.2 Functions for Register Buffer Access 
Synopsis: 

#include <ciohw> 
//... 
iordbuf(  access_spec, index ) 
iowrbuf(  access_spec, index, value ) 
ioorbuf(  access_spec, index, value ) 
ioandbuf( access_spec, index, value ) 
ioxorbuf( access_spec, index, value ) 
 

Description: 

These names map an iohw register buffer operation to an underlying (platform 
specific) implementation which provides access to the I/O register buffer identified by 
access_spec, and perform the basic operations READ, WRITE, OR, AND or XOR as 
identified by the function named on this register. 

The data type (the I/O register size) for value parameters and the value returned by the 
function iordbuf is defined by the access-specification definition for the given 
register.  The functions iowrbuf, ioorbuf, ioandbuf and ioxorbuf do not return a 
value. 

The index parameter is an offset in the register buffer (or register array) starting from 
the I/O location specified by access_spec, where element 0 is the first element 
located at the address defined by access_spec, and element n+1 is located at a higher 
address than element n. 

It should be noted that the index parameter is the offset in the iohw buffer, not the 
processor address offset.  Conversion from a logical index to a physical address 
requires that interleave calculations are performed by the underlying implementation.  
This is discussed further in A.2.2. 

4.3.3 Functions for access_spec Initialisation 
Synopsis: 

#include <ciohw> 
//... 
io_at_init( access_spec ) 
io_at_release( access_spec ) 
 

Description: 

The io_at_init function maps to an underlying (platform specific) implementation, 
which provides any access-specification specific initialisation befo re performing any 
other operation on the I/O register (or set of I/O registers) identified by access_spec.  
This call should be placed in the driver source code so that it is invoked at least once 
before any other operations on the related registers are performed.  This function does 
not return a value. 
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The io_at_release function maps to an underlying (platform specific) 
implementation which releases any resources obtained by a previous call to 
io_at_init for the same access-specification.  This call should  be placed in the 
driver source code so it is invoked once after all operations on the related registers 
have been completed.  This function does not return a value. 

For example: 

In an implementation for a hosted environment, the call to io_at_init is used 
to identify the point in an execution sequence where the underlying access 
method should obtain, or have obtained, a handle from the operating system.  
This handle is used in all following access operations on the I/O register.  The 
call to io_at_exit identifies the point in an execution sequence where the 
handle can be returned to the operating system. 

If a set of memory mapped I/O registers is specified to use based addressing, 
then the underlying implementation would dynamically obtain the base 
address for the I/O range from the operating system when io_at_init is 
invoked (i.e. when the base pointer is initialised).  During all the following I/O 
access operations, the I/O register address is calculated as (base-address + I/O 
register offset).  The underlying implementation later releases the memory 
range when io_at_exit is invoked. 

If no access-specification specific initialisation is required by a given <ciohw> 
implementation, the io_at_init and io_at_release definitions may be empty. 

In C++, the implementation may use a class whose constructor and destructor 
implement this functionality. 

4.3.4 Functions for access_spec Copying 
Synopsis: 

#include <ciohw> 
//... 
io_at_cpy( access_spec dest, access_spec src ) 
 

Description: 

This function maps to an underlying (platform specific) implementation, which copies 
the dynamic part of the source access_spec to the destination access_spec.  The 
two parameters must have the same access-specification type.  This function does not 
return a value. 

If access-specification copying is not supported by a given <ciohw> implementation, 
or a given access-specification does not contain any dynamic elements, the 
io_at_cpy function may be empty. 

A typical use for io_at_cpy is when a set of driver functions for a given I/O device 
type are used with multiple instances of the same hardware device.  It often provides a 
faster alternative than passing the access_spec as a function parameter. 
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For example: 
#include <ciohw> 
#include “iohw_ta.h”  // MYDEV_CFG and MYDEV_DATA are defined 
                      // relative to a dynamic MYDEV_BASE 
 
// Portable driver function 
uint8_t my_device_driver(void) 
{ 
    iowr(MYDEV_CFG, 0x33); 
    return iord(MYDEV_DATA); 
} 
 
// Users driver application 
uint8_t  d1,d2; 
// Read from our 2 I/O devices 
io_art_cpy(MYDEV_BASE, DEVICE1); // Select device 1 
d1 = my_device_driver(); 
io_art_cpy(MYDEV_BASE, DEVICE2); // Select device 2 
d2 = my_device_driver(); 
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Appendix A: Implementing <ciohw> 

(A guide for implementers) 

A.1 Purpose 
The <ciohw> header defines a standardised function syntax for basic I/O-Hardware 
(iohw) addressing.  This header would normally be provided by the compiler vendor. 

While a standardised function syntax for basic iohw addressing provides a simple, 
easy-to-use method for a programmer to write portable and ha rdware-platform-
independent I/O driver code, the <ciohw> header itself may require careful 
consideration to achieve an efficient implementation. 

This section gives some guidelines for implementers on how to implement the 
<ciohw> header in a relatively straightforward manner given a specific processor and 
bus architecture. 

A.1.1 Recommended Steps 
Briefly, the recommended steps for implementing the <ciohw> header are: 

?? Get an overview of all the possible and relevant ways the iohw register is 
typically connected with the given bus hardware architectures, and get an 
overview of the basic software methods typically used to address such iohw 
registers. 

?? Define a number of functions, macros and access-specifications which support 
the relevant I/O access methods for the intended compiler market. 

?? Provide a way to select the right I/O function at compile-time and generate the 
right machine code based on the access-specification type or the access-
specification value. 

A.1.2 Compiler Considerations 
In practice, an implementation will often require that very different machine code is 
generated for different I/O access cases.  Furthermore, with some processor 
architectures, iohw access will require the generation of special machine instructions 
not typically used when generating code for the traditional C or C++ memory model. 

Selection between different code generation alternatives must be determined solely 
from the access-specification declaration for each I/O register.  Whenever possible, 
this access method selection should be implemented such that it may be determined 
entirely at compile-time, in order to avoid any runtime or machine code overhead. 

For a compiler vendor, selection between code generation alternatives can always be 
implemented by supporting different intrinsic access-specification types and 
keywords designed specially for the given processor architecture, in addition to the 
Standard types and keywords defined by the language. 
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However, with a conforming C++ compiler, an efficient, all-round implementation of 
the <ciohw> header can usually be made using template functionality.  A template-
based solution allows the number of compiler specific intrinsic I/O types or intrinsic 
I/O functions to be minimized or even removed completely, depending on the 
processor architecture. 

For compilers not supporting templates (such as C compilers) other implementation 
methods must be used.  In any case, at least the most basic iohw functionality can be 
implemented efficiently using a mixture of macros, inline functions and intrinsic 
types or functions.  Fully featured iohw implementations will usually require direct 
compiler support (or using extensions to the language). 

Fully featured, zero-overhead implementations of <ciohw> can be done using 
templates.  An approach to doing this is discussed in Appendix B:. 

A.2 Overview of I/O Hardware Connection Options 
The various ways of connecting an I/O register to processor hardware are determined 
primarily by combinations of the following three hardware characteristics: 

?? The bit width of the logical I/O register 
?? The bit width of the data-bus of the I/O device 
?? The bit width of the processor-bus 

A.2.1 Multi-Addressing and I/O Register Endian 
If the width of the logical I/O register is greater than the width of the I/O device data 
bus, an I/O access operation will require multiple consecutive addressing operations. 

The I/O register endian information describes whether the MSB or the LSB byte of 
the logical I/O register is located at the lowest processor bus address. 

(Note that the I/O register endian has nothing to do with the endian of the underlying 
processor hardware architecture). 

Table: Logical I/O register / I/O device addressing overview25 
 

I/O device bus widths 
 

8-bit device bus 
 

16-bit device bus 
 

32-bit device bus 
 

64-bit device bus 
 

Logical I/O 
register widths  

 
LSB-MSB 

 
MSB-LSB 

 
LSB-MSB 

 
MSB-LSB 

 
LSB-MSB 

 
MSB-LSB 

 
LSB-MSB 

 
MSB-LSB 

 
8-bit register 

 
Direct 

 
n/a 

 
n/a 

 
n/a 

 
16-bit register 

 
r8{0-1} 

 
r8{1-0} 

 
Direct 

 
n/a 

 
n/a 

 
32-bit register 

 
r8{0-3} 

 
r8{3-0} 

 
r16{0-1} 

 
r16{1-0} 

 
Direct 

 
n/a 

 
64-bit register 

 
r8{0-7} 

 
r8{7-0} 

 
r16{0-3} 

 
r16{3-0} 

 
r32{0-1} 

 
r32{1-0} 

 
Direct 

(For byte-aligned address ranges) 

                                                 
25 Note, that this table describes some common bus and register widths for I/O devices.  A given hardware platform may use 
other register and bus widths. 
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A.2.2 Address Interleave 
If the size of the I/O device data bus is less than the size of the processor data bus, 
buffer register addressing will require the use of address interleave. 

For example: 
If the processor architecture has a byte-aligned addressing range with a 32-bit 
processor data bus, and an 8-bit I/O device is connected to the 32-bit data bus, then 
three adjacent registers in the I/O device will have the processor addresses: 

<addr + 0>, <addr + 4>, <addr + 8> 
 

This can also be written as  
<addr + interleave*0>, <addr + interleave*1>, <addr + interleave*2> 
 

where interleave = 4. 

Table: Interleave overview: (bus to bus interleave relationship) 
 

Processor bus width 
 

I/O device bus 
widths   

8-bit bus 
 

16-bit bus 
 

32-bit bus 
 

64-bit bus 
 

8-bit device bus 
 

interleave 1 
 

interleave 2 
 

interleave 4 
 

interleave 8 
 

16-bit device bus 
 

n/a 
 

interleave 2 
 

interleave 4 
 

interleave 8 
 

32-bit device bus 
 

n/a 
 

n/a 
 

interleave 4 
 

interleave 8 
 

64-bit device bus 
 

n/a 
 

n/a 
 

n/a 
 

interleave 8 
(For byte-aligned address ranges) 
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A.2.3 I/O Connection Overview: 
The two tables above when combined show all relevant cases for how I/O hardware 
registers can be connected to a given processor hardware bus, thus: 

Table: Interleave between adjacent I/O registers in buffer 
 

Device bus 
 

Processor data bus width  
 

Width=8 
 

Width=16 
 

Width=32 
 

Width=64 

 
I/O 

Register 
width  

 
Width 

 
LSB 
MSB 

 
No. 

Oper-
ations. 

 
size 1 

 
size 2 

 
size 4 

 
size 8 

 
8-bit 

 
8-bit 

 
n/a 

 
1 

 
1 

 
2 

 
4 

 
8 

 
LSB 

 
2 

 
2 

 
4 

 
8 

 
16  

8-bit  
MSB 

 
2 

 
2 

 
4 

 
8 

 
16 16-bit 

 
16-bit 

 
n/a 

 
1 

 
n/a 

 
2 

 
4 

 
8 

 
LSB 

 
4 

 
4 

 
8 

 
16 

 
32  

8-bit  
MSB 

 
4 

 
4 

 
8 

 
16 

 
32 

 
LSB 

 
2 

 
n/a 

 
4 

 
8 

 
16  

16-bit  
MSB 

 
2 

 
n/a 

 
4 

 
8 

 
16 

32-bit 

 
32-bit 

 
n/a 

 
1 

 
n/a 

 
n/a 

 
4 

 
8 

 
MSB 

 
8 

 
8 

 
16 

 
32 

 
64  

8-bit  
LSB 

 
8 

 
8 

 
16 

 
32 

 
64 

 
LSB 

 
4 

 
n/a 

 
8 

 
16 

 
32  

16-bit  
MSB 

 
4 

 
n/a 

 
8 

 
16 

 
32 

 
LSB 

 
2 

 
n/a 

 
n/a 

 
8 

 
16  

32-bit  
MSB 

 
2 

 
n/a 

 
n/a 

 
8 

 
16 

64-bit 

 
64-bit 

 
n/a 

 
1 

 
n/a 

 
n/a 

 
n/a 

 
8 

(For byte-aligned address ranges) 

A.2.4 Generic Buffer index 
The interleave distance between two logically adjacent registers in an I/O register 
array can be calculated from26: 

?? The size of the logical I/O register in bytes 
?? The processor data bus width in bytes 
?? The device data bus width in bytes 

                                                 
26 For systems with byte-aligned addressing. 
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Conversion from I/O register index to address offset can be calculated using the 
following general formula: 

Address_offset = index *  
                  sizeof( logical_IO_register ) *  
                   sizeof( processor_data_bus ) /  
                    sizeof( device_data_bus ) 
 

Assumptions: 

?  bytes are 8-bits wide 
?  address range is byte-aligned  
?  data bus widths are a whole number of bytes 
?  width of the logical_IO_register is greater than or equal to the width of the 

device_data_bus 
?  the width of the device_data_bus is less than or equal to the 

processor_data_bus 

A.3 access-specifications for Different I/O Addressing 
Methods 

An implementer should consider the following typical addressing methods: 

?? Address is defined at compile-time: 

The address is a constant.  This is the simplest case and also the most common 
case with smaller architectures. 

?? Base address initialised at runtime: 

Variable base-address + constant-offset  i.e. the access-specification must 
contain an address pair (address of base register + offset of address). 

The user-defined base-address is normally initialised at runtime (by some 
platform-dependent part of the program).  This also enables a set of I/O driver 
functions to be used with multiple instances of the same iohw. 

?? Indexed bus addressing: 

Also called orthogonal or pseudo-bus addressing.  This is a common way to 
connect a large number of I/O registers to a bus, while still occupying only a 
few addresses in the processor address space. 

This is how it works: first the index-address (or pseudo-address) of the I/O 
register is written to an address bus register located at a given processor 
address.  Then the data read/write operation on the pseudo-bus is done via the 
following processor address, i.e. the access-specification must contain an 
address pair (the processor-address of the indexed bus, and the pseudo-bus 
address (or index) of the I/O register itself). 

This access method also makes it particularly easy for a user to connect 
common I/O devices that have a multiplexed address/data bus, to a processor 
platform with non-multiplexed busses, using a minimum amount of glue logic.  
The driver source code for such an I/O device is then automatically made 
portable to both types of bus architecture. 
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?? Access via user-defined access driver functions: 

These are typically used with larger platforms and with small single-chip 
processors (e.g. to emulate an external bus).  In this case, the access-
specification must contain pointers or references to access functions. 

The access driver solution makes it possible to connect a given I/O driver source 
library to any kind of platform hardware and platform software using the appropriate 
platform-specific interface functions. 

In general, an implementation should always support the simplest addressing case, 
whether it is the constant-address or base-address method that is used will depend on 
the processor architecture.  Apart from this, an implementer is free to add any 
additional cases required to satisfy a given domain. 

Because of the different number of parameters required and parameter ranges used in 
an access-specification, it is often convenient to define a number of different access-
specification formats for the different access methods. 

A.4 Atomic Operation 
It is a requirement of the <ciohw> implementation, that in each I/O function, a given 
(partial27) I/O register is addressed exactly once during a read or a write operation and 
exactly twice during a read-modify-write operation.  

It is recommended that each I/O function in an <ciohw> implementation, be 
implemented such that the I/O access operation becomes atomic whenever possible. 

However, atomic operation is not guaranteed to be portable across platforms for read-
modify-write operations (ioor, ioand, ioxor) or for multi-addressing cases. 

The reason for this is simply that many processor architectures do not have the 
instruction set features required for assuring atomic operation. 

A.5 Read-Modify-Write Operations and Multi-Addressing 
In general, read-modify-write operations should perform a complete “read” of the I/O 
register, followed by the modify operation, and concluded by a complete “write” to 
the I/O register. 

It is therefore recommended that an implementation of multi-addressing cases should 
not use read-modify-write machine instructions during partial register addressing 
operations. 

The rationale for this restriction is to use the lowest common denominator of multi-
addressing hardware implementations in order to support the widest possible range of 
iohw register implementations. 

For instance, more advanced multi-addressing I/O register implementations often take 
a snap-shot of the whole logical I/O register when the first partial register is being 
read, so that data will be stable and consistent during the whole read operation.  

                                                 
27 A 32-bit logical register in a device with an 8-bit data bus contains 4 partial I/O registers. 
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Similarly, write registers are often “double-buffered”, so that a consistent data set is 
presented to the internal logic at the time when the access operation is completed by 
the last partial write. 

Such hardware implementations often require that each access operation be completed 
before the next access operation is initiated. 

A.6 I/O Initialisation 
With respect to the standardisation process, it is important to make a clear distinction 
between I/O-Hardware (device) related initialisation, and platform related 
initialisation.  Typically, three types of initialisation are related to I/O handling: 

?  I/O-Hardware (device) initialisation 
?  I/O access initialisation 
?  I/O device selector initialisation 

Here only I/O access initialisation and I/O device selector initialisation are relevant 
for basic iohw addressing: 

Editor’s Note: What it “I/O device selector”?  The term is not defined. 

iohw initialisation:  is a natural part of a hardware driver, and should always be 
considered part of the I/O driver application itself.  This initialisation is done 
using the standard functions for basic iohw addressing.  iohw initialisation is 
therefore not a topic for the standardisation process. 

I/O access initialisation: concerns the initialisation and definition of access_spec 
objects themselves. 

This process is implementation defined.  It depends on both the platform and the 
processor architectures, and also on which underlying access methods are 
supported by the <ciohw> implementation. 

The function: 
io_at_init(access_spec) 
 

can be used as a portable way to specify in the source code where and when 
such initialisation should take place. 

I/O device selector initialisation: is used when, for instance, the same I/O driver 
code needs to service multiple iohw devices of the same type. 

A common possible solution is to define multiple access-specification objects, 
one for each of the iohw devices, and then have the access-specification passed 
to the driver functions from the calling function. 

Another solution is to use access-specification copying, and access-
specifications with dynamic access information.  The function: 

io_at_cpy(access_spec dest, access_spec src) 
 

provides a portable way to do this. 
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With most freestanding environments and embedded systems, the platform hardware 
is well defined; so all access-specifications for I/O registers used by the program can 
be completely defined at compile-time.  For such platforms, standardised I/O access 
initialisation is not an issue. 

With larger processor systems, iohw is often allocated dynamically at runtime.  Here 
the access-specification information can only be partly defined at compile-time.  
Some platform dependent part of the software must be initialised at runtime. 

When designing the access_spec objects, a compiler implementer must therefore 
make a clear distinction between static information and dynamic information; i.e. 
what can be defined and initialised at compile-time, and what must be initialised at 
runtime. 

Depending on the implementation method, and depending on whether the 
access_spec objects need to contain dynamic information, the access_spec objects 
may or may not require instantiation in data memory.  Better execution perfo rmance 
can usually be achieved if more of the information is static. 
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Appendix B: Generic access-
specification for iohw 
Addressing 

B.1 Generic access-specification Descriptor 
This chapter proposes consistent and complete specification syntax for defining I/O 
registers and the access method parameters. 

Prior art has used a number of (intrinsic) memory type qualifiers or special keywords, 
which have varied from compiler to compiler and from platform to platform.  The 
syntax described below represents an alternative approach and a super-set solution, 
intended to replace prior art. 

For optimal performance, the compiler should pick the right access method 
implementation at compile-time based on the access-specification type.  This can be 
achieved in C++ by using typedefs and template specialisations. 

B.2 Syntax Specification 
access_spec specification: 

typedef ACCESS_METHOD_CLASS_NAME < parameter list > 
SYMBOLIC_PORT_NAME; 

parameter list: 
access method independent parameter list , access method specific parameter list 

access method independent parameter list: 
type for I/O register value (size of I/O register) , 
access limitation type , 
I/O register device bus type (size and endian of I/O device bus) 

type for I/O register value (size of I/O register): 
uint8_t 
uint16_t 
uint32_t 
uint64_t 
bool 
(+ optionally any basic type native to the implementation) 

access limitation type:   // for compile-time diagnostic 

rmw_e // read_modify_write  
rw_e // read_write  
wo_e // write_only 
ro_e // read_only  
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I/O register device bus type: 
device8 // register wid th = device bus width = 8 bit 
device8l // register width > device bus width, MSB on low address 
device8h // register width > device bus width, MSB on high address 
device16 // register width = device bus width = 16 bit 
device16l // register width > device bus width, MSB on low address 
device16h // register width > device bus width, MSB on high address 
device32 // register width = device bus width = 32 bit 
device32l // register width > device bus width, MSB on low address 
device32h // register width > device bus width, MSB on high address 
device64 // register width = device bus width = 64 bit 
(+ optionally any bus width native to the implementation) 

access method specific parameter list: 
// Depends on the given access method.  Examples are given later. 
// Three typical parameters are: 
primary address constant , 
processor bus width type, 
address mask constant  

processor bus width type: 
bw8  // 8 bit bus 
bw16  // 16 bit bus 
bw32  // 32 bit bus 
bw64  // 64 bit bus 
(i.e. any bus widths native to the implementation) 

B.2.1 Bus Connection Parameters 
The possible I/O register to bus connections can be completely specified using only 
two parameters: 

?  A bus parameter, which specifies the access relationships between the I/O 
device data bus and the processor data bus 

?  A multi-addressing and endian parameter, which specifies the access 
relationships between the logical I/O register and the I/O device data bus 

For example, a possible definition of general I/O register connection types might be: 
enum bus_t    { bw8 = 1, bw16 = 2, bw32 = 4, bw64 = 8 }; 
enum device_t { device8,   device8l, device8h,  device16,  device16l, 
                device16h, device32, device32l, device32h, device64 }; 
 

For another example, an implementation for a given processor architecture may only 
support a subset of the I/O register connection types.  Possible I/O register 
connections with the processor H8/300H (supporting only an 8-bit and a 16-bit 
processor data bus): 

enum bus_t    { bw8 = 1, bw16 = 2 }; 
enum device_t { device8, device8l, device8h, device16, device16l, 
                device16h }; 
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B.2.2 Detection of Read / Write Violations in I/O Registers 
The access-specifications can specify a limitation parameter, which makes it possible 
to detect illegal use of an I/O register at compile-time. 

The minimal parameter set for a read / write limitation specification would be: 

?? Defined as Read-Modify-Write register (behaves like a RAM cell) 
?? Defined as Read and Write register (read value may be different from write 

value) 
?? Defined as Write-Only register 
?? Defined as Read-Only register 

Table: Allowed operations on different I/O register types: 
 
 

 
iowr 

 
iord 

 
Ioor 

 
ioand 

 
ioxor 

 
Read-Modify-Write   rmw_e 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Read-and-Write   rw_e 

 
Yes 

 
Yes 

 
No 

 
No 

 
No 

 
Write-Only  wo_e 

 
Yes 

 
No 

 
No 

 
No 

 
No 

 
Read-Only   ro_e 

 
No 

 
Yes 

 
No 

 
No 

 
No 

 

The “not-allowed” cases should generate some kind of error message at compile-time.  
With a template implementation of <ciohw>, the compiler will typically diagnose that 
no matching function-template can be found for the “not-allowed” cases. 

For example: 
// --- part of the <ciohw> header 
// 
// Define a type to validate I/O register access 
enum rw_t          // Access mode type 
{ 
    rmw_e,         // Read-Modify-Write access 
    rw_e,          // Read-and-Write access 
    wo_e,          // Write-Only access 
    ro_e           // Read-Only access 
}; 
 
// Include ‘exact-width’ integer types (defined in the header 
// ‘stdint.h’ in C) 
#include <stdint.h>  // Or possibly <cstdint>28 
 
// Define access_spec template for direct addressing 
template <class T, rw_t access, device_t devicetype, 
          address_t address, bus_t buswidth> 
    class IO_MM { }; 
 

                                                 
28 ISO C++ was ratified in 1997.  At that time, the header file <stdint.h> was not present in ISO C, and was added to ISO C 
in 1999.  The naming convention used for C headers by ISO C++ would result in this being known as <cstdint>. 
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// --- part of the “iohw_ta.h” header 
// 
// User declaration of I/O registers in platform 
typedef IO_MM <uint8_t, wo_e,  device8, 10200, bw8>  WR_PORT; 
typedef IO_MM <uint8_t, ro_e,  device8, 20400, bw8>  RD_PORT; 
typedef IO_MM <uint8_t, rmw_e, device8, 20800, bw8>  RDWR_PORT; 
 
// --- portable user code 
uint8_t myval; 
myval = iord(RD_PORT);       // ok 
myval += iord(RDWR_PORT);    // ok 
iowr(WR_PORT,myval);         // ok 
iowr(RDWR_PORT,0x45);        // ok 
 
myval = iord(WR_PORT);       // Illegal, generate compile-time error 
iowr(RD_PORT,0x55);          // Illegal, generate compile-time error 
 

B.2.3 access-specifications for Different Processor Busses 
An implementation must define at least one access method for each processor 
addressing range.  If the processor architecture has multiple different addressing 
ranges (i.e. it requires different sets of machine instructions for the different busses), 
each addressing range should have its own set of access-specifications. 

For example, on the 80x86 family, an implementation must define at least two sets of 
access methods; one for the memory-mapped range, and another for the I/O mapped 
range: 

typedef uint32_t address_t;   // Memory-mapped address range 
typedef uint16_t io_addr_t;   // IO-mapped address range 
 
template <class T, rw_t access, device_t devicetype, 
          address_t address, bus_t buswidth> 
    class IO_MM { }; 
template <class T, rw_t access, device_t devicetype, 
          io_addr_t address, bus_t buswidth> 
    class IO_IOM { }; 
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B.2.4 access-specifications for Different I/O Addressing 
Methods 

If several different access methods are supported for a given address range, then an 
access-specification must exist for each access method. 

For example: 
// Define types used in access_spec declarations 
typedef uint32_t address_t;      // Memory mapped address range 
typedef uint8_t  sub_address_t;  // Sub address on indexed bus 
typedef uint16_t io_addr_t;      // User I/O driver address 
typedef uint8_t  bit_pos_t;      // Bit position in register 
 
// Define access_spec template for direct addressing 
template <class T, rw_t access, device_t devicetype, 
          address_t address, bus_t buswidth> 
    class IO_MM { }; 
 
// Define access_spec template for addressing via base register 
template <class T, rw_t access, device_t devicetype, 
          address_t* base, address_t offset, bus_t buswidth> 
    class IO_MM_BASE { }; 
 
// Define access_spec template for indexed bus addressing 
template <class T, rw_t access, device_t devicetype, 
          address_t address, sub_address_t idx, bus_t buswidth> 
    class IO_MM_IDX { }; 
 
// Define access_spec for user-supplied access driver functions 
template<class T, rw_t access, io_addr_t address, 
         T iord( io_addr_t address), 
                  void iowr( io_addr_t address, T val)> 
    class IO_MM_DRV { }; 
 
// Define access_spec for direct addressing of bit in register 
template<class T, rw_t access, device_t devicetype, 
         address_t address, bit_pos_t bitpos, bus_t buswidth> 
    class IO_MM_BIT { }; 
 

B.2.5 Optimisation Possibilities for Typical Implementations 

B.2.5.1 Pre-Calculation of Constant Expressions 
A high performance compiler would resolve all constant expressions at compile-time.  
Using inline functions, both interleave factors and constant buffer indices would be 
folded into the address value(s) used in the machine code. 

Therefore, the fo llowing two I/O write statements would result in exactly the same 
machine code: 

iowr(PORT1,0x33); 
iowrbuf(PORT1, 0, 0x33); 
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An implementation can take advantage of this, because the number of I/O functions 
that have to be implemented can be reduced with no efficiency penalty using simple 
delegation, possibly using macro definitions such as: 

#define iowr(access_spec,val)  iowrbuf(access_spec,0,(val)) 
 

or equivalent inline-functions or function-templates. 

B.2.5.2 Multi-Addressing and Endian 
Typical candidates for platform dependent optimisations are I/O functions for the 
multi-addressing cases (logical I/O register width > I/O device bus width) where the 
width of the device data bus matches the width of the processor data bus; e.g. the 
combinations of: 

?  (device8h or device8l) and bw8 
?  (device16h or device16l) and bw16 
?  (device32h or device32l) and bw32 

In these cases, multi-byte access can often use data types that are directly supported 
by the processor for either the LSB or MSB endian functions.  The other endian 
functions can often be implemented efficiently using one load or store operation, plus 
one or more register swap operations. 
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Sams Publishing, 2000 

More general than the Bulka-Mayhew book, and omits any mention of the 
containers and algorithms in the C++ Standard Library.  

Bentley, Jon Louis 
Writing Efficient Programs 
Prentice-Hall, Inc., 1982 

Unfortunately out of print, but a classic catalogue of techniques that can be 
used to optimise the space and time consumed by an application (often by 
trading one resource to minimise use of the other).  Because this book predates 
the public release of C++, code examples are given in Pascal. 

“The rules that we will study increase efficiency by making changes to a 
program that often decrease program clarity, modularity, and robustness.  
When this coding style is applied indiscriminately throughout a large system 
(as it often has been), it usually increases efficiency slightly but leads to late 
software that is full of bugs and impossible to maintain.  For these reasons, 
techniques at this level have earned the name of "hacks"....  But writing 
efficient code need not remain the domain of hackers.  The purpose of this 
book is to present work at this level as a set of engineering techniques.” 

Bulka, Dov, and David Mayhew 
Efficient C++: Performance Programming Techniques 
Addison-Wesley, 2000 
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EC++ is a subset of Standard C++ that excludes some significant features of 
the C++ programming language, including: 

?  exception handling (EH) 
?  runtime type identification (RTTI) 
?  templates 
?  multiple- inheritance (MI) 
?  namespaces 

Glass, Robert L 
Software Runaways: Lessons Learned from Massive Software Project Failures 
Prentice Hall PTR, 1998. 

Written from a management perspective rather than a technical one, this book 
makes the point that a major reason why some software projects have been 
classified as massive failures is for failing to meet their requirements for 
performance. 

"Of all the technology problems noted earlier, the most dominant one in our 
own findings in this book is that performance is a frequent cause of failure. A 
fairly large number of our runaway projects were real-time in nature, and it 
was not uncommon to find that the project could not achieve the response 
times and/or functional performance times demanded by the original 
requirements." 

Gorlen, Keith, et al. 
Data Abstraction and Object Oriented Programming in C++ 
NIH 1990 

Based on the Smalltalk model of object orientation, the “NIH Class Library” 
also known as the “OOPS Library” was one of the earliest Object Oriented 
libraries for C++.  As there were no "standard" classes in the early days of 
C++, and because the NIHCL was freely usable having been funded by the US 
Government, it had a lot of influence on design styles in C++ in subsequent 
years. 

Hatton, Les 
Does OO Sync with How We Think? 
IEEE Software, May/June 1998.  

During the life cycle of a software system, time spent on post-release 
maintenance is far larger than the time spent in its creation.  Therefore, 
reliability and ease of modification are important quality factors.  This paper 
describes two sizable software projects, one in C and one in C++, using 
objected-oriented design.  The use of OO and inheritance appears to be 



01-0023/N1309 Technical Report on C++ Performance (DRAFT)  
 
 

  Page 81 of 87 

associated with more defects, and these defects required more effort to fix, 
compared to the C project. 

Henrikson, Mats, and Erik Nyquist. 
Industrial Strength C++: Rules and Recommendations  
Prentice Hall PTR, 1997. 

Coding standards for C++, with some discussion on performance aspects that 
influenced them. 

Hewlett-Packard Corp. 
CXperf User's Guide  

http://docs.hp.com/hpux/onlinedocs/B6323-96001/B6323-96001.html 

This guide describes the CXperf Performance Analyzer, an interactive runtime 
performance analysis tool for programs compiled with HP ANSI C (c89), 
ANSI C++ (aCC), Fortran 90 (f90), and HP Parallel 32-bit Fortran 77 (f77) 
compilers.  This guide helps you prepare your programs for profiling, run the 
programs, and analyze the resulting performance data.  
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AIX Versions 3.2 and 4 Performance Tuning Guide, 5th Edition (April 1996) 

http://www.rs6000.ibm.com/doc_link/en_US\ 
/a_doc_lib/aixbman/prftungd/toc.htm 

An extensive discussion of performance issues in many areas, such as CPU 
use, disk I/O, and memory management, and even the performance effects of 
shared libraries.  It discusses AIX tools available to measure performance, and 
the compiler options, which can be used to optimise an application for space 
or time.  The chapter "Design and Implementation of Efficient Programs" 
http://www.rs6000.ibm.com/doc_link/en_US\ 

/a_doc_lib/aixbman/prftungd/desnimpl.htm 

includes low-level recommendations such as these: 

"Whenever possible, use int instead of char or short.  In most cases, char and 
short data items take more instructions to manipulate.  The extra instructions 
cost time, and, except in large arrays, any space that is saved by using the 
smaller data types is more than offset by the increased size of the executable. 
If you have to use a char, make it unsigned, if possible.  A signed char takes 
another two instructions more than an unsigned char each time the variable is 
loaded into a register." 
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Part 8: Experiments in Optimization [Jul/Aug ‘00] 
Part 9: Optimizations and Anomalies [Sep ‘00] 
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Measuring the runtime performance of a program can be surprisingly difficult, 
because of the interaction of many factors. 

"The most important way to obtain good performance is to use good 
algorithms." 

Lajoie, Joseé 
"Exception Handling: Behind the Scenes." 
(Included in C++ Gems , edited by Stanley B. Lippman) 
SIGS Reference Library, 1996 

A brief overview of the C++ language features, which support exception 
handling, and of the underlying mechanisms necessary to support these 
features. 

Lakos, John 
Large-Scale C++ Software Design 
Addison-Wesley, 1996 

Scalability is the main focus of this book, but scaling up to large systems 
inevitably requires performance issues to be addressed.  This book predates 
the extens ive use of templates in the Standard Library. 
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Explains typical implementations and overheads of various C++ language 
features, such as multiple inheritance and virtual functions.  A good in-depth 
look at the internals of typical implementations. 

Lippman, Stanley B. and Lajoie, Josée  
C++ Primer, 3rd Edition 
Addison-Wesley, 1998 

This thorough introduction to C++ includes discussions of how various 
language constructs produce different executable code, plus measurements of 
runtime performance. For example, using reserve() to pre-allocate space for 
a vector resulted in slower execution times when the vector held strings or 
doubles, but faster times if the value type was a large, complex class. 

Mitchell, Mark 
Type-Based Alias Analysis 
Dr. Dobbs’ Journal, October 2000. 

Some techniques for writing source code that is easier for a compiler to 
optimise. 

"Although C++ is often criticized as being too slow for high-performance 
applications, ... C++ can actually enable compilers to create code that is even 
faster than the C equivalent."  

Prechelt, Lutz. 
Technical opinion: comparing Java vs. C/C++ efficiency differences to 
interpersonal differences 
Communications of the ACM, October 1999. 

This article compares the memory footprint and runtime performance of 40 
implementations of the same program, written in C++, C, and Java.  The 
difference between individual programmers was more significant than the 
difference between languages. 

"The importance of an efficient technical infrastructure (such as 
language/compiler, operating system, or even hardware) is often vastly 
overestimated compared to the importance of a good program design and an 
economical programming style." 
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Standard C++ as a High-Level Language? [Nov ‘99] 
Replacing Character Arrays with Strings, Part 1 [Jan ‘00] 
Replacing Character Arrays with Strings, Part 2 [Feb ‘0] 

These articles are part of a series on migrating a C program to use the greater 
abstraction and encapsulation available in C++.  The runtime and executable 
size are measured as more C++ features are added, such as Standard strings, 
IOStreams, and containers. 

"A seemingly small change in a string algorithm [such as reserving space for 
string data, or erasing the data as an additional preliminary step,] might 
produce a surprisingly large change in program execution time."  

The conclusion is that you should "program at the highest level of abstraction 
that you can afford”. 

Schilling, Jonathan 
Optimizing Away C++ Exception Handling 
ACM SIGPLAN Notices, August 1998, also at 

http://www.ocston.org/~jls/ehopt.html 

This article discusses ways to measure the overhead, if any, of the exception 
handling mechanisms.  A common implementation of EH incurs no runtime 
penalty unless an exception is actually thrown, but at a cost of greater static 
data space and some interference with compiler optimisations.  By identifying 
sections of code in which exceptions cannot possibly be thrown, these costs 
can be reduced. 

This optimization produces modest but useful gains on some existing C++ 
code, but produces very significant size and speed gains on code that uses 
empty exception specifications, avoiding otherwise serious performance 
losses.  

Stroustrup, Bjarne 
The C++ Programming Language, 3rd Edition 
Addison-Wesley, 1998 

This definitive work from the language’s author has been extensively revised 
to present Standard C++. 
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Addison-Wesley, 1994 

The creator of C++ discusses the design objectives that shaped the 
development of the language, especially the need for efficiency. 

 “The immediate cause for the inclusion of inline functions ... was a project 
that couldn't afford function call overhead for some classes involved in real-
time processing.  For classes to be useful in that application, crossing the 
protection barrier had to be free.  [...] 

Over the years, considerations along these lines grew into the C++ rule that it 
was not sufficient to provide a feature, it had to be provided in an affordable 
form.  Most definitely, affordable was seen as meaning "affordable on 
hardware common among developers" as opposed to "affordable to 
researchers with high-end equipment" or "affordable in a couple of years 
when hardware will be cheaper.” 

Stroustrup, Bjarne 
Learning Standard C++ as a New Language 
C/C++ Users Journal, May 1999 

http://www.research.att.com/~bs/papers.html 

http://www.research.att.com/~bs/cuj_code.html 

This paper compares a few examples of simple C++ programs written in a 
modern style us ing the standard library to traditional C-style solutions.  It 
argues briefly that lessons from these simple examples are relevant to large 
programs.  More generally, it argues for a use of C++ as a higher- level 
language that relies on abstraction to provide elegance without loss of 
efficiency compared to lower- level styles. 

"I was appalled to find examples where my test programs ran twice as fast in 
the C++ style compared to the C style on one system and only half as fast on 
another.  ...  Better-optimized libraries may be the easiest way to improve both 
the perceived and actual performance of Standard C++.  Compiler 
implementers work hard to eliminate minor performance penalties compared 
with other compilers.  I conjecture that the scope for improvements is larger in 
the standard library implementations."  

Sutter, Herb 
Exceptional C++ 
Addison-Wesley, 2000. 

This book includes a long discussion on minimizing compile-time 
dependencies using compiler firewalls (the pimpl idiom), and how to 
compensate for the space and runtime consequences. 
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Veldhuizen, Todd 
Five compilation models for C++ templates 
Proceedings of the 2000 Workshop on C++ Template Programming 

http://www.oonumerics.org/tmpw00 

This paper describes a work in progress on a new C++ compiler.  Type 
analysis is removed from the compiler and replaced with a type system library, 
which is treated as source code by the compiler. 

"By making simple changes to the behavior of the partial evaluator, a wide 
range of compilation models is achieved, each with a distinct trade-off of 
compile-time, code size, and execution speed.  ...  This approach may solve 
several serious problems in compiling C++: it achieves separate compilation 
of templates, allows template code to be distributed in binary form by 
deferring template instantiation until runtime, and reduces the code bloat 
associated with templates."  

Williams, Stephen 
Embedded Programming with C++ 
Originally published in the Proceedings of the Third USENIX Conference on Object-
Oriented Technologies and Systems, 1997 

http://www.usenix.org/publications/library/proceedings\ 
/coots97/williams.html 

Describes experience in programming board-level components in C++, 
including a library of minimal run-time support functions portable to any 
board. 

We to this day face people telling us that C++ generates inefficient code that 
cannot possibly be practical for embedded systems where speed matters. The 
criticism that C++ leads to bad executable code is ridiculous, but at the same 
time accurate. Poor style or habits can in fact lead to awful results. On the 
other hand, a skilled C++ programmer can write programs that match or 
exceed the quality of equivalent C programs written by equally skilled C 
programmers.  

The development cycle of embedded software does not easily lend itself to the 
trial-and-error style of programming and debugging, so a stubborn C++ 
compiler that catches as many errors as possible at compile time significantly 
reduces the dependence on run-time debugging, executable run-time support 
and compile/download/test cycles. 

This saves untold hours at the test bench, not to mention strain on PROM 
sockets. 
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Wind River Systems 
Advanced Compiler Optimization Techniques 

http://wrs.com/products/html/optimization_wp.html 

This technical white paper discusses techniques for compiler optimizations in 
general, and more specifically those provided by the Wind River Systems 
“Diab” C++ compiler for embedded program development. 
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