Doc. No.: 01-0023/N1309
Date: 18 May 2001
Author: Performance WG

Technical Report on C++ Performance
(DRAFT)

| Editor’sNote: The cover page text needs to be written. |

The am of this report is to give its readers a model of time and space overheads
implied by use of various C++ language and library features, to debunk widespread
myths about performance problems, to present techniques for use of C++ in
applications where performance matters, and to present techniques for implementing
C++ language and standard library facilities to yield efficient code.

As far as run-time and space performance is concerned, if you can afford to use C for
an application, you can afford to use C++ in a style that uses C++'s facilities
appropriately for that application.

This report first discussed areas where performance issues matters, such as various
forms of embedded systems programming and high-performance numerical
computation. After that, the main body of the report considered the basic cost of using
language and library facilities, techniques for writing efficient code, and the special
needs of embedded systems programming.

Performance implications of object-oriented programming are presented. This
discussion rests on measurements of key language facilities supporting OOP, such as
classes, class member functions, class hierarchies, virtual functions, multiple
inheritance, and rurrtime type information (RTTI). It is demonstrated that, with the
exception of RTTI, current C++ implications can match hand-written low-level code
for equivalent tasks. Similarly, the performance implications of generic programming
using templates are discussed. Here, howewver, the emphasis is on techniques for
effective use. Error handling using exceptions is discussed based on another set of

measurements. Both time and space overheads are discussed. In addition, the
predictability of performance of a given operation is considered.

The performance implications of 10Streams and locales are examined in some detail
and many generally useful techniques for time and space optimisations are discussed
here.

Finally, the specia needs of embedded systems programming are presented, including
ROMability and predictability. And appendices present general C and C++ interfaces
to the basic hardware facilities of embedded systems.

Contents:

R 1 01400 18 o (o] o I VPSPPI 7
1.1 How do we Characterise Application Ar€as?.........cccceveveeverieeseeseeseeseeens 8
2 Overheads— Cost of USiNg C++ FEALUIES.........cccveeueecieeie et 11
21 Overheads from NaMESPACES.........coereriererieiienie sttt 11
2.2 Overheads from Type Conversion Operatorscccecveerveereereeseeseesessseeens 12
2.3 Overheads from INheritanCe.........cccooiieeiiiie i 13
231 Overhead EXaMPIES........ccoiiiirieeee s 13
232 RTTI OVErNEAAS. ..o 13
233 General Overheads from Inheritance ... 14
234 Overheads from Multiple-InheritanCe...........cocoeiereeieieicncsce e 16
235 Overheads from Virtua- Inheritance...........cocoovevninieiesene e 16
2.3.6 Overheads from Virtual Functions of class-templates......................... 17
24 Overheads from Exception Handling..........ccooevveeiieiie e 17
241 Myths and Redlities of Exception Handling Overheads...................... 17
24.1.1 Preiminary REMArKS.......ccccccoieieiieie e 17
24.1.2 Compile-TimeOverhead.........ccccooeviiiiieiiie e 18
24.2 Exception Handling Issues Common to all Implementations.............. 18
24.3 Implementation SIrategi€S........c.cvveveeieiiere e 19
2431 The"dynamiC" APProach.ccccooiiiiiiiiiiiie e 19
24311 Space OverNad..........ccooeiriieieiiererese e 20
24.31.2 TiMEOVENEAU.ccce e 20
24.32 The"statiC" APPrOaCh.......cccccceeieeieiieeieeseere e 21
24321 Space OvErhead.........cccoveieieiieiese e 22
24.32.2 TiMEOVENEAU.cce e 22

244 Predictability of Exception Handling Overheadcccceovvevenenee. 23
24.4.1 Prediction of throw/catch Performance...........cccocevvriinennencencene. 23
2442 Empty exception-specification Considerations...........cccceoeverereene. 23
24.4.3 EXCeption SPECITiCaliONS.......ccccueeeerieeee e eee e 24
2444 The"you don't pay for what you don’t use" Principle.................... 24
2445 Other Error Handling SIrat€gI€sSooeveererenieeeeeeese e 24
2446 MIiSSING SIUMT ..o s 25

25 Overheads from TemMPIaES........ccoieieceece e 25
251 Template Overheadscoove e 25
252 Templates VS, INNENTANCEccoviiieeeceee e 26
2.6 Overheadsfrom The Standard 10Streams Library.........ccccoeeevveieiiecnenen. 29
26.1 Overview - Executable SIZe.........coovveiiiiiinieeee e 29
26.2 Overview - EXeCUtion SPEEM.........covrieiirieresereeeeee e 29
2.6.3 Overview - ODJECE SIZE......ccvceeeiee e 29
2.6.4 Overview — Compile-TIMEcccee e 29

3 Performance — Techniques & SIrALEJIES........cooveieieeriiierieseeee e 31
3.1 Programmer Directed OptimiSatioNScccceierierenereneneeeesee e 31
3.2 Efficient Implementation of Locales and |OStreams............ccccveeveveeecnenee. 35
321 Locale Implementation BaSICS.........cccccveiieeiieeiie et 36

322 Reducing Executable SIZe.........cccooeveeieiiee e 39

323 Pre-Processing for Facets..........cooeeiieie e 42

3.24 Compile-Time Decouplingcovviieeiieiiie e 42
3.25 SMAt LiNKING ..o s 44
3.2.6 ODbject Organi Zation...........cceceereeieeeeseese e 46
3.2.7 Library ReCOMPIation..........cccuveieeiiiiiiecie e 47
TG T 2 (0 1 -] 1 V2SS 48
331 ROMabhle ODJECES......cceeeeieeece e 48
3311 User-defined ODJECEScocveeiiecie e 49
3.3.1.2 Compiler-generated ODJECEScccoeieriirerireeeeeee e 50
332 Constructors and ROMable ODJECtScccoveveerieneese e 52
34 Hard Rea-Time CoNSIAerationsS..........ccuererieerieriesesiesieseseseesessesseeseessessens 52
34.1 C++ Features for which an Accurate Timing Analysisis Easy........... 53
3411 TEMPIELES....c.eeeeieeeie e s 53
3412 INNEITANCE......ceiierece e 53
3.4.1.21 Multiple-INheritance.........ccccoeeiieeieeiie e 53
3.4.1.2.2 Virtua-INNeritanCe.........ccceveieeneeie e e 53
34.1.3 Virtual FUNCLONS........coeiiriirieieieie e s 53
34.2 C++ Features, for which Real-Time Analysisis More Complex........ 53
3421 DYNAMIC CBSLScooviviriiiiirieeeeieee et 54
3.4.2.2 Dynamic Memory AllOCaLION.........cccvevueveerieie e 54

T N B (o= o] 0] S S 54
34.3 IS (o T I 1T SR 55

4 Embedded Systems — Special NEEUSccciiiirerereeee e 57
4.1 BASICI/O-HARDWARE ADDRESSING........cccosiiririninieniene s 57
411 R0 oSSR 57
41.2 ez 107> = S 57
4.1.3 Basic Standardisation ODJECIVES.........cccveveerieeeeseee e 57
4.2 Bascl/O-Hardware Addressing Header — <CIOhW>ccccccevviieeiieninenn, 58
4.2.1 Overview and PrinCIPleS.........cooverieeiererese e 58
4.2.2 The ADSIract MOGE! ..o 58
4221 TheMOoUIE SEL ... 59
4.2.3 1/O Register CharaCteriStiCS.......ooviverienieierie e 60
4.2.4 The Most BasiC [/O OPErationsccecererereniereseneeeesee e 60
4.2.5 The access-SPECITICALIONcccceveececeecece e 60
4.3 The <CIONW> INEITACE........coiiee e e 61
431 Functions for Single RegiSter ACCESScccovvrerenireeieesese e 61
4.3.2 Functions for Register Buffer ACCESS.......ccocvevveieerecve e 62
4.3.3 Functions for aCCESS_SPEC |nitialisation.........ccceevvrerrerienenniennn. 62
4.3.4 Functions for ACCESS_SPEC COopYiNg......cccervereererererieereerierienieneens 63
Appendix A: Implementing <CIONW>ccoiieii i 65
N R o U001 S RSTS 65
A1l ReCOMMENMEd SEEPS.......ooiriiriiriiniiniieee et 65
A.12 Compiler CONSIAErationsccccceeveeeeieeriesieseerie et see e 65
A.2 Overview of 1/0O Hardware Connection Optionscccccceeveeviveenieesineennen. 66
A.21 Multi-Addressing and I/O Register Endian...........ccoceeeveveeienencnennne 66

A22 AAArESS INEEITEAVE ...t e e e e e e e 67

A.2.3 [/O CONNECLION OVEIVIBW: ... eeeeeeeneeenensnnnsnnnsnsnnnnns 63

A24 Generic Buffer i NAEX ..o 68
A.3 access-specifications for Different 1/0 Addressing Methods...................... 69
YN Y AN (0001 F ol @ = = (0] o ISR 70
A.5 Read-Modify-Write Operations and Multi-Addressing..........cccocevvereereenne 70
A6 IO INITIATSATON.....cciiieeeieiesie e 71

Appendix B: Generic access-specification for iohw Addressing...........ccceveeenenne 73
B.1 Generic access SpeCifiCation DESCIIPLONcccererererereeieieesesee e 73
B.2 Syntax SPeCifiCalioncccceieereee e 73

B.21 Bus ConNection ParametersS...........ccooeeineenenieneeseeie s 74

B.2.2 Detection of Read / Write Violationsin I/0O Registers.........cccoeveeuenee. 75

B.2.3 access-specifications for Different Processor BUSSES...........cvvevereenee. 76

B.24 access-specifications for Different 1/O Addressing Methods.............. 77

B.25 Optimisation Possibilities for Typica Implementations...................... 77

B.25.1 Pre-Calculation of Constant EXPresSsions.........ccocceveeevereneseseneneens 77
B.25.2 Multi-Addressing and Endian............ccceeveveveeneniesieese e 78

Appendix C: Bibliography........ccoveiieiic 79

1 Introduction

Definition of terminology and scope of the report:

?? Description of potential resource limitations
?? Problems often encountered in resource- limited environments
?? Criteria used in the selection of an appropriate programming language

"Performance” has many aspects - execution speed, code size, data size, and memory
footprint at runtime, or time and space consumed by the edit/compile/link process. It
could even refer to the time necessary to find and fix code defects. Most people are
primarily concerned with execution speed, athough program footprint and memory
usage can be critica for small embedded systems where he program is stored in
ROM, or where ROM and RAM are combined on a single chip.

Efficiency has been a magjor design goa for C++ from its earliest days; also, the
principle of "zero overhead" for any feature that is not used in a program. It has been
a guiding principle from the earliest days of C++ that "you don't pay for what you
don't use'.

Language features that are never used in a program should not have a cost in extra
code size, memory size, or runtime. If there are places where C++ cannot guarantee
zero overheads for unused features, this paper will attempt to document them. It will
also discuss ways in which compiler writers, library vendors, and programmers can
minimize or eliminate performance penalties, and will discuss the trade offs among
different methods of implementation.

Programming for resource-constrained environments is another focus of this paper.
Typicaly, it is very small or very large programs that run into resource limits of some
kind. Very large programs, such as database servers, may run into limits of disk space
or virtual memory. At the other extreme, an embedded application may be
constrained to run in the ROM and RAM space provided by a single chip, perhaps a
total of 64K of memory, or even smaller.

Apart from the issues of resource limits, some programs must interface with system
hardware on a very low level. Historically the interfaces to hardware have been
implemented as proprietary extensions to the compiler (often as macros). This led to
the dituation that code has not been portable, even for programs written for a given
environment, because each compiler for that environment has implemented different
sets of extensions.

1.1 How do we Characterise Application Areas?
Embedded Systems:

Embedded Systems have many restrictions on memory-size and timing requirements
that are more significant than are typical for nonEmbedded systems. Some areas of
concern the Embedded Systems are as follows:

?? Scale:
o gmall

These systems typicaly use single chips containing both ROM and
RAM. Single-chip systems in this category typicaly hold
approximately 32KBytes for RAM and 32, 48 or 64K Bytes for ROM.

Note (Lois): The numbers relate to the C8051 chip family, which has a market
share of approximately two-thirds of the embedded controllersin the
world (according to Detlef quoting Chris Hills).

Examples of applications in this category are:

o Engine control for automobiles

0 Harddisk controllers

0 Consumer electronic appliances

0 Smart cards, aso called Integrated Chip (IC) cards — about the
size of a credit card, they usually contain a processor system
with code and data embedded in a chip which is embedded (in
the literal meaning of the word) in aplastic card. A typical size
if 4KBytes of RAM, 96KBytes of ROM and 32KBytes
EEPROM.

0 medium

These systems typicaly use separate ROM and RAM chips to execute
a fixed application, where size is limited. There are different kinds of
memory chip, and systems in this category are typicaly composed of
several kinds to achieve different objectives for cost and speed.
Examples of applications in this category are:

0 Hand-held digital VCR

o Printer

o Copy machine

o Digita still camera — one common model uses 32MBytes of
flash memory to hold pictures, plus faster buffer memory for
temporary image capture, and a processor for onthe-fly image
compression.

1 Typica systemsduring the Y ear 2000

o large

These systems typically use separate ROM and RAM chips, where the
application is flexible and the size is relatively unlimited. Examples of
applicationsin this category are:

0 Persona Digital Assistant (PDA) — equivaent to a persona
computer without a screen, keyboard, or hard disk.

Digital television

Set-top box

Car navigation system

Central controllers for large production lines

o O O

o

Note (Lois):

The last item is meant to refer to the central CPU that manages a
collection of manufacturing machines in a production line. Each
machine of course may have its own embedded brain.

?? Timing:

Note (Lois):

Of course, systems with real-time or hard real-time constraints are
not necessarily embedded systems; they may run on hosted
environments. Anton (who?) made the comment that timing-critical
hard real-time systems are more applicable to industry.

“Real-Time” refers to a system in which average performance and
throughput must meet defined goals, but some variation in
performance of individual components can be tolerated.

“Hard Real-Time” means the every operation must meet specified
timing constraints.

o critical (real-time and hard real-time systems)

Examples of applications in this category are:

o Motor control

o Engine control — minimum cycle of engine (3ms; 10,000rpm; 4
cyclinders)

Hand-held digital VCR

Mobile phone

CD or DVD player

Electronic musical instruments

Hard disk controllers

Digita television

©Ooooo0oo

0 non-critical

Examples of applications in this category are:

o Digitd till camera
o Copy machine

o Printer

o0 Car navigation system

Note (Lois) Eliminated table here. Its purpose appeared to be to show a cross-
section of applications in terms of both size and timing constraints. |
think Anton is putting together a revised version. Maybe it should
come last so it can include the large-end applications as well?

Servers:

For server applications, the performance-critical resources are typically speed
(e.g. transactions per second?), and working-set? size (which aso impacts
throughput and speed). In such systems, memory and data storage are
expressed in terms of megabytes or even gigabytes.

Often there are soft real-time constraints, bounded by the need to provide
service to many clients in a timely fashion. Some examples of such
applications include the central computer of a public lottery where transactions
are heavy, or large scade high-performance numerical applications such as
weather forecasting where the calculation must be completed within a certain
time.

[Note (Lois): If it takes 26 hours to forecast the next 24 hours' weather, there’'s no
point]

These systems are often described in terms of dozens or even hundreds of
multiprocessors, and the prime limiting factor may be the Mean Time Between
Failure (MTBF) of the hardware (increasing the amount of hardware resultsin
a decrease of the MTBF — in such a case, high-efficiency code would result in
greater robustness).

2 theterm “working set” refersto the amount of the application whichis held in active (not swapped-out virtual) memory at any
giventime.

2 Overheads— Cost of Using C++
Features

Does the C++ language have inherent complexities and overheads, which make it
unsuitable for performance-critical applications? For a program written in the G
conforming subset of C++, will penalties in code size or execution speed result from
using a C++ compiler instead of a C compiler? Does C++ code necessarily result in
"unexpected” functions being called at runtime, or are certain language features, like
multiple inheritance or templates, just too expensive (in size or speed) to risk using?
Do these features impose overheads even if they aren't explicitly used?

This paper examines the major features of the C++ language that are perceived to
have an associated cost, whether real or not. Some of the language features are
complex and are discussed in a section of their own, while other are discussed in the
following brief:

?? Namespaces
?? Type Conversion Operators
?? Inheritance
0 Run-Time Type Identification (RTTI)
?? Exception Handling (EH)
?? Templates
?? The Standard Library (10Streams)

2.1 Overheads from Namespaces

Namespaces do not add any space or time overheads to code. They do, however, add
some complexity to the rules for name lookup. The principal advantage of
namespaces is that they provide a mechanism for partitioning names in large projects
S0 asto avoid name clashes.

Namespace qualifiers enable programmers to use shorter identifier name when
compared with aternative mechanisms. In the absence of namespaces, the
programmer has to explicitly alter the names to ensure that name clashes do not occur,
and this usually takes the form of a canonical prefix being used, or the names being
placed inside ac! ass and used in their qualified form. [for example:

static char* nylib_nane
static char* nylib_copyright

“My Really Useful Library”;
“June 15, 20007;

class ThisLiblnfo {
static char* nane;
static char* copyright;

}s

char* Thi sLi bl nf o: : name
char* Thi sLi bl nfo:: copyright

“Anot her Useful Library”;
“Decenber 18, 2000”;

end example]

With namespaces, the number of characters necessary is similar to the class
aternative, but unlike the ¢l ass alternative, qualification can be avoided by the use of
usi ng which moves the unqualified names into the current scope, thus alowing the
names to be referenced by their shorter form. This has the effect of actualy
“reducing” the number of characters in the source program.

2.2 Overheads from Type Conversion Operators

C and C++ permit explicit type conversion using cast notation (81S-5.4). [for
example:

int i = (int)3.14159;
end example]

Standard C++ adds four additional type conversion operators, using syntax that looks
like function-templates® [for example:

int i = static_cast<int> (3.14159);

end exampl €]
The four syntactic forms are:

e&sconst _cast <Type>(expr essi on) /[l 81S5.2.11
ez stati c_cast <Type>(expression) /Il 81S$5.2.9
egsrei nterpret_cast<Type>(expression) // 81S$5.2.10
ez dynam c_cast <Type>(expr essi on) Il 81S$5.2.7

The semantics of cast notation (which is still recognized) are the same as the type
conversion operators, but distinguish between the different purposes for which the
cast isbeing used. Thetype conversion operator syntax is easier to identify in source
code, and thus contributes to writing programs that are more correct*.

It should be noted that as in C, a cast may create a temporary object of the desired
type, so casting can have runtime implications.

3 ndeed, prototype implementations of the type conversion operators were often implemented as function-templates

It the compiler does not provide the type conversion operatorsnatively, it is possible to implement them using function
templates.

The firgt three forms of type conversion operator have no size or speed penalty versus
the equivalent cast notation. Indeed, it is typical for a compiler to transform cast
notation into one of the other type conversion operators when generating object code.
However, dynami c_cast <T> may incur some overhead at runtime if the required
conversion involves using RTTI mechanisms [for example, cross-casting:

class Left { ... };
class Right { ... };

void func (Left* pL) {
Ri ght* pR = dynam c_cast<Ri ght*>(pL);
}

.ci.ass Merged: Left, Right {};
Merged m
func (&m);

end example]

Note: Perhaps some pseudo code would be useful here to show how the
compiler transforms the code? How much overhead is a
dynam c_cast jn a single-inheritance hierarchy? Or when virtual
base classes are involved?

2.3 Overheads from Inheritance

2.3.1 Overhead examples

?? runtime type identification (RTTI)
?? multiple inheritance

?? virtua template member functions
?? virtua inheritance

?? class hierarchies

?? unnecessary costs for empty base

| Editor’sNote: The cost of empty-basesis not elaborated.

2.3.2 RTTI overheads

?? Typicaly, apointer to atype_i nfo gbject is stored in a class “virtua table”
or vtbl . RTTI can only be used with classes that have at least one virtua
functior?. This redtriction is the result of a deliberate compromise that
minimizes the cost per object® necessary for RTTI.

?? One typica implementation costs one static table per class with enough
storage for the class-name (its t ypei d) plus 20 bytes, with a resulting cost of

S Thisis not an unnatural situati on, asthe need to determine the dynamic type of an entity ismost typical of class hierarchies
whereit is probable that virtual functions are used; indeed, it is often recommended that polymorphic classes dways provide a
virtual destructor.

8 Since aclasswith avirtual function already has the associated cost of aVPL T (in atypical implementation), adding RTTI
support need have no extraimpact on the cost of an instance of that class. Conversely, adding RTTI for non-class data types, and
classes with no virtual functions could incur asignificant cost to the program and/or instances of that data type.

2.3.3

approximately 40 data bytes times the number of RTTI enabled classes in the
application.

Often, RTTI is used with dynam c_cast ; gnd if dynam c_cast js used, the
RTTI mechanism is used to determine whether the cast is valid or not. One
important thing to note, is that some typical implementations share common
mechanisms between RTTI and EH, and the use of RTTI may implicitly
require the overheads of Exception Handling to be present also.

Whole-Program Analysis (WPA) can help; there is no need to generate RTTI
tables for types not tested, and WPA techniques can determine this, with
potentially significant reduction in costs and overheads. Tools providing
WPA are not yet commonly available, but implementers are encouraged to
develop such WPA capable tools.

A class without any virtual functionsis equivalent to asimple C struct

The size of an object of the class is the sum of the sizes of its data members,
(plus any padding required for correct alignment by the implementation).

Some observations from tests on commonly available implementations

o Downcasts cost between three and four function cals. This is
independent of:

?? whether the class uses single or multiple inheritance
?? which branch of Ml
?? the depth of inheritance (M1 and Sl)

0 Cross-casts are more expensive. A cross-cast costs between 6 and 50
times a single function call, depending on the implementation. They
vary with how deep you start and finish in the hierarchy. Each leve
adds about 60% to overhead.

General Overheads from Inheritance

In atypical implementation, data members of a base class occupy space at the
beginning of an object of a derived class. This need not cost any more data
space than the alternate design of creating a data member of the base class
type. In the smplest case, inheritance may save in code size and execution
speed, since delegating functionality to a member object requires pass-through
functions in the containing class. Callsto nontvirtua functions are resolved at
compile-time, so there is no runtime penalty from single inheritance.

Indeed, in some cases, an implementation may be able to place new data
members of the deriving class into “holes’ in the base-class’; thus costing less
than an equivalent C-stylestruct

"Holes may be present dues to aignment restrictions of the implementation. However, these holes may be of appropriate size
and dignment for new data members introduced by the deriving class.

?? Do virtual functions add overhead?

Cadlls to virtual member functions are resolved at runtime, depending on the
dynamic type of the object. In a typical implementation, each object in the
hierarchy acquires an extra data member, aVvpt r, pointing to atable (the vt bl)
that lists the appropriate versions of the virtual functions for objects of that
class type. So, the cost of virtual functions is an extra data pointer per object,
plusavtbl per class®.

At runtime, there is a cost associated with calling the virtual function by
indirection through the vptr | indexing into the vt bl | and calling the function
through a pointer. This cost, in atypica implementation, adds between 3 and
10 instructions per call, versus a direct call to a class-specific function,
resolved a compile-time. Alternate mechanisms of determining the
appropriate function to call, such as an if-statement or a switch-statement also
have overheads however, and these alternative mechanisms have a comparable
cost, while lacking the natural extensibility of a virtual function. If a virtual
function is called repeatedly inside a tight loop, a possible “Programmer
Directed Optimisation” (PDO) is to determine the runtime type of the object
outside the time-critical section, and use class-specific direct calls inside the
loop.

Compiler implementations, and especially WPA enabled compilers can
sometimes determine the static type of the object, and automatically perform
this optimisation. However, PDOs can make use of knowledge about the
program that a compiler will never be able to determine.

?? “The principal disadvantage of virtual functions is that they prevent the
compiler from inlining code, since the type of the object won't be known
until runtime.”

This argument is often levelled at virtual functions. Typicaly, virtual
functions are not also declared inline, due to the fact that a virtua function is
normally called indirectly, requiring that the function be instantiated.

However, whether the programmer directs the implementation by qualifying
the name of avirtua function, or the implementation determines the static type
of the function to be called by other means, it becomes possible for the virtua
function to be called statically, and hence inlined.

Contrary to popular belief, virtual and inline need not be considered mutually
exclusive.

?? Some observations from tests on commonly available implementations

o Static function calls with no arguments are dlightly faster than ordinary
member functions (less than 25%) with no arguments (the member
function has an implicit object pointer).

8 The cost of theVt bl istypically astatic datacost. On some older implementations, there may be an instance of theVt bl for
each trandation unit in which an instance of the associated datatype is created or destroyed. Modern implementations typically
have only oneinstance of the Vt bl per program.

2.3.4

2.3.5

0 Function calls are cheaper than they used to be (compared to inline).

0 These figures have improved a lot from what they were a few years
ago.

0 People should make “less’ use of explicit inlining these days, as
modern compilers have got a lot better at determining when inlining is
appropriate.

0 Locality —forcing code out of cache. A virtual function call (through a
pointer) had overhead of 20% compared to a plain function call®.
Maybe even 30% if you do a lot of other work in the loop and in the

function call and then factor it out. But still no overhead specific to
Multiple-Inheritance.

Overheads from Multiple-Inheritance

Properly implemented, multiple-inheritance should have very little extra cost
over single inheritance. Such small costs can aso be restricted to only a part
of the MI graph; typically, the left most branch having the same cost as Sl (no
adjustment), with other branches incurring a smple “offset adjustment” to the
object pointer.

There is an "offset adjustment” in virtual calls to ensure that the t hi s pointer
passed to the called function is correct. Typica implementations use a
“thunk” to perform this adjustment. A “thunk” is a simple piece of code that
is called instead of the actual function, and which performs the actual constant
adjustment to the object pointer before transferring control to the intended
function.

Some observations from tests on commonly available implementations

0 No significant differences in runtime speed between ordinary member
function calls, virtual function calls, and virtual function calls among
different branches of multiply inherited (MI) classes.

0 The difference diminishes with the number of arguments being passed
to the function; the associated cost of the call becomes proportionally
smaller as the number of arguments increase.

Overheads from Virtual-Inheritance

Virtual base classes add additional overhead. The “adjustment” for the branch in a Ml
class can be determined statically by the implementation, so it becomes a ssmple add
of a constant when needed. With virtual bases, the position of the base object with
respect to the complete object is dynamic, and requires more evaluation than for the
MI adjustment.

% Thisis sometimes the result of “block level linki ng” that atempt to place called code physically closer in memory to the code
that makes the call, atechnique that is defested by indirect calls. A cache“miss’ can result in costly reloads or even operating
system intervention.

2.3.6 Overheads from Virtual Functions of class-templates
Virtual functions of a class-template can incur an overhead:
?7? If a class-template has virtual member functions, then each time the class-
template is specialised it will have to generate new specialisations of the

member functions, and their associated support structures such as the virtual
function table (vt bl').

?? A naive library implementation could produce hundreds of Kbytesin this case,
much of which is pure replication at the instruction level of the program.

?? The problem is a library modularity issue. Putting code into the tenmpl ate
when it doesn't depend on template parameters, and could be separate code
may cause each instantiation to contain potentialy large, redundant code
sequences. One PDO suggestion is to use nontemplate helper functions, and
describe the template implementation in terms of these helper functions.

2.4 Overheads from Exception Handling
2.4.1 Myths and Realities of Exception Handling Overheads

2.4.1.1 Preliminary Remarks
Exception Handling provides a systematic and robust approach to error handling.

Editor’'sNote: Error Handling and Exception Handling are not the same thing.
Errorsare a normal occurrence in a program exceptions are not.

Note (Lois): The sort of errors that can normally be expected to occur — file not
found, erroneous input, etc.—may more aptly be described as ‘ status
rather than ‘errors’. Exceptions are highly unusual, and often
unrecover able-from problems that arise in exceptional conditions —
out of memory, network failure, etc. Often the only reasonable
response is to exit gracefully, or at least roll back to an earlier state

The traditional C style of indicating runtime problems is to return an error code. This
error code must be checked each time the function is invoked, and this check is quite
often ignored or forgotten. EH isolates the rare problemhandling code from the
normal flow of program execution, and unlike the error code approach, it cannot be
ignored or forgotten. Also, automatic destruction of stack objects when an exception
is thrown renders a program less likely to leak memory or other resources. With EH,
once a problem is identified, it can't be ignored - failure to catch and handle an
exception results in program termination.

Early implementations of Exception Handling resulted in sizable increases in code
size. This led some programmers to avoid it and compiler vendors to provide
switches to suppress the feature. In some embedded and resource-constrained
environments, EH was deliberately excluded.

It is difficult to discuss EH overheads without a rough idea about possible
implementations.

Presuming that exceptions are not the norm, we need to distinguish:

?? Try overhead: data and code associated with setting up each

try-block or catch-clause (i.e. getting ready for catching exceptions that may
never occur) - thisistrue overhead.

?? Regular function overhead: data and code associated with the normal
execution of functions that do not specify any exception related feature (i.e.
recompiling pre-EH code, thus breaking the "pay as you go" principle) — this
is true overhead.

?? Throw cost: data and code associated with actually throwing
an exception. This can hardly be regarded as an overhead! But different
implementations will have different costs, the relative value or impact of
which depends on the problem domain.

2.4.1.2 Compile-Time Overhead

?? Compilation is more difficult, depending on the complexity of the
implementation.

?? Some compile-time optimisations may become trickier (or even impossible?):
0 we need examples

| Editor’sNote: This section is never developed, should we remove it?

2.4.2 Exception Handling Issues Common to all Implementations
?? try-block Establishes the context for associated catch-clauses

?? catch-clause The EH implementation must provide some runtime type-

information mechanism for finding catch-clauses when an exception is
thrown.

There is some overlapping, but not identical information needed by both RTTI
and EH features. But, the EH type-information mechanism must be able to
match derived classes to base classes even for types without virtual functions,
and to identify built-in types such as i nt. On the other hand, the EH type-
information does not need support for down-casting or cross-casting.

Because of this overlap, some implementations require that RTTI be enabled
when EH is enabled.

?? Cleanup of handled exceptions Exceptions, which are not re-thrown,
must be destroyed upon exit of the catch-clause. Since there is no declaration
for the exception object, some "Magic Memory" for the exception object must
be managed by the EH implementation.

?? Automatic and temporary objects with non-trivial destructors ~ Destructors
must be called if an exception occurs after construction and before destruction,
even if no try/catch is present. The EH implementation is required to keep
track of all such objects.

?? Construction of objects with non-trivial destructors If an exception
occurs during construction, all completely constructed base classes and sub-
objects must be destroyed. This means that the EH implementation must track
the current state of construction of an object.

?? throw-expression A copy of the exception object being thrown must be
alocated in the "Magic Memory" provided by the EH implementation. The
closest matching catch-clause must then be found using the EH type-
information. Finaly, the destructors for automatic, temporary, and partially
constructed objects must be executed before control is transferred to the catch-
clause.

?? Enforcing exception specifications Conformance of the thrown types to the
list of types permitted in the exception-specification must be checked. If a
mismatch is detected, the unexpected-handler must be called.

A similar mechanism to the one implementing try/catch can be used, but if a
mismatch does occur, the unexpected-handler is called.

?? operator new After calling the destructors for the partially constructed
object, the corresponding oper ator del ete must be caled if an exception is
thrown during construction.

Again, asimilar mechanism to the one implementing try/catch can be used.

2.4.3 Implementation Strategies
Implementations vary in how costs are allocated across these elements.
The two main strategies are the “dynamic” approach often implemented using the

setj mp family of functions and “static” approach that uses compiler generated static
tables.

There are also various hybrid approaches. This paper discusses only the twp principal
implementation approaches.

2.4.3.1 The" dynamic" Approach.

Implementations using this approach have to dynamically maintain auxiliary data-
structures to manage the capture and transfer of the execution contexts, and the
dynamic maintenance of data-structures involved in tracking the objects that need to
be unwound in the event of an exception.

try-block Save the execution environment and reference to catch code on
EH stack at try-block entry (by calling setj mp or equivalent).

Automatic and temporary objects with non-trivial destructors ~ Push each
constructed object, with the address of its destructor onto a stack for later
destruction. Pop them upon destruction. Typical implementations use a
linked list structure for the stack.

Construction of objects with non-trivial destructors One weéll-known
implementation ncrements a counter for each base-class and sub-object as
they are constructed. If an exception is thrown during construction, the
counter is used to determine which parts need to be destructed.

throw-expression After the catch-clause has been found, pop objects from
the stack, invoking their destructors, until al objects between the throw-
expression and the associated catch-clause are removed from the stack.

Restore execution environment of associated catch-clause (by calling | ongj mp
or equivalent).

2.4.3.1.1 Space Overhead

7?

7?
7
7?

33

No EH cost is associated with an object, so object size is unaffected

EH implies aform of RTTI, implying some increase in code and data size
Thesetj mp model implies code generation for try/catch

The setjm model implies dynamic data structures to store the j mp_buf
environments and their mapping to catch-clauses

Thesetj mp model implies the registration of local objects to be destroyed

A cost is associated with checking the throw-specifications of the functions
that are called

2.4.3.1.2 Time Overhead

7

7?

7?

7

7?

7?

On entry to each try-block

0 commit changes to variables enclosing the try-block

o stack thej mp_buf execution context

0 stack the associated catch-clauses
On exit from each try-block

0 remove the associated catch-clauses

0 remove the stacked execution context
On entry to each catch-clause

0 remove the associated catch-clauses
On exit from each catch-clause

0 retire the current exception object (destruct if necessary)
When calling regular functions

o if the function has an exception-specification, register it for checking
Aseach local and temporary object is created

0 register with the current exception context as they are created

?? On throw
0 locate the corresponding catch-clause (if any) - this involves some
RTTI-like check
if found:
%5 destruct the registered local objects
%< check the exception-specifications of the functions caled in
between
2% Use the associated | mp_buf to !l ongj np to the execution context
of the catch-clause
if not found:
%5 call the unexpected-handler

Advantages of this method are that it is relatively simple, portable, and compatible
with implementations that transate C++ to C or another language.

Disadvantages are that the stack space and runtime costs for try-block entry, and for
the bookkeeping of automatic, temporary and partialy constructed objects as the EH
stack is modified tends to be quite high.

One vendor reports speed impact of about 6% for a C++ to ANS C trandator.

Another vendor reports that speed and stack space impacts can be greatly reduced by
finetuning the code for saving the execution environment and doing object
bookkeeping

Editor’s Note: How should we include information such as the comment above?

2.4.3.2 The" static" Approach

Typica implementations using the static approach will generate read-only tables for
determining the current execution context, locating catch-clauses, and tracking
objects needing destruction.

?? try-block This method incurs no runtime cost. All bookkeeping is pre-
computed as a mapping between program counter and code to be executed in
event of an exception. Tables increase program image size but may be moved
away from working set to improve locality. Tables can be placed in ROM,

and on hosted systems with Virtual Memory, can remain swapped out until an
exception is actualy thrown.

?? Automatic and temporary objects with non-trivial destructors ~ No runtime
costs associated with normal execution. Only in the event of an exception isit
necessary to intrude on normal execution.

?? Construction of objects with non-trivial destructors No runtime costs —
see previous bullet.

?? throw-expression The datically generated tables are used to locate
matching handlers and intervening objects needing destruction. Again, no
runtime costs are associated with normal execution.

2.4.3.2.1 Space Overhead

?? No EH cost is associated with an object, so object size is unaffected

?? EH impliesaform of RTTI, implying some increase in code and data size

?? The static model implies static table generation and some common library
runtime support

?? A cost is associated with checking the throw-specifications of the functions
that are called

2.4.3.2.2 Time Overhead

?? On entry to each try-block
0 some implementations commit changes to variables in the scopes
enclosing the try-block - other implementations use a more
sophisticated state table™
?? On exit from each try-block
0 nooverhead
?? On entry to each catch-clause
0 nooverhead
?? On exit from each catch clause
0 nooverhead
?? When calling regular functions
0 nooverhead
?? Aseach loca and temporary object is created
0 nooverhead
?? On throw
0 using the tables, determine if the current frame has an appropriate
catch-clause
If it does, then:
%< destruct each local, temporary and partialy constructed objects
that occur between the throw-expression and the catch-clause
g5 transfer control to the catch-clause
Otherwise, check that the exception honours the exception-
specification of the current function, and call the unexpected-handler if
it does not.
Otherwise, if there is a previous frame, repeat the above steps,
otherwise call the unexpected-handler

Advantages of this method are that no stack or runtime costs are associated with
managing the try/catch or object bookkeeping.

Disadvantages are that the implementation is more complicated, and does not lend
itself well to implementations that trandate to an intermediate language. The static
tables can be quite large, and while this may not be a burden on hosted systems with a
VM, the cost may be a significant factor for embedded systems. All runtime costs
associated occur when an exception is thrown, but because of the need to examine

10 1nsuch implementations, this effectively makesthe variablespartially VOl at i | € and may prejudice other optimisations asa
result.

potentially complex state tables, the time it takes to respond to an exception may be
large — this needs to be factored in to the probable frequency of exceptions.

One vendor reports a code and data space impact of about 15% for the generated
tables. Thisisan upper limit, since in the vendor’s environment there was no need to
reduce the image size of programs provided the working set wasn't increased

Editor’s Note: How should we include information such as the comment above?

2.4.4 Predictability of Exception Handling Overhead

2.4.4.1 Prediction of throw/catch Performance

One of the reservations expressed about EH is the unpredictable time that may elapse
after athrow and before control passes to the catch clause, while automatic objects are
being destroyed. It isimportant in some systems, especially those with “Real Time”
requirements, to be able to predict accurately how long operations will take.

These concerns are well founded. However, if the call tree can be staticaly
determined, and the table method of EH implementation is used, it is possible to
statically analyse the sequence of events necessary to transfer control from a given
throw-expression to the corresponding catch-clause. Each of the events could then be
statically analysed to determine their contribution to the cost, and the whole sequence
of events aggregated into a single cost domain (worst-case & best-case, unbounded,
indeterminate).

It should be possible to accurately determine the costs of the EH mechanism itself,
and the cost of any destructors invoked would need to be determined in the same way
as the cost of any other functions is determined.

Given such analyses, the term “unpredictable” is inappropriate. The cost may be quite
predictable, with a well-determined upper and lower bound. In some cases (recursive
contexts, or conditional call trees), the cost may not be determined statically. For RT
applications, it is generaly most important to have a determinate time domain, with a
small deviation between the upper and lower bound. The actual speed of execution is
often less important.

Another reservation concerns the memory footprint of the necessary data structures.
This has more to do with nonReal- Time embedded applications, where the system
constraints may place a premium on the amount of space that the programs and/or
data may take. Both approaches incur a space cost. The dynamic approach is likely
to have a smaler “data-size’” cost and a larger “code-size” cost, than the
corresponding static approach.

Editor’sNote: We do not appear to have comparative “ size” costs for the dynamic
ver sus the static approaches.

2.4.4.2 Empty exception-specification Consider ations
Can empty exception-specifications help a compiler produce more optimal code?

The use of an empty exception-specification should reduce overheads. If the called
function ensures (statically or dynamically) that it will never throw an exception that
invalidates its exception-specification, then the caller can build on that guarantee,
performing optimisations based on the knowledge that a called function will never
throw any exception.

However, aless capable implementation might produce “worse” code if it produces an
extratry-catch for functions that don't need it.

For example:
int g() throw);

void f() {
int n=g9();
}

/1 May be inplicitly (and poorly) rewitten as --->
void f () {
int n;

} catch (.’..) {
unexpect ed() ;
}

2.4.4.3 Exception Specifications

The need to enforce exception-specifications at runtime has costs as described above.
However, they can alow optimisation of other code by making catch-clauses
unreachable and violations of other exception-specifications impossible. Empty
exception-specifications can be especially helpful for optimisation.

2.4.4.4 The"you don’'t pay for what you don’t use" Principle

Exception-Handling in general imposes costs even if it is not used. For example, if a
function that constructs automatic objects then calls another function, and it cannot be
proven by the compiler that the called function does not throw an exception then the
caling function will incur object bookkeeping costs, even though the function may
never participate in context where an exception is thrown. With the static approach, a
possible optimisation is to strip the associated tables and runtime support code from
the program if it is known that exceptions will never be thrown.

2.4.4.5 Other Error Handling Strategies

All approaches to error handling involve some runtime and static costs. Return codes,
global error values; process termination and ignoring errors al have associated costs
in runtime, space, program correctness, maintenance, and readability. In evaluating
the costs of exception handling, the costs of the alternatives should not be ignored. If
EH is not used, some other mechanisms are invariably required**.

1 And ignoring error conditions does not make for robust code

2.4.4.6 Missing stuff

There were some items discussed in the working group, which we were unable to
flesh out. Theseinclude:

?? Advice to implementers, specifically references to literature on EH (e.g. ‘C
Language Trandation)

?? Potential implementation pitfalls

?? A comparison of the costs of other strategies

| Editor’sNote: Do we really need this section? It doesn’t get elaborated anywhere. |

2.5 Overheads from Templates

2.5.1 Template Overheads

class-templates or function-templates will generate a new instantiation of code each
time it is gpecialised with different template parameters. This can lead to an
unexpectedly large amount of code and data*?. A typical way to illustrate this problem
is to create a large number of Standard Library containers to hold pointers of various
types. Each type can result in an extra set of code and data being generated.

In one experiment, a program instantiating 100 instances of a single speciadisation of
std::1ist<T*>for sometype T, was compared with a second program instantiating a
single instance of std::list<T*> for 100 different types T. These programs were
compiled with a number of different compilers and a variety of different compiler
options. The results varied widely, with one compiler producing code for the second
programs that was over 19 times as large as the first program; and another compiler
producing code for the first program that was nearly 3 times as large as the second.

The optimisation here is for the compiler to recognise that while there may be many
speciaisations with different types, at the level of machine code-generation, the
specialisations may actually be identical (the type system is not relevant to machine
code).

While it is possible for the compiler or linker to perform this optimisation
automatically, the optimisation can also be performed by the Standard Library
implementation or by the application programmer.

If the compiler supports partia speciaization and member-function-templates, the
library implementor can provide partial specialisations of containers of pointers to a
single underlying implementation that uses voi d*, This technique is described in
C++ PL 3rd edition.

The same technique can be employed as a PDO, where it is possible to write a class-
template called, perhaps, P! i st <T>_that is implemented using std: : i st<voi d*> tg
which all operations of p! i st <T> gre delegated.

12 V/irtual function tables, EH state tables, efc.

Source code must then refer to plist<T> rgther than std::list<T*> so the
technique is not transparent, but it is a workable solution in the absence of tool or
library support. Variations of this technique can be used with other templates too.

2.5.2 Templates vs. Inheritance

Any nontrivial program needs to deal with data structures and algorithms. Because
data structures and algorithms are so fundamental, it is important that their use be as
simple and error-free as possible.

The template containers in the Standard C++ Library are based on principles of
generic programming, rather than the inheritance approach used in other languages
such as Smalltalk. An early set of foundation classes for C++, called the National
Institutes of Health Class Library (NIHCL), was based on a class hierarchy after the
Smalltalk tradition.

Of course, this was before C++ had added templates to the language; but it is useful in
illustrating how inheritance compares to templates in the implementation of
programming idioms such as containers.

In the NIH library, all classes in the tree inherited from a root class Oj ect which
defined interfaces for identifying the real class of an object, comparing objects, and
printing objects. [The Object class itself inherited from class NI HCL which
encapsulated some static data members used by all classes] Most of the functions
were declared virtual, and had to be overridden by deriving classes'. The hierarchy
aso included a class O ass that provided a library implementation of RTTI (which
was also not yet part of the C++ language). The Col I ection classes, themselves
derived from Obj ect = could hold only other objects derived from Obj ect which
implemented the necessary virtual functions.

13 Presumably, had the NIHCL been written today, these would have been pure virtual functions.

But the NIHCL had several disadvantages due to its use of inheritance versus
templates for the implementation of container classes.

The following is a portion of the NIHCL hierarchy (taken from the README file):

NIHCL - Library Static Menber Variables and Functions
hject - Root of the NIH O ass Library Inheritance Tree
Bitset - Set of Small Integers (like Pascal's type SET)
Class - Class Descriptor
Col l ection - Abstract Cass for Collections
Arraychar - Byte Array
ArrayCb - Array of Object Pointers
Bag - Unordered Collection of Objects
SeqCd tn - Abstract Cass for O dered, |ndexed
Col | ecti ons
Heap - M n-Max Heap of (bject Pointers
Li nkedLi st - Singly-Linked List
OrderedCltn - Odered Collection of Object Pointers
Sorteddtn - Sorted Collection
KeySortdtn - Keyed Sorted Collection
Stack - Stack of Object Pointers
Set - Unordered Collection of Non-Duplicate Objects
Dictionary - Set of Associations
IdentDict - Dictionary Keyed by Object Address
| dent Set - Set Keyed by Object Address
Fl oat - Floating Point Nunber
Fraction - Rational Arithnetic
Integer - Integer Nunber Object
Iterator - Collection Iterator
Link - Abstract C ass for LinkedList Links
Li nkOb - Link Containing Object Pointer
LookupKey - Abstract C ass for Dictionary Associations
Assoc - Association of Cbject Pointers
Assoclnt - Association of Object Pointer with Integer
Nil - The Nil Object
Vector - Abstract Cdass for Vectors
BitVec - Bit Vector
Byt eVec - Byte Vector
ShortVec - Short |nteger Vector
I nt Vec - |Integer Vector
LongVec - Long | nteger Vector
Fl oat Vec - Fl oating Point Vector
Doubl eVec - Doubl e- Preci sion Floating Point Vector

Thusthecl ass KeySort Cl tn (roughly equivalent to st d: : map), is seven layers deep
in the hierarchy:

NI HCL
hj ect
Col | ection
SeqCl tn
Orderedd tn
Sortedd tn
KeySortd tn

Because a linker cannot know which virtua functions will be called at runtime, it
typically includes the functions from al the preceding levels of the hierarchy for each
class in the executable program. This can lead to code bloat without templates.

There are other performance disadvantages to inheritance based collection classes:

? Primitive types cannot be inserted into the collections. Instead, these must be
replaced with classes in the Obj ect hierarchy, which are programmed to have
similar behaviour to primitive arithmetic types, such as | nteger and Fl oat
This circumvents processor optimisations for arithmetic operations on
primitive types. It is also difficult to exactly duplicate the behaviour of
arithmetic data types through class member functions and operators.

? Because C++ has compile-time type checking, providing type-safe containers
for different contained data types requires code to be duplicated for the same
reason that template containers are instantiated multiple times. To avoid this
duplication of code, the NIHCL collections hold pointers to a generic type -
the base Obj ect class. However, this is not type safe, and requires runtime
checks to ensure objects are type compatible with the contents of the
collections. It aso leads to many more dynamic memory allocations, which
can hinder performance. Furthermore, type checking is aways dynamic
adding further cost to the program using the collections.

?7? Because classes used with the NIHCL must inherit from Ooj ect and are
required to implement a number of virtual functions, this solution is intrusive
on the design of classes from the problem domain. The C++ Standard Library
containers do not impose such requirements on their contents'* [A class used
in a Sandard container must be assignable and copy-constructible; often it
additionally needs to have a default constructor and implement operator ==
and operator <], For this reason aone, the obligation to inherit from
class bj ect often means that the use of Multiple Inheritance also becomes
necessary, since domain specific classes may have their own hierarchical
organization.

The C++ Standard Library lays out a set of principles for combining data
structures and agorithms from different sources. Inheritance-based libraries
from different vendors, where the agorithms are implemented as member
functions of the containers; can be difficult to integrate and difficult to extend.

Templates can provide powerful facilities for evaluation at compile-time. Doing more
of the work at compile-time means less work at runtime.

Hints can be exchanged between the compiler and the library to select a more efficient
specidisation, or to select linkage with a reduced-footprint version of the library. In
C, it's possible to optimise printf this way —printf with floating point support vs.
printf without floating point support.

When the linker sees printf if the symbol __crt_float (or equivalent) is defined,
then invoke printf_float elseinvoke printf_int Definingafloat f; hasthe
side effect of defining __crt_float

14 A dlass used in a Standard container must be assignable and copy -constructible; often it additionally needs to have a default
constructor and implementOPer at or == gnq operator <,

2.6 Overheads from The Standard IOStreams Library

The Standard 10Streams library (81S-27) has a well-earned reputation of being
inefficient! Most of this reputation is, however, due to misinformation and naive
implementation of this library component. Rather than tackling the whole library, this
report addresses efficiency considerations related to a particular aspect used
throughout the |OStreams library, namely those aspects relating to the |OStream's use
of the Locales library (81S-22). An implementation approach for removing mogt, if
not all, efficiency problems related to localesis discussed in 3.2.

The efficiency problems come in several forms.

2.6.1 Overview - Executable Size

Typicaly, using anything from the 10Sreams library drags in a huge amount of
library code, most of which is not actually used. The principle reason for this is the
use of std::local e in all base classes of the |IOSreamslibrary (e.g. std: : i os_base
andstd::basic_streambuf) |ntheworst case, the code for all required facets from
the Locales library (81S$-22.1.1.1.114) is included in the executable. A milder form of
this problem merely includes code of unused functions from a facet, from which one
or more functions are used. This isdiscussed in 3.2.2.

2.6.2 Overview - Execution Speed

Since certain aspects of |OStream processing are distributed over multiple facets, it
seems that the standard mandates an inefficient implementation. This is not the case
and wsing some form of pre-processing, lots of the work can be avoided. In addition,
with a dightly smarter linker than is typically used, it is possible to remove additional
inefficiencies. Thisisdiscussed in 3.2.3 and 3.2.5.

2.6.3 Overview - Object Size

The standard seems to mandate an std::locale object being embedded in each
std::ios_base gnd std::basic_streanbuf object, in addition to several options
used for formatting and error reporting. This makes for fairly large st reamgobjects.
Using a more advanced organization for stream gpjects can shift the costs to those
applications actually using the corresponding features. Depending on the exact
approach taken, the costs are shifted to one or more of:

? compilation time
? higher memory usage when actually using the corresponding features
? execution speed

Thisisdiscussed in 3.2.6.

2.6.4 Overview — Compile-Time

A widespread approach to cope with the lack of support for the separation model is to
include the template implementation in the headers. This can results in very long
compile and link times if, for example, the IOStreams headers are included, and
especidly if optimisations are enabled. With an improved approach using pre-

instantiation and consequent decoupling techniques, the compile-time can be reduced
significantly. Thisisdiscussedin 3.2.4.

3 Performance — Techniques &
Strategies

Description of current approaches:

?? Code generation control, including memory placement, initiaisation
characteristics, et a.

#pragma, and other language modifications

Application of measurement results in making choices

Transforming virtual calls into nonvirtua calls

Alternatives to exception handling

Effects of restrictions upon character types

Characterization of performance guarantees

Coding style can affect performance

3IIIIII

Editor’'sNote: There is no further mention of these, other than a bit about
transforming virtual calls into non-virtual calls, and snippets
showing how coding style can affect performance.

3.1 Programmer Directed Optimisations

Programmers are sometimes surprised when their programs call functions they haven't
specified, maybe even haven't written. While aline of C code typically trandatesto a
few mechine instructions, a single innocuous-looking line of C++ code may trandate
to afairly large number of machine instructions. Simply declaring a variable such as:

Cc;

has the potential to be quite expensive'® in C++ if, for instance, the ¢l ass C has a

default constructor which requires a large amount of code or data to initialise the
object C.

Bt isimportant to remember however, that in C the object would still need to beinitialised, but that code would have to be
explicitly called and is hence visible to the programmer.

Understanding what a C++ program is doing is important for optimisation. If you
know what functions C++ silently writes and calls, careful programming can keep the
unexpected code to a minimum. Some of the works cited in the bibliography
(Appendix C:) provide more extensive guidance, but the following provides some
suggestions for writing more efficient code:

?? In constructors, prefer initialisation of data members to assignment. Members
of const and reference types must be initialised in the member initialisation
list, but it is advisable to list other members as well. The sequence of steps
taken to construct avariable of classtypeis as follows:

0 the base classes for the class are initialised using their default
constructors unless an explicit initialiser has been provided in the mem-
initializer-list;

o the data members for the class are initialised using their default
constructors® unless an explicit initialiser has been provided in the
mem-initializer-list;

o finaly, the body of the constructor is executed.

Therefore, an assignment to a data member within the constructor body means
that member is effectively initialised twice’.

?? Asaenera principle, don't define a variable before you are ready to initialise
it. This prevents effectively initialising the variable twice.

?? Use the direct initialisation syntax T a(b); rather than the copy initialisation
syntax T a = b; | Copy-initialisation is permitted to create an intermediate
temporary object, while direct initialisation is not.

?? Shift expensive computations from the most time-critical parts of a program to
the least time-critical parts (often, but not always, program start-up).

?? Whenever possible, compute values and catch errors at trandation time rather
than runtime. With sophisticated use of templates, a complicated block of
code can be compiled to a single constant in the executable.

?? Know what functions the C++ compiler silently gererates and calls. Simply
defining a variable of some class type may invoke a potentially expensive
constructor function.

?? Passing arguments to a function by value [e.g. void f(T x)] is cheap for
built-in types, but potentially expensive for class types since they may have a
non-trivial copy constructor. Passing by address [e.g. voi d f(T const* x)]
is light-weight, but changes the way the function is cadled. Passing by
reference-to-const [eg. void f(T const& x) | combines the safety of
passing by value with the efficiency of passing by address. But be careful not

18 Blilt-in data types do not have a default constructor, so unless they are explicitly initialised, they will have an unspecified or
undefined value (according to their type).

1 Actually, an object can only beinitidised once— thisisrealy an initialisation followed by an assignment, adistinction that is
not so clear in C, but can very differentin C++.

to create unnecessary temporary objects, by using an argument that must be
converted to the type of the function parameter.

?? Unless you need automatic type conversions, make all one-argument
constructors®® explicit. ~ This will prevent calling them accidentaly.
Conversions can still be done when necessary by stating them explicitly in the
code, avoiding the penalty of hidden and unexpected conversions.

?? Understand how and when the compiler generates temporary objects. Often
small changes in coding style can prevent the creation of temporaries, with
consequent benefits for runtime speed and memory footprint. Temporary
objects may be generated when passing parameters to functions, returning
values from functions, or initialising objects.

?? Rewriting expressions can reduce or eliminate the need for temporary objects.
For example, if @, b, and ¢ are objects of ¢l ass T:

T a; /'l inefficient: don't create an object before
/l its initialization is really needed

a=">b+c; /1 inefficient: (b + c) creates a tenporary
/1 object and then assigns it to a

Tal b); a+=c; /] better: no tenporary objects created

?? Use the return value optimisation to give the compiler a hint that temporary
objects can be eliminated. The trick is to return constructor arguments instead
of objects, like this:

const Rational operator * (Rational const & I|hs,
Rati onal const & rhs)
{

return Rational (| hs.nunerator() * rhs.nunerator(),
| hs. denomi nator() * rhs.denom nator());

}

Less carefully written code might create alocal Rational variable to hold the
result of the calculation, use the assignment operator to copy it to a temporary
variable holding the return value, then copy that into a variable in the calling
function. But with the suggested hints, the compiler is able to construct the
return value directly into the variable that is specified to receive it.

?? Prefer pre-increment and -decrement to postfix operators.

Postfix operators like i ++ copy the existing value to a temporary object,
increment the internal value, and then return the temporary. Prefix operators
like *+i increment the actual value first and return a reference to it. With
objects such as i terat or g creating temporary copies is expensive compared
to built-ini nts,

?? Dynamic memory allocation and de-allocation can be a bottleneck. Consider
writing class-specific operator new() and operator delete() functions,
optimised for objects of a specific size or type. It may be possible to recycle

18 Thisrefersto any constructor that may be called with asingle argument. Multiple parameter constructors with default
arguments can be called as one-argument constructors.

blocks of memory instead of releasing them back to the heap whenever an
object is deleted.

?? Sometimes it is helpful to “widen” a class interface with functions that take
different data types to prevent automatic conversions (such as adding an
overload on char * to afunction which takesast d: : string parameter). The
numerous overloads for operators +, ==, ! = and < in the <stri ng> header are
an example of such a "fat" interface™. If the only supported parameters were
std::strings, then characters and pointers to character arrays would have to
be converted to full std: : string objects before the operator was applied.

?? The Standard string class is not a lightweight component. Because it has a
lot of functionality, it comes with a certain amount of overhead (and because
Standard Library container classes throw C++ std::strings and not C-style
string literals, this overhead may be included in a program inadvertently).

In many applications, strings are created, stored, and referenced, but never
changed. As an extension, or as a PDO, it might be useful to create a lighter-
weight unchangeable-string class.

?? Reference counting is a widely used optimisation technique. In a single-
threaded application, it can prevent making unnecessary copies of objects.
However, in multi-threaded applications, the overhead of locking the shared
data representation may add unnecessary overheads, negating the performance
advantage of reference counting®.

?? Pre-compute values that won't change. To avoid repeated function cals,
rather than writing:

while(nyListlterator != nyList.end()) ...
for(size_t n = 0; n < nyVector.size(), ++tn) ...

instead call nyList.end() or myVector.size() once “before’ the loop,
storing the result in a variable which can then be used in the comparison.

?? Small forwarding functions can usualy be inlined to advantage, especialy if
they occupy less code space than preparing the stack frame for a function call.

?? The use of dynamic binding and virtual functions has some overhead that can
affect performance. In a typica implementation, every object (which has
virtual functions) in the hierarchy needs an extra member for the vptr and
dynamic selection of functions at runtime involves de-referencing this vptr,
But the biggest overhead factor, is that compilers are often unable to inline
virtual functions (82.3.3).

?? Use function objects with the Standard Library algorithms rather than function
pointers. The data flow-analysers of many optimisers are defeated by function

191t is dlso worth nati ng, that even if aconversion is needed, it is so metimes better to have the conversion performed in one
place, where an overloaded “wrapper” function callsthe onethat really performsthe work. This can help to reduce program size,
where each caller would otherwise perform the conversion.

20 o course, if spaceisthe resource being optimised, reference counting may till be the best choice.

pointers, but function objects are passed by value and optimisers can easily
handle inline functions on objects.

?? Templates provide compile-time polymorphism, wherein type selection does
not incur any runtime penalty. If appropriate to the design, consider using
templates as interfaces instead of abstract base classes. Templates have
several useful properties: they impose no space or code overhead on the class
used as a template argument, ard they can be attached to the class for limited
times and purposes. If the class does not provide the needed functionality, it
can be defined externally through template specialization. If certain functions
in the template interface are never used for a given class, they need not be
defined because they will not be instantiated.

An old rule of thumb is that there is a trade-off between program size and execution
speed -- that techniques such as declaring code i nl i ne can make the program larger
but faster. But now that processors make extensive use of onboard cache and
instruction pipelines, the smallest code is often the fastest as well. Furthermore, tests
indicate that the cost of function calls has greatly reduced, and that modern optimisers
arevery good at deciding when and where to inline functions automatically (82.3.3).

Compilers typically use a heuristic process in optimising code that may be different
for small and large programs. Therefore, it is difficult to recommend any techniques
that are guaranteed to improve performance in al environments. It is vitaly
important to measure a performance-critical application in the target environment and
concentrate on improving performance where bottlenecks are discovered. Because so
many factors are involved, measuring actual performance can be difficult but remains
an essential part of the performance tuning process.

The best way to optimise a program is to use efficient algorithms. An agorithm with
quadratic performance may be acceptable for small data sets, but gives abysmal
performance on large inputs. Small local optimisations may be effective if profiling
reveals a bottleneck.

3.2 Efficient Implementation of Locales and IOStreams

The definition of Locales in the C++ Standard (81S-22) seems to imply a pretty
inefficient implementation. This is however not true. It is possible to create efficient
implementations of the Locales library, both in terms of runtime efficiency and
executable size. This does take some thought and this reports discusses some of the
possibilities that can be used to improve the efficiency of std::locale
implementations with a special focus on the functionality as used by the 10Streams
library.

The approaches discussed in this report are primarily applicable to statically bound
executables as are typically found in for example, embedded systems. If shared, or
dynamically loaded libraries are used, different optimisation goas have precedence,
and some of the approaches described here could be counterproductive. Clever
organization of the shared libraries might deal with some efficiency problems too -
however, thisis not discussed in this report.

Nothing described in this report involves magic or really new techniques. It just
discusses how well known techniques may be employed to the benefit of the library
user. It does however involve additional work compared to a trivial implementation,
for the library implementer as well as for the library tester, and in some cases for the
compiler implementer. Some of the techniques focus on just one efficiency aspect
and thus not al techniques will be applicable in all stuations (e.g. certain
performance improvements can result in “additional” code). Depending on the
requirements, the library writer or possibly even the library user, has to choose which
optimisations are the most appropriate.

3.2.1 Locale Implementation Basics

Before going into the details of the various optimisations, it is worth introducing the
implementation of locales describing features implicit to the Standard definition.
Although some of the material presented in this section is not strictly required and
there are other implementation aternatives, this section should provide the necessary
details to understand where the optimisations should be directed.

An std::locale gbject is an immutable collection of immutable objects - or more
precisely - of immutable facets. This immutability trait is important in multi- threaded
environments, because it removes the need to synchronize most accesses to locales
and their facets. The only operations needing multi-threading synchronization are
copying, assigning, and destroying st d: : | ocal e gbjects and the creation of modified
locales.

Instead of modifying a locale object to augment the object with anew facet or to
replace an existing one, std::local e constructors or member functions are used,
creating new locale objects with the modifications applied. As a consequence,
multiple locale objects can share their internal representation and multiple internal
representations can (actually - have to) share their facets. When a modified locale
object is created, the existing facets are copied from the original and then the
modification is applied possibly replacing some facets. For correct maintenance of
the facets, the Standard mandates the necessary interfaces allowing reference counting
or some more or less equivalent techniques for sharing facets. The corresponding
functionality is implemented in the class std: : I ocal e: : facet | the base class for dll
facets.

The copying, assigning, and destroying std::locale objects reduces to simple
pointer and reference count operations. When copying a locale object, the reference
count is incremented and the pointer to the internal representation is assigned. When
destroying a locale object, the reference count is decremented and when it drops to 0,
the internal representation is released. Assignment is an appropriate combination of
these two. What remains is the default construction of an std: : | ocal e which is just
the same as a copy of the current globa locale object. Thus, the basic lifetime
operationsof std: : | ocal e ghjects are reasonably fast.

Individual facets are identified using an ID, more precisely an object of type
std::locale::id which is available as a static data member in all base classes
defining a facet. A facet is a class derived from std: : Il ocal e::facet which has a
publicly accessible static member called id of type std::locale::id (8IS

22.1.1.1.291). Although explicit use of a local€'s facets seems to use atype F as an
index, the Locales library internally uses F::id, The std::locale::id gmply
stores an index into an array identifying the location of a pointer to the corresponding
facet or O if alocale object does not store the corresponding facet.

Taken together, a locale object is basically a reference counted pointer to an internal
representation consisting of an array of pointers to reference counted facets. In a
multi threaded environment, the internal representation and the facets might store a
mutex (or some similar synchronization facility) thus protecting the reference count.
A corresponding excerpt of the declarations might look something like this (with
namespace std and other qualifications or elaborations of names omitted):

class locale {

public:

cl ass facet {
A

private:
size t refs
mut ex | ock; /1 optiona
b
class id {
1.
private:

size_t index;

}s

...
private:
struct internal {
1.,
size t refs;
mut ex | ock; /] optiona
facet* nenbers
H
internal* rep

b
These declarations are not really required and there are some interesting variations:

? Rather than using a double indirection with an internal struct ' apointer to an
array of unions can be used. The union would contain members suitable as
reference count and possible mutex lock, as well as pointers to facets. The
index O could, for example, be used as “reference count” and index 1 as
“mutex”, with the remaining array members being pointer to facets.

? Instead of protecting each facet object with its own mutex lock, it possible to
share the locks between multiple objects. For example, there may be just one
global mutex lock, because the need to lock facets is actually relatively rare
(only when a modified locale object is necessary is there a need for the mutex)
and it is unlikely that this global lock remains held. If this is too coarse
grained, it is possible to place a mutex lock into the static i d object, such that
an individual mutex lock exists for each facet type.

)

If atomic increment and decrement/check are available, the reference count is
sufficient, because the only operations needing multi- threading protection are
incrementing and decrementing the reference count.

? The locale objects only need a representation if there are modified locale
objects. If such an object is never created, it is possible to use an empty
std::local e ghject. Whether or not this is the case can be determined using
some form of "whole program optimisation” (83.2.5).

? Whether an array or some other data structure is used internally does not really

matter. What is important is that there is a data structure indexed by
std::locale::id,

? A trivial mplementation could use a null pointer to indicate that a facet is
absent in a given locale object. If a pointer to a dummy facet is used instead,
std::use_facet() can simply use a dynam c_cast<>() to produce the
corresponding st d: : bad_cast exception.

In any case, it is reasonable to envision a locale object as being a reference counted
pointer to some internal representation containing an array of reference counted
facets. Whether this is actually implemented so as to reduce runtime by avoiding a
double indirection and whether there are mutex locks and where these are does not
really matter to the remainder of this discussion. It is, however, assumed that the
implementer chooses an efficient implementation of thest d: : | ocal e,

It is worth noting that the Standard definition of std::use_facet() and
std::has_facet() differ from the CD2 (Committee Draft 2 — pre-1S) version quite
significantly. If a facet is not found in a locale object, it is not available for this
locale. In CD2, the global locale object wes searched for a facet not present a given
locale object. The Standard version can be more efficient - to determine whether a
facet is available for a given locale object, a simple array lookup is sufficient.
Basicaly, the functions std::use_facet() and std::has_facet() could look
something like:

extern std::locale::facet dumy;

tenpl ate <typenane F>

bool has_facet(std::locale const& loc) {
return loc.rep->facets[F::id::index] == &Jumy;
}

tenpl ate <typename F>
F const & use_facet(std::locale const& loc) {

return dynami c_cast<F const&>(*l oc.rep->facets[Facet::id::index]);
}

Editor’sNote: Should the reference to the CD2 definition be removed, or relegated
to a footnote?

This version of the functions is tuned for speed. A ssimple array lookup, together with
the necessary dynami c_cast <>() js used to obtain a facet. Since this implies that
there is a dot for each facet possibly used by the program in the array, it may be
somewhat wasteful with respect to memory. Other techniques might check the size of
the array first or store id/facet pairs. In extreme cases, it is possible to locate the

correct facet using dynami c_cast <>() and storing only those facets that are actually
available in the given locale.

3.2.2 Reducing Executable Size

Linking unused code into an executable can have a significant impact on the

executable size. Thus, it is best to avoid having unused code in the executable

program. One source of unused code results from trivia implementations. The

default facet std::locale::classic() includes a certain set of facets as described

in 1S-22.1.1.1.192. It is tempting to implement the creation of the corresponding

locale with a straightforward approach, namely explicitly registering the listed facets:
std::locale const& std::locale::classic() {

static std::local e object;
static bool uninitialized = true;

if (uninitialized) {
obj ect.intern_register(new col | at e<char>);
object.intern_register(new col | ate<wchar_t >);
I

return object;

This approach however can result in a very large executable, as it drags in all facets
listed in the table. The advantage of this approach is that a relatively smple
implementation of the various locale operations is possible. An aternative is to
include only those facets that are really used. A simple approach for doing thisisto
provide specialized versions of use_facet() and has_facet() which might be
appropriate for has_facet () anyway, for example:

tenpl ate <typename F> struct facet_aux {

static F const& use_facet(locale const& 1) {

return dynam c_cast<F const&(*|.rep
->facets[Facet::id::index]);

static bool has_facet(locale const& |) {
return | .rep->facets[F::id::index] == &Jlunmmy;
}
|

tenpl ate <> struct facet_aux<ctype<char> > {
static ctype<char> const& use_facet(locale const&) {

try {
return dynani c_cast<F const&(*l.rep
->facets[Facet::id::index]);
} catch (bad_cast const&) {
|l ocale::facet* f = |.intern_register(new ctype<char>);
return dynani c_cast <ctype<char>&>(*f);

}
}
static bool has_facet(locale const& { return true; }

/1 simlarly for the other facets

tenpl ate <typename F>

F const & use_facet(locale const& |) {
return facet_aux<F>::use_facet(l);

}

tenpl ate <typename F>

bool has_facet(locale const&) {
return facet_aux<F>::has_facet(l);

}

Again, this is just one example of many possible implementations for what is
basically a recurring theme. A facet is created only if it is really referenced from the
program. This particular approach is suitable in implementations where exceptions
cause a runtime overhead only if they are indeed thrown because like the normal
execution path, if the lookup of the facet is successful, it is not burdened by the extra
code used to initialise the facet. Although the above code seems to imply that
struct facet_aux hasto be specialized for all required facets individually, this need
not be the case. By using an additional template argument, it is possible to use partial
specialization together with some tagging mechanism, to determine whether the facet
should be created on the fly if it is not yet present.

Different implementations of the lazy facet initialisation include the use of static
initialisers to register used facets. In this case, the specialised versions of the function
use_facet () would be placed into individual object files together with an object
whose static initialisation registers the corresponding facet. This approach implies
however, that the function use_facet () isimplemented out-of-line, possibly causing
unnecessary overhead both in terms of runtime and executable size.

The next source of unused ade is the combination of several related aspects in just
one facet due to the use of virtual functions. Normally, instantiation of a class
containing virtual functions requires that the code for all virtual functions be present,
even if they are unused. This can be relatively expensive as for example, in the case
of the facet dealing with numeric formatting. Even if only the integer formatting
functions are used, the typically bigger code for the floating point formatting gets
dragged in just to resolve the symbols referenced from the "virtual function table”.

A Dbetter approach to avoid linking of unused virtual functions involves changing the
compiler such that it generates appropriate symbols, allowing the linker to determine
whether a virtual function is redly cdled. If it is, the reference from the virtua
function table is resolved; otherwise, there is no need to resolve it because it will
never be called anyway.

Author’s Note: Details for this are described elsewhere (currently, 1 don't have a
reference | can point to but | know that Nathan Myers has dealt with
this for gcc).

For the Standard facets however, there is a “Poor Man's’ aternative that comes close
to having the same effect. Theideais to provide a stub implementation for the virtua
functions, which is placed in the library such that it is searched fairly late. The real
implementation is placed before the stub implementation in the same object file aong
with the implementation of the forwarding function. Since a use of the virtual
function has to go through the forwarding function, this symbol is aso un-referenced,
and resolving it brings in the correct implementation of the virtual function.

Unfortunately, it is not totally true that the virtual function can only be called through
the forwarding function. A class deriving from the facet can directly call the virtual
function because these are pr ot ect ed rgther than private, Thus, it is still necessary
to drag in the whole implementation if there is a derived facet. To avoid this, another
implementation can be placed in the same object file as the constructors of the facet,
which can be called using a hidden constructor for the automatic instantiation.
Although it is possible to get these things to work with typical linkers, a modified
compiler and linker provide a much-preferred solution, which if often outside of the
scope of the library implementers.

Basically, most of the normally visible code bloat can be removed using these two
techniques, i.e. by including only used facets and avoiding the inclusion of unused
virtual functions. Some of the approaches described in the other sections can aso
result in a reduction of executable size, but the focus of those optimisations is on a
different aspect of the problem. Also, the reduction in code size for the other
approaches is not as significant.

3.2.3 Pre-Processing for Facets

Once the executable size is reduced, the next observation is that the operations tend to
be dow. Take numeric formatting as an example: to produce the formatted output of
a number, three different facets are involved:

? numput which does the actual formatting; i.e. determining which digits and
symbols are there; doing padding when necessary; etc.

? nunpunct which provides details about local conventions, such as the need to
put in thousands separators; which character to use as a decimal point; etc.

? ctype which transforms the characters produced internally by num put ' into
the appropriate "wide" characters.

Each of the ctype or numpunct functions called is basically avirtua function. A
virtual function call can be an expensive way to determine whether a certain character
is a decima point; or to transform a character between a narrow and wide
representation. Thus, it is necessary to avoid these calls wherever possible for
maximum efficiency.

At first examination there does not appear to be much room for improvement.
However, on closer inspection, it turns out that the Standard does not mandate calls to
nunpunct or ctype for each piece of information. If the num_put facet has widened a
character already, or knows which decimal point to use, it is not required to call the
corresponding functions. This can be taken a step further. When creating a locale
object, certain data can be cached using for example, an auxiliary hidden facet.
Rather than going through virtual functions over and over again, the required data is
simply stored in an appropriate data structure.

For example, the cache for the numeric formatting might consist of a character
trandation table resulting from widening al digit and symbol characters during the
initial locale set-up. This trandation table might also contain the decimal point and
thousands separator - combining data obtained from two different facets into just one
table. Taking it amother step further, the cache might be set up to use two different
functions depending on whether thousands separators are used according to the
nunpunct facet or not. Some pre-processing might also improve the performance of
parsing strings like the Boolean values if the st d: : i os_base: : bool al pha flag is set.

Although there are many details to be handled like for example, distinguishing
between normal and cache facets when creating a new locale object, the effect of
using a cache can be fairly significant. It is important that the cache facets are not
generally shared between locale representations. To share the cache, it has to be
verified that all facets contributing to the cached data are identical in each of the
corresponding locales. Also, certain things like, the use of two different functions for
formatting with or without thousands separators only work if the default facet is used.

3.2.4 Compile-Time Decoupling

It may appear strange to talk about improving compile-times when discussing the
efficiency of locales but there are good reasons for this. First of al, compile-time is
just another concern for performance efficiency, and it should be minimized where

possible. More important to this paper however, is that some of the techniques
presented below, rely on certain aspects that are related to the compilation process.

The first thing that improves compile-time is the liberal use of declarations, avoiding
definitions wherever possible. A Standard header may be required to include other
headers that provide a needed definition (81S-17.4.4.191), however, this does not
apply to declarations. As a consequence, a header need not be included just because it
defines a type which is used only a as return or argument type where a declaration is
sufficient. Likewise, a declaration is sufficient if only a pointer or aclassisused as a
member.

Looking at the members i mbue() and getloc() of the class std::ios_base it
would seem that an object of this type is required to include <! ocal e> simply for the
definitionof std::local e because apparently, an std::ios_base gbject stores an
object of this type in a member variable. This is, not required! Instead,
std::ios_base could store the pointer to the local€'s internal representation and
construct an std: :local e ghject on the fly. Thus, there is no need for the header
<i 0s> to include the header <l ocal e>, The header <l ocal e> will be used elsewhere
with the implementation of the st d: : i os_base class but that is a completely different
issue.

Why does it matter? Current compilers lacking support for the export keyword
require the implementation of the template members of the other stream classes in the
headers anyway and the implementation of these classes will need the definitions
from <l ocal e> - won't they? It istrue that some definitions of the template members
will indeed require definitions from the header <! ocal e>, However, this does not
imply that the implementation of the template members is required to reside in the
header files - a simple aternative is to explicitly instantiate the corresponding
templates in suitable object files.

Explicit instantiation obviously works for the template arguments mentioned in the
Standard, for example, explicit specidisation of std::basic_ios<char> gnd
std: : basic_ios<wchar _t> works for the classtemplate std::basic_ios But
what happens when the user tries some other type as the character representation, or a
different type for the character traits? Since the implementation is not inline but
requires explicit instantiation, it cannot aways be present in the Standard library
shipped with the compiler. The usua approach to this problem is to use the export

keyword but in the absence of this, an entirely different approach is necessary. One
such approach is to instruct the user on how to instantiate the corresponding classes
using for example, some environment specific implementation file, and suitable
compiler switches. For instance, instantiating the |OStream classes for the character
type mychar and the traits type Myt rai t s might look something like:

C++ -0 io-inst-nmychar-nytraits.o io-inst.cpp \
- Dchar T=nychar -Dtraits=nytraits -Di nclude="nychar. hpp"

Using such an approach causes some trouble to the user and more work for the
implementor, which seems to be a fairly high price to pay for a reduction in
dependencies, and a speed up of compile-time. But note that the improvement in
compile-time is typically significant when compiling with optimisations enabled. The

reason for this is simple: with al those inline functions, the compiler causes huge
chunks of codes to be passed on to the optimiser which then has to work extra hard to
improve them. Bigger chunks provide better optimisation possibilities, but they also
cause gignificantly longer compile-times due to the nonlinear increase in the
complexity of the optimisation step as the size of the chunks increases. Furthermore,
the object files written and later processed by the linker are much bigger when all
used instantiations are present in each object file. This can also impact the executable
Size, because certain code may be present multiple times embedded in different inline
functions which are different but which have some code from just one other function
in common.

Another reason for having the IOStream and Locale functions in a separate place, is
that it is possible to tell from the undefined symbols, which features are used in a
program, and which are not. This information can then be used by a smart-linker to
determine which particular implementation of a function is most suitable for a given
application.

3.2.5 Smart Linking

The discussion above aready addresses how to avoid unused code using a dightly
nonttrivial implementation of locales and virtual functions. It does not address how to
avoid unnecessary code. The term “unnecessary code’ refers to code that is actually
executed, but which does not really have any effect. For example, the code for
padding formatted results does not have an effect if thew dt h() is never set to a non
zero value. Similarly, there is no need to go through the virtual functions of the
various facets, if only the default locale ever used. As for all other aspects of C++, it
is reasonable to avoid the costs in code size and performance when the corresponding
feature is not used.

The basic idea for coping with thisis to provide multiple implementations of the same
function that avoids unnecessary overheads where possible. Since writing multiple
implementations of the same function can easily become a maintenance nightmare, it
makes sense to write one implementation, which is configured at compile-time to
handle different situations. For example, a function for numeric formatting that
optionally avoids the code for padding might look like this:

tenpl ate <typenanme cT, typename Qutlt>

num put <cT, Qutlt>::do_put(Qutlt it, ios_base& fnt,
cT fill, long v) const
{

char buffer[sone_suitabl e_size];
char* end = get_formatted(fnt, v);
if (need_padding & fnt.width() > 0)
return put_padded(it, fnt, fill, buffer);
el se
return put(it, fnt, buffer);

}

The vaue need_padding is a constant Boolean which is set to false if the
compilation is configured to avoid padding code. With a clever compiler (normally
requiring optimisation to be enabled) any reference to put _padded() s avoided, asis

the check for whether thew dt h() s greater than zero. The library would just supply
two versions of this function and the smart-linker would need to choose the right one.

To choose the right one, the linker has to be told under what circumstances it should
use the one avoiding the padding, i.e. the one where need_paddi ng jssetto f al se, A
simple analysis shows that the only possibility for Wi dt h() being nonzero is the use
of thestd: :ios_base::w dth() function with a parameter. The library does not set
a nonzero variable, and hence the smpler verson can be used if
std::ios_base::w dth() jsnever referenced from user code.

The example of padding is pretty simple. Other cases are more complex but still
manageable. Another issue worth considering is whether the Locales library has to be
used or if it is possible to provide the functionality directly, possibly using functions
that are shared internally between the Locales and the IOStreams library. That is, if
only the default locale is used, the I0Stream functions can cal the formatting
functions directly, bypassing the retrieval of the corresponding facet and associated
virtual function call - moreover, bypassing any code related to locales - avoiding the
need to drag in the corresponding locale maintenance code.

The analysis necessary to check if only the default locale is used is more complex
however. The simple test is to check for the locale's constructors. If only the default
and copy constructors are used, then only the default locale is used because one of the
other constructors is required to even create a different locale object. Even then, if
another locale object is constructed, it is not necessarily used with the 10Streams.
Only if the global locde is ever changed, or if std::ios_base::imbue(),
std::basic_ios<...>:inbue() or std::basic_streanbuf<...>:inbue() gre
ever caled, can the streams be affected by the non-default locale object. Although it
this is somewhat more conplex to determine, it is still manageable. There are other
things which might be exploited too, for example, whether the streams have to dedl
with exceptions in the input or output functions (this depends on the stream buffer and
locales possibly used); whether calling of cal I back functions is needed (only if
cal | backs are ever registered, is this necessary); etc.

The approach taken by the linker to decide which functionality is used by the
application requires using a set of “rules’ provided by the library implementor to
exclude functions. It is important to base these rules only on the application code to
avoid unnecessary restrictions imposed by unused library code. This however results
in more rules and rules that are more complex. To determine which functionality is
used by the application code, the unresolved symbols referenced by the application
code are examined. This requires that any function used as a “rule’ is indeed
unresolved and results in the corresponding functions being nor-inline.

There are basically three problems with this approach:

? The maintenance of the implementation becomes more complex because extra
work is necessary. This can be reduced to a more acceptable level by relying
on clever compilers eliminating code for branches that the compiler can
determine, are never used.

? The analysis of the conditions under which code can be avoided is sometimes
nontrivial. Also, the conditions have to be made available to the linker,
which introduces another potential cause of error.

? Even smple functions used to exclude a simple implementation of the
functionstd: :ios_base::w dth() cannot beinline. This might result in less
efficient and sometimes even bigger code (for smple functions the cost of
calling the function can be bigger than the actual function). See 3.2.7 for an
approach for avoiding this problem.

The same approach can be beneficial to other libraries, and to other areas of the
Standard C++ library than just the IOStreamsand Locales library. In generd, it can
simplify the library interface by removing similar functions applicable in different
gtuations, while ill retaining the same efficiency. It is however, not aways
applicable in such situations and should be used carefully where appropriate.

3.2.6 Object Organization

A typical approach to organise a classis to have member variables for al attributes to
be maintained. This may seem to be a natura approach, but it can result in a bigger
footprint than necessary. For example, in an application where the Wi dt h() s never
changed, there is no need to actually store the width(), When looking at the
|OSreams library, it turns out that each std::basic_ios object might store a
relatively large amount of data to provide functionality that many C++ programmers
using |OStreams are not even aware of, for example:

? A set of formatting flagsis stored in an std: : i os_base: : fntfl ags object.

? Formatting parameters like the Wi dth() and the precision() are stored in
std::streansi ze gbjects.

? An std::locale object (or some suitable reference to its internal
representation) is stored.

? Thepword() andiword() lists are stored.
? Aligtof cal | backsis stored.

? The error flags and exception flags are stored in objects of type
std::ios_base::iostate Gnce these basically consist of just three bits,
they may be folded into just one word.

? Thefill character used for padding is stored.
? A pointer to the used stream buffer is stored.
? A pointertothetie() edstd::basic_ostreamijs gtored.

This results in at least eight extra 32-bit words, even when folding multiple data into
just one 32-bit word where possible (the formatting flags, the state and exception
flags, and the fill character can fit into 32-bits for the character type char). These are
32 bytes for every stream object even if there is just one stream, for example,
std::cout which never uses a different precision, width (and thus no fill character),
or locae; probably does not set up specia formatting flags using the pword() or

iword() facilities; amost certainly does not use cal | backs and is not tie()ed to
anything. It might get away with being an object needing no members at all, and in
such a case - which is not very unlikely in an embedded application - by just sending
string literal's somewhere!

A different organization could be the use of an array of unions and using the
pword() /i word() mechanism to store the data. Each of the pieces of data listed
above is given an index of its position in an array of unions (possibly, severa pieces
can share just one union like they shared just one word in the conventional setting).
Only the pwor d() /i wor d() pieces would not be stored in this array because they are
required to access the array. A feature never accessed does not get an index and thus
does not require any space in the array. The only complication is how to deal with the
std::local e because it is the only nonPOD data. This can be handled using for
example, a pointer to the local€'s internal representation.

Depending on the exact organization, the approach will show different runtime
characteristics. For example, the easiest approach for assigning indices is to do it on
the fly when the corresponding data is initialised or first accessed. This may however,
result in arrays which are smaller than the maximum index and thus the access to the
array has to be bounds-checked (in case of an out-of-bound access, the array might
have to be increased; it is only an error to access the corresponding element if the

index is bigger than the bhiggest index provided so far by
std::ios_base:: xall oc()).

An aternative is to determine the maximum number of slots used by the Standard
library at link time or at start-up time before the first stream object is initialised. In
this case, there would be no need to check for out-of-bound access to the 10Stream
features. However, thisinitialisation is more complex.

A similar approach can be applied to the st d: : | ocal e gbjects.

3.2.7 Library Recompilation

So far, the techniques described assume that the application is linked to a pre-
packaged library implementation. Although the library might contain different
variations on some functions, it is still prepackaged (the templates possibly
instantiated by the user can also be considered to be pre-packaged). This is however,
often not a necessary assumption! If the library code is available, the Standard library
can also be recompiled.

This leads to the “two phase” building of an application; where in a first phase, the
application is compiled against a "normal”, fully-fledged implementation. The
resulting object files are automatically analysed for features actually used, by looking
a the unresolved references. The result of this analysis is some configuration
information (possible afile), which uses conditional compilationto remove all unused
features from the Standard library; in particular, removing unused member variables
and unnecessary code. In the second phase, this configuration information is then
used to recompile the Standard library and the application code for the final program.

This approach does not suffer from drawbacks due to dynamic determination of what
are effectively static features. For example, if it is known at compile-time which

|OStream features are used, the stream objects can be organised to include members
for exactly those features. Thus, it is not necessary to use a lookup in a dynamically
allocated array, possibly using a dynamically assigned index. Also, in the final
compilation phase, it is possible to inline functions that were not previously inlined
(in order to produce the unresolved symbol references).

3.3 ROMability

For the purposes of this paper, the terms “ROMable” and “ROMability” refer to
entities that are appropriate for placement in “Read-Only-Memory” and to the process
of placing entities into Read-Only-Memory so as to enhance the performance of
programs written in C++.

There are two principal domains that benefit from this process.

?? Embedded programs which have constraints on available memory, where code
and data must be stored in physical ROM whenever possible.

?? Modern operating systems which support the sharing of code and data among
many instances of a program, or among severa programs sharing invariant
code and data.

The subject of ROMahility therefore has performance application to all programs,
where immutable aspects of the program can be placed in a shared and “Read-Only”
gpace. On hosted systems, Read-Only is enforced by the memory manager, while in
embedded systems, it is enforced by the physical nature of ROM devices.

For embedded programs where memory requirements are scarce, it is critical that
compilers identify strictly ROMable objects and allocate only ROM area for them.
For hosted systems, the requirement to share ROMable information is not as critical,
but there are inevitable performance advantages to hosted programs as memory
footprint and the time it takes to load a program can be greatly reduced. All the
techniques described in this section will benefit such programs.

3.3.1 ROMable Objects

Most constant information is ROMable. Obvious candidates for ROMability are
objects of static extent that are declared const | and which have constant initialisers;
but there are several other significant candidates too.

Objects which are not declared const can be modified, and are @nsequently not
ROMable. But these objects may have constant initialisers, and those initialisers may
be ROMable. This paper considers those entities in a program that are obviousy
ROMable such as global const objects; entities that are generated by the compilation
system to support functionality such a switch-statements;, and also places where
ROMability can be applied to intermediate entities which are not so obvious.

3.3.1.1 User-defined objects
Objects declared const that are initialised with constant expressions. Examples:

?? An aggregate (81S-18.5.1) object with static storage duration (81S-3.7.1)

whose initialisers are all constants:
static const int tab[] = {1,2,3}

?? Objects of scalar type with externa linkage:

A congt-qualified object of scalar type has interna (81S-7.1.5.1) or no
(81S-3.215) linkage and thus can usually be treated as a compile time constant,

i.e. object data areas are not allocated, evenin ROM. For example:

const int tabelsize = 48
doubl e tabl e[tabl esize]; // table has space for 48 doubl es

However, if an object of scalar type is used for initialisation or assignment of
pointer or reference variables, it has internal linkage and is ROMable. For

example:
extern const int a = 1; /Il extern |inkage
const int b = 1; /1 internal |inkage
const int *c = &b; // variable b should be allocated
const int thsize = 256; /1 it is expected that tbsize is not

/1 allocated at runtinme
char ctb[tbsize];

?? String literals:

An ordinary string literal has the type “array of n const char “ (§S-2.13.4),
and so they are ROMable. A dstring literal used as the initialiser of a character
array if ROMable, but if the variable to be initialised is not a const-qualified

array of char | then the variable being initialised is ot ROMable:

const char *strl = "abc"; // both strl and “abc” are ROWabl e
char str2[] = "def"; /1 str2 is not ROwable

A compiler may achieve further space savings by sharing the representation of

string literalsin ROM. For example:

“abc”; // only one copy of “abc” needs
“abc”; /] to exist, and it is ROVable

const char* stril
const char* str2

Yet further possibilities for space saving exists if a string litera is identical to
the trailing portion of a larger string literal, as only the larger string litera is
necessary, as the smaller one can reference the common sub-string of the

larger. For example:

const char* strl ‘Hel lo Worl d”;
const char* str2 “Worl d”;

/1 Could be considered to be inplicitly:
const char* strl = “Hello Wrld”;
const char* str2 = strl + 6;

3.3.1.2 Compiler-generated objects
?? Jump tables for switch statements:

If a jump table is generated to implement switch statement, the table is
ROMable, since it consists of a fixed number of constants known at compile-
time.

?? Virtua function tables:

Virtual function tables of a class are usually ROMable.

Note: For some implementations, the virtual function tables may not be
ROMable where dynamic linking is involved, and the virtual function
tablesarein a shared library.

Note al so: It may be appropriate to discuss flash cards here, and how they can

introduce code into a system.

?? Type identification tables:

When a table is generated to identify RTTI types, the table is usualy
ROMable.

Note: For some implementations, the type identification tables may not be
ROMable where dynamic linking is involved, and the type
identification tables arein a shared library.

?? Exception tables:
When exception handling is implemented using a static table, the table is
usualy ROMable.

Note: For some implementations, the exception tables may not be ROMable
where dynamic linking is involved, and the exception tables arein a
shared library.

?? Reference to constants:
If a constant expression is specified as the initialiser for a const-qualified
reference, atemporary object is generated (81S-8.5.3).
This temporary object is ROMable, for example:
/1 The decl aration:
const double & a = 2.0;
/1 May be represented as:
static const double tnp = 2.0; // ‘“tnp’ is ROwable
const double & b = tnp;
7

Initialisers for aggregate objects with automatic storage duration:

If al theinitialisers for an aggregate object that has automatic storage duration
are constant expressions, a temporary object that has the value of the constant
expressions and a code that copies the value of the temporary object to the

aggregate object may be generated. This temporary object ROMable, for

example:
struct A {
int a;
int b;
int c;

b

void test() {
Aa={1,2,3};

}

/1 May be interpreted as:

void test () {
static const Atnmp = {1,2,3}; // ‘tnp’ is ROwable
Ab = tnp;

}

Thus, the instruction code for initialising the aggregate object can be replaced
by a simple bitwise copy, saving both code space and execution time.

?? Constants created during code generation:

Some literals such as integer literals, floating point literals and addresses can
be implemented as either instruction code or data. If they are represented as
data, then these objects are ROMable. For example:

void test() {
doubl e a;
a += 1.0;

}

/1 May be interpreted as:
void test () {
static const double tmpl = 1.0; // ‘tnpl’" is ROwable
const double *tnp2 = ;
doubl e a;
a += *tnmp2;

Editor’'sNote: Why does it need the intermediate ‘tmp2' ? | think that this would be
better interpreted as (quite apart from the undefined nature of adding
1. 0 to an un-initialised doubl e):
void test () {

static const double tnp = 1.0; // ‘tnp’ is ROwable
doubl e a;

a += tnp;

3.3.2 Constructors and ROMable Objects

In general, objects of classes with constructors must be dynamically initialised.
However, in some cases the initialisation could be performed if static analyses of the
constructors resulted in constant values being used. In this case, the object could be
ROMable. Similar analyses would need to be performed on the destructor.
class A {
int a;
public:
A(int v) : a(v) { }

}
const Atab[2] = {1, 2};

Editor’sNote: If sufficient analyses reveals that the object eventually gets a
particular value, and the program cannot detect whether it acquired
that value by constant or dynamic means, then it is quite legitimate
for it to be ROMable?*.

Furthermore, even if it is not a const object, the initialisation
“ pattern” may be ROMable, and bitwise copied to the object when it
isinitialised. For example:

class X {
int a;
char* p;
publi c:
A ()
ca(7)
{ std::cout << “Hello World” << std::endl”;
p="H"}

Ik

A not _const;

In this case, all objects are initialised to a constant value (the pair
{7,&"Hi”}). This constant initial value is ROMable, and the
constructor could perform a bitwise copy of that constant value and
the callsto the IOStream library.

3.4 Hard Real-Time Considerations

For most embedded systems, only a very small part of the software is really rea-time
critical. But for that part of the system, it isimportant to exactly determine the time a
specific piece of software needs to run. Unfortunately, this is not an easy analysis to
do for modern computer architectures using multiple pipelines and different types of
caches. Nevertheless, for alot of code sequencesit is still quite straightforward to do
aworst-case analysis.

Note (Detlef): Bjarne’'s Phrase goes here.

Editor’'sNote: What is“ Bjarne's Phrase” ?

2 Thisisan optimisation, and is subject to the so-called “ asif rule” (81S1.911)

This statement also holds for C++. Here is a short description of several C++ features
and their time predictability.

3.4.1 C++ Features for which an Accurate Timing Analysis is Easy

3.4.1.1 Templates

As pointed out in detall in 2.5, there is no real-time relevant overhead for calling
template functions or member functions of class templates. On the contrary,
templates often allow for better inlining and therefore reduce the overhead of the
function call.

If the function is a virtual function, the normal rules for virtual functions apply.

3.4.1.2 Inheritance

Converting a pointer to a derived class to a pointer to base-class? will not introduce
any runrtime overhead in most implementations (see 2.3.3). If there is an overhead
(very few implementations), it is a fixed number of machine instructions (typicaly
one) and can be easily tested with a test program. Being a fixed overhead, this
overhead does not depend on the deepness of the derivation.

3.4.1.2.1 Multiple-Inheritance

Converting a pointer to a derived class to a pointer to base class might introduce run
time overhead (see 2.3.4). This overhead is a fixed number of machine instructions
(typically one).

3.4.1.2.2 Virtual-Inheritance

Converting a pointer to a derived class to a pointer to a virtual base class will
introduce run-time overhead in most implementations (see 2.3.5). This overhead is
typically afixed number of machine instructions.

3.4.1.3 Virtual Functions

Calling avirtual function often does not produce any run-time overhead (see 2.3.3). If
it does, it will typically be a fixed number of machine instructions.

3.4.2 C++ Features, for which Real-Time Analysis is More Complex

The following features are often considered to be prohibitively slow for hard real-time
code sequences. But this is not always true. For one, the run-time overhead of these
features is often quite small, and on the other-hand even in the real-time parts of your
program, you might have quite a number of CPU cyclesto spend. And if you have a
complex job to do in your real-time code, a clean structure that allows for an easier
overall timing analysis is often better than a hand-optimised but complicated code — as
long as the former is fast enough. The hand-optimised code might run faster but is in
most cases more difficult to analyse correctly. And the features mentioned below
often alow for clearer designs.

22 guch a conversion is dso necessary if afunction is caled for a derived-class object that isimplemented in abase dass

3.4.2.1 Dynamic Casts

In most implementations, dynamic casts from a pointer (or reference) to base-class to
pointer (or reference) to derived-class (i.e. a downcast) will produce an overhead that
is not fixed but depends on the details of the implementation and there is no generd
rule to test the worst case.

The same is true for cross-casts (see 2.2).

As an dternate option to using dynamic-casts, you should consider the typeid
operator. If you know your target’s dynamic type exactly, thisis a much cheaper way
to check for it.

3.4.2.2 Dynamic Memory Allocation

Dynamic memory allocation has in typical implementations a run-time overhead that
is not easy to analyse. In most cases, for the purpose of rea-time analysis it is
appropriate to assume dynamic memory alocation (and a'so memory de-allocation) to
be non-deterministic.

The most obvious way to avoid dynamic memory allocation is to pre-allocate the
memory — either statically at compile- (or more correctly link-) time or during the
genera set- up-phase of your system. If you want to defer the initialisation, you can
pre-allocate raw memory and initialise it later using placement new.

If you really need to do dynamic memory allocation in your real-time code, you need
to use an implementation for which you know all the implementation details. The
best way to know all the implementation details is to write your own memory
alocation mechanism. This is easily done in C++ by overriding operator new in
your own class (or globally) or by providing an allocator argument in standard library
containers.

But in al cases, if you use dynamic memory alocation you need to consider the case
when no more memory is available.

3.4.2.3 Exceptions

Enabling exceptions for compilation may introduce overhead on each function call in
your code (see 2.4). In generd, it is not so difficult to analyse the overhead of
exception handling as long as you don't throw exception. But you should only enable
exception handling for real-time critical programs if you really use exceptions, and
therefore a complete analysis must always include the throwing of an exception, and
this analysis will always be implementation dependent. On the other hand, the
requirement to act within a deterministic time might loosen in the case of an exception
(e.g. you don’'t need to handle any more input from a device when a connection broke
down).

An overview of alternatives for exception handling is given in [Note (Detlef): Insert
Bjarne's new section]. But as shown there, all options have their run-time costs, and
throwing exceptions might till be the best way to deal with exceptional cases. And
as long as you don't throw a long way (i.e. if you only leave very few functions in
your throw), it might be even cheap in run-time.

| Note (Detlef): Isthislist complete?

3.4.3 Testing Timing

For those features that compile to a fixed number of machine instructions, the number
and nature of these instructions (and therefore an exact worst-case timing) can be
tested with a ssmple program that includes just this specific feature and then looking
at the created code. In genera, for those simple cases, optimisation should not make a
difference. But e.g. if avirtual function call can be resolved to a static function call at
compile time, the overhead of the virtual function call will not show up in the code.

So, you need to make sure that you really test what you want to test.

For the more complex cases, testing the timing is not so easy. Compiler optimisation
can make a big difference, and a simple test case might produce completely different
code than the real production code. To test those cases, you must really know the
details for your specific implementation. Given this information, you can normally
produce test programs that produce code from which you can correctly derive the
timing information you need.

4 Embedded Systems— Special Needs

41 BASIC I/O-HARDWARE ADDRESSING

411 Scope

As the C language has matured over the years, various extensions for accessing basic
I/O-Hardware (iohw) registers have been added to address deficiercies in the
language. Today almost all C compilers for freestanding environments and embedded
systems support some method of direct access to iohw registers from the C source
level. However, these extensions have not been consistent across dialects. As a
growing number of C++ compiler vendors are now entering the same market, the
same |/O driver portability problems become apparent for C++.

This report provides an approach to codifying common practice and providing a
single uniform syntax for basic iohw register addressing.

4.1.2 Rationale

Idedlly, it should be possible to compile C or C++ source code that operates directly
on iohw registers with different compiler implementations for different platforms and
get the same logical behaviour at runtime. As a simple portability goal, the driver
source code for some given 1/O-Hardware should be portable to all processor
architectures where the hardware itself can be connected.

The problem areas are the same for C and C++, and the standardization method
proposed is goplicable for both languages. A proposed iohw addressing interface for
the C language is described in:

Technical Report | SO/IEC WDTR 18037

“ Extensions for the programming language C to support embedded
processors”

Although this interface is based on C nacros, the C++ language provides features
which make it possible to create more efficient and flexible implementations of this
interface, while maintaining /O driver source code portability.

4.1.3 Basic Standardisation Objectives

A standardisation method for basic I/0O-Hardware addressing must be able to fulfil
three requirements at the same time:

?? A standardised interface must not prevent compilers from producing machine
code that has no additional overhead compared to code produced by existing
proprietary solutions. This requirement is essentia in order to get widespread
acceptance from the embedded programming community.

?? The 1/O driver source code modules should be completely portable to any
processor system without any modifications to the driver source code being

required [i.e. the syntax should promote I/O driver source code portability
across different execution environments) .

?? A standardised interface should provide an “encapsulation” of the underlying
access mechanisms to allow different access methods, different processor
architectures, and different bus systems to be used with the same 1/O driver
source code [i.e. the standardisation method should separate the characteris-
tics of the 1/O register itself from the characteristics of the underlying
execution environment (processor architecture, bus system, addresses,
alignment, endian, etc.)] .

4.2 Basic I/O-Hardware Addressing Header — <ciohw>

The purpose of the iohw access functions defined in the iohw header file is to promote
portability of iohw driver source code across different execution environments.

4.2.1 Overview and Principles

The iohw access functions create a simple and platform independent interface between
I/O driver source code and the underlying access methods used when addressing the
I/O registersin a given platform.

The primary purpose of the interface is to separate characteristics which are portable
and specific for a given 1/O register, for instance the register bit width; from
characteristics which are related to a specific execution environment, such as the 1/O
register address; processor bus type and endian; device?® bus size and endian, address
interleave; compiler access method; etc. Use of this separation principle enables 1/0
driver source code itself to be portable to al platforms where the 1/0 registers can be
connected.

In the driver source code, an 1/0 register must always be referred to using a symbolic
name. The symbolic name must refer to a complete definition of the access method
used with the given register. A standardised 1/0O syntax approach creates a
conceptually simple model for /O registers:

symbolic name for I/O register ? complete definition of the access method
When porting the 1/0O driver source code to a new platform, only the definition of the
access method (definition of the symbolic name) needs to be updated.

4.2.2 The Abstract Model
The standardisation of basic iohw addressing is based on a three layer abstract mode!:

? The users portable source code
? Theusers /O register definitions
? The vendors iohw implementation

3 |nthis document, the termdevice is used to mean either a discretel/O chip or an 1/O function block in asingle chip processor
system. The data bus width has significance to the access method used for the 1/0 device.

The top layer contains the I/O driver code written by the compiler user. The source
code in this layer is fully portable to any platform where the 1/0-Hardware can be
connected. This code may only access iohw registers via the standardized functions
described in this section. Each /O register must be identified using a symbolic name.

The bottom layer is the compiler vendors implementation of the <ci ohw> header. It
provides prototypes for the functions defined in this section and specifies the various
access methods supported by the given processor and platform architecture (access
methods refers to the various ways of connecting and addressing 1/O registers or 1/0
devices in the given processor architecture).

Appendix A: contains some general considerations that should be addressed when a
compiler vendor implements the iohw functionality.

The middle layer contains the users specification of the symbolic 1/0 register names
used by the source code in the top layer. This layer associates the symbolic names
with access-specifications for the 1/O register on the given platform. The syntax
notation and access-specification parameters used in this layer are specific to the
platform architecture and are defined by the compiler vendor in the <ci ohw> header.
The user must update these 1/O register access-specifications when the 1/O driver
source code is ported to a different platform.

Appendix B: proposes a generic C++ syntax for 1/O register access-specifications.
Using a general syntax on this layer may extend portability to include users 1/0
register specification, so it can be used with different compiler implementations for
the same platform.

4.2.2.1 TheModule Set

A typical /O driver operates with a minimum of three modules, one for each of the
abstraction layers. For example, it is convenient to locate al 1/0O register name
definitions in a separate header file (called " i ohw_t a. h” in this example):

1. 1/O Driver Module

? Thel/O driver source code

? Portable across compilers and platforms
? Includes <ci ohw> gnd “i ohw_t a. h”

2. <ci ohw>
? Defines I/O functions and access methods

? Typically specific for a given compiler
? Implemented by the compiler vendor

3. “iohw_ta.h”

? Defines symbolic 1/O register names and their corresponding access
methods

? Specific to the execution environment

? Implemented and maintained by the programmer

And might be used as follows:

#i ncl ude <ci ohw>
#i ncl ude “iohw_ ta.h” Il ny 1/Oregister definitions for target

unsi gned char nybuf[10];
/...

i ow (MYPORT1, 0x8); /1 wite single register
for (int i =0; i < 10; i++)
nmybuf[i] = iordbuf (MYPORT2, i); [// read register array

The programmer only sees the characteristics of the I/O register itself. The
underlying platform, bus architecture, and compiler implementation do not matter
during driver programming. The underlying system hardware may later be changed
without modifications to the 1/0 driver source code being necessary.

4.2.3 1/0 Register Characteristics

The principle behind the <ciohw> interface is that all 1/0O register characteristics
should be visible to the driver source code, while all platform specific characteristics
are encapsulated by the header files and the underlying <ci ohw> implementation.

1/O registers often behave differently from the traditional memory model. They may
be “read-only”, “write-only” or “read- modify-write’, often read and write operations
are only allowed once for each event, etc.

All such 1/0 register specific characteristics should be visible at the 1/O driver code
level and should not be hidden by the <ci ohw> interface implementation.

4.2.4 The Most Basic I/0O Operations
The most common operaions on I/O-Hardware registers are “read” and “write’.

Bit-sat, bit-clear and bit-invert of individual bits in an iohw register are aso
commonly used operations. Many processors have special machine instructions for
doing these.

For the convenience of te programmer, and in order to promote good compiler

optimisation of bit operations, the basic logical operations “or”, “and” and “xor” are
defined by the <ci ohw> interface in addition to “read” and “writé€’.

All other arithmetic and logical operations used by the driver source code can be built
on top of these few basic I/O operations.

4.2.5 The access-specification

The access-specifications defined in the header <ci ohw> are wsed only as parameters
in the functions for defining 1/O register access.

The access_spec parameter represents or references a complete description of how
the iohw register should be addressed in the given hardware platform. It is an abstract
data type with awell-defined behaviour?.

24 This use of an abstract datatypeis similar to the philosophy behind the well-known F! LE typein C. Some general properties

for FI LE and streams are defined in the Standard, but the Standard deliberately avoids describing how the underlying file system
should be implemented.

The definition method and the implementation of access-specifications are processor
and platform specific.

In general, an access_spec definition will specify a least the following
characteristics:

? Register size (mapping to adata type)
? Access limitations (read-only, write-only)
? Busaddress for register

Other access characteristics typically specified viathe access_spec:

? Processor bus (if more than one)

Access method (if more than one)

I/O register endian (if register width is larger than the device bus width)
Interleave factor for 1/O register buffers (if bus width for the device is smaller)
User supplied access driver functions

N) N N

The definition of an /O register object may or may not require a memory
instantiation, depending on how a compiler vendor has chosen to implement access-
specifications. For maximum performance, this could be a simple definition based on
compiler specific address range and type qualifiers, in which case no instantiation of
anaccess_spec object would be needed in data memory.

See aso Appendix A:for further details and implementation considerations.

4.3 The <ciohw> Interface

The header <ci ohw> declares several functions, which together create a data-type-
independent interface for basic iohw addressing. The provider of <ciohw> may
choose to use inline functions, macros or function-templates to implement these
functions. 1/O driver modules using the functions defined by this header can
potentially be compiled with both C and C++ compilers.

Editor’sNote: Why is it a requirement that the C++ Hardware 1/O has to be C
compatible?

4.3.1 Functions for Single Register Access
Synopsis:

#i ncl ude <ci ohw>

/...

iord(access_spec)

iow(access_spec, value
ioor(access_spec, value
i oand(access_spec, value
i oxor(access_spec, val ue

—

Description:

These names map an iohw register operation to an underlying (platform specific)
implementation which provides access to the 1/O register identified by access_spec,
and perform the basic operations READ, VRI TE, OR AND or XCR as identified by the
function named on this register.

The data type (the I/O register size) for value parameters and the value returned by the
functioni or d are defined by the access-specification definition for the given register.
The functionsi owr i oor ioand gndi oxor do not return avalue.

4.3.2 Functions for Register Buffer Access
Synopsis:

#i ncl ude <ci ohw>

/...

i ordbuf (access_spec, index)

i ow buf (access_spec, index, value)
i oorbuf(access_spec, index, value)
i oandbuf (access_spec, index, value)
i oxor buf (access_spec, index, value)

Description:

These names map an iohw register buffer operation to an underlying (platform
specific) implementation which provides access to the |/O register buffer identified by
access_spec, and perform the basic operations READ, VRI TE OR AND or XOR as
identified by the function named on this register.

The data type (the I/O register size) for value parameters and the value returned by the
function iordbuf is defined by the access-specification definition for the given
register. The functions i owr buf i oorbuf i oandbuf gnd i oxorbuf do not return a
value.

Thei ndex parameter is an offset in the register buffer (or register array) starting from
the 1/0O location specified by access_spec, where element O is the first element
located at the address defined by access_spec, and element n+1 is |located at a higher
address than element n.

It should be noted that the i ndex parameter is the offset in the iohw buffer, not the
processor address offset. Conversion from a logical index to a physica address
requires that interleave calculations are performed by the underlying implementation.
This is discussed further in A.2.2.

4.3.3 Functions for aCCe€SS_SPEC |nijtialisation
Synopsis:

#i ncl ude <ci ohw>

/...

io_at_init(access_spec)
io_at_rel ease(access_spec)

Description:

Theio_at_init function maps to an underlying (platform specific) implementation,
which provides any access-specification specific initialisation before performing any
other operation on the /O register (or set of 1/0 registers) identified by access_spec,
This call should be placed in the driver source code so that it is invoked at least once
before any other operations on the related registers are performed. This function does
not return a value.

The io_at_release function maps to an underlying (platform specific)
implementation which releases any resources obtained by a previous cal to
io_at_init for the same access-specification. This call should be placed in the
driver source code so it is invoked once after all operations on the related registers
have been completed. This function does not return a value.

For example:

In an implementation for a hosted environment, the call toi o_at _init jsysed
to identify the point in an execution sequence where the underlying access
method should obtain, or have obtained, a handle from the operating system.
This handle is used in al following access operations on the 1/O register. The
cdl to io_at_exit identifies the point in an execution sequence where the
handle can be returned to the operating system.

If a set of memory mapped 1/0 registers is specified to use based addressing,
then the underlying implementation would dynamically obtain the base
address for the 1/0 range from the operating system when io_at_init js
invoked (i.e. when the base pointer isinitialised). During all the following 1/0
access operations, the I/O register address is calculated as (base-address + 1/0O
register offset). The underlying implementation later releases the memory
rangewhenio_at_exit jsinvoked.

If no access-specification specific initiaisation is required by a given <ciohw>
implementation, theio_at _init gndio_at_rel ease definitions may be empty.

In C++, the implementation may use a class whose constructor and destructor
implement this functionality.

4.3.4 Functions for aCCe€SS_SpPeC Copying
Synopsis:

#i ncl ude <ci ohw>

/...
io_at_cpy(access_spec dest, access_spec src)

Description:

This function maps to an underlying (platform specific) implementation, which copies
the dynamic part of the source access_spec to the destination access_spec, The
two parameters must have the same access-specification type. This function does not
return a value.

If access-specification copying is not supported by a given <ci ohw> implementation,
or a given access-specification does not contain any dynamic elements, the
io_at _cpy function may be empty.

A typical use for i o_at_cpy iswhen a set of driver functions for a given 1/0O device
type are used with multiple instances of the same hardware device. It often provides a
faster alternative than passing the access_spec as a function parameter.

For example:

#i ncl ude <ci ohw>
#i nclude “iohw ta.h” [/ MYDEV_CFG and MYDEV_DATA are defined
/1 relative to a dynam c MYDEV_BASE

/'l Portable driver function
uint8_t my_device_driver(void)
{
i ow (MYDEV_CFG, 0x33);
return iord(MYDEV_DATA) ;

}

/1 Users driver application

uint8 t di,dz;

/1 Read fromour 2 I/O devices
io_art_cpy(MYDEV_BASE, DEVICEl); // Select device 1
dl = ny_device_driver();

io_art_cpy(MYDEV_BASE, DEVICE2); // Select device 2
d2 = ny_device_driver();

Appendix A: I mplementing <ciohw>

(A guide for implementers)

A.1 Purpose

The <ci ohw> header defines a standardised function syntax for basic 1/0-Hardware
(iohw) addressing. This header would normally be provided by the compiler vendor.

While a standardised function syntax for basic iohw addressing provides a smple,
easy-to-use method for a programmer to write portable and hardware-platform-
independent 1/O driver code, the <ciohw> header itself may require careful
consideration to achieve an efficient implementation.

This section gives some guidelines for implementers on how to implement the
<ci ohw> header in a relatively straightforward manner given a specific processor and
bus architecture.

A.l.l Recommended Steps
Briefly, the recommended steps for implementing the <ci ohw> header are;

?? Get an overview of al the possible and relevant ways the iohw register is
typicaly connected with the given bus hardware architectures, and get an
overview of the basic software methods typically used to address such iohw
registers.

?? Define a number of functions, macros and access-specifications which support
the relevant 1/0 access methods for the intended compiler market.

?? Provide away to select theright 1/0O function at compile-time and generate the
right machine code based on the access-specification type or the access-
specification value.

A.1.2 Compiler Considerations

In practice, an implementation will often require that very different machine code is
generated for different 1/O access cases. Furthermore, with some processor
architectures, iohw access will require the generation of specia machine instructions
not typically used when generating code for the traditional C or C++ memory model.

Selection between different code generation alternatives must be determined solely
from the access-specification declaration for each 1/0 register. Whenever possible,
this access method selection should be implemented such that it may be determined
entirely at compile-time, in order to avoid any runtime or machine code overhead.

For a compiler vendor, selection between code generation aternatives can always be
implemented by supporting different intrinsic access-specification types and
keywords designed specially for the given processor architecture, in addition to the
Standard types ard keywords defined by the language.

However, with a conforming C++ compiler, an efficient, al-round implementation of
the <ci ohw> header can usually be made using template functionality. A template-
based solution allows the number of compiler specific intrinsic 1/0 types or intrinsic
I/O functions to be minimized or even removed completely, depending on the
processor architecture.

For compilers not supporting templates (such as C compilers) other implementation
methods must be used. In any case, at least the most basic iohw functionality can be
implemented efficiently using a mixture of macros, inline functions and intrinsic
types or functions. Fully featured iohw implementations will usually require direct
compiler support (or using extensions to the language).

Fully featured, zero-overhead implementations of <ci ohw> can be done using
templates. An approach to doing thisis discussed in Appendix B..

A.2 Overview of I/O Hardware Connection Options

The various ways of connecting an /O register to processor hardware are determined
primarily by combinations of the following three hardware characteristics:

?? The bit width of the logical 1/0 register
?? The bit width of the data-bus of the 1/0O device
?? The bit width of the processor-bus

A.2.1 Multi-Addressing and I/O Register Endian

If the width of the logical 1/O register is greater than the width of the I/O device data
bus, an /O access operation will require multiple consecutive addressing operations.

The 1/0 register endian information describes whether the MSB or the LSB byte of
thelogical 1/0 register is located at the lowest processor bus address.

(Note that the 1/0O register endian has nothing to do withthe endian of the underlying
processor hardware architecture).

Table: Logical 1/O register / 1/0 device addressing overview’

I/0O device bus widths
Logical I/0 _]] _ _]]]
register widths 8-bit device bus 16-bit device bus 32-bit device bus 64-bit device bus
LSB-MSB MSB-LSB LSB-MSB MSB-LSB LSB-MSB MSB-LSB LSB-MSB MSB-LSB
8-bit register Direct na na na
16-hit register r8{0-1} | r8{1-0} Direct na na
32-bit register rg{0-3} r8{ 3-0} r16{0-1} | r16{1-0} Direct na
64-bit register r8{0-7} r8{7-0} | r16{0-3} | r16{3-0} | r32{0-1} | r32{1-0} Direct

(For byte-aligned address ranges)

% Note, that this table describes some common bus and register widths for I/O devices. A given hardware platform may use
other register and bus widths.

A.2.2 Address Interleave

If the size of the I/O device data bus is less than the size of the processor data bus,
buffer register addressing will require the use of address interleave.

For example:

If the processor architecture has a byte-aligned addressing range with a 32-bit
processor data bus, and an 8-bit 1/0 device is connected to the 32-bit data bus, then
three adjacent registersin the 1/0 device will have the processor addresses:

<addr + 0>, <addr + 4>, <addr + 8>

This can also be written as

<addr + interleave*0>, <addr + interleave*1> <addr + interleave*2>

where interleave = 4.

Table: Interleave overview: (busto businterleave relationship)

1/O device bus Processor buswidth
widths 8-bit bus 16-bit bus 32-bit bus 64-bit bus
8-bit device bus interleave 1 interleave 2 interleave 4 interleave 8
16-bit device bus n/a interleave 2 interleave 4 interleave 8
32-bit device bus n/a n/a interleave 4 interleave 8
64-bit device bus n/a n/a n/a interleave 8

(For byte-aligned address ranges)

A.2.3

The two tables above when combined show all relevant cases for how 1/O hardware

/O Connection Overview:

registers can be connected to a given processor hardware bus, thus:

Table: Interleave between adjacent 1/O registersin buffer

Device bus Processor data bus width
1/0
Register LB No. Width=8 Width=16 Width=32 Width=64
width Width MB Oper -
ations. sizel size2 size4d size8
8-hit 8-hit na 1 1 2 4 8
) LSB 2 2 4 8 16
) 8-hit
16-bit MSB 2 2 4 8 16
16-hit na 1 na 2 4 8
) LSB 4 4 8 16 32
8-hit
MSB 4 4 8 16 32
32-hit
LSB 2 na 4 8 16
16-bit
MSB 2 na 4 8 16
32-hit na 1 na na 4 8
. MSB 8 8 16 32 64
8-hit
LSB 8 8 16 32 64
LSB 4 na 8 16 32
. 16-bit
64-bit MSB 4 na 8 16 2
LSB 2 na na 8 16
32-hit
MSB 2 na n‘a 8 16
64-bit na 1 na na na 8
(For byte-aligned address ranges)

A.2.4 Generic Buffer i ndex

The interleave distance between two logically adjacent registers in an 1/O register
array can be calculated fronr®:

?? The size of thelogical 1/0 register in bytes
?? The processor data bus width in bytes
?? The device data bus width in bytes

28 por systems with bytealigned addressing.

Conversion from 1/O register index to address offset can be calculated using the
following general formula

Address_of fset = index *
sizeof (logical _IOregister) *
si zeof (processor_data_bus) /
si zeof (devi ce_data_bus)

Assumptions:

N N))

~J

A3

bytes are 8-bits wide

address range is byte-aligned

data bus widths are a whole number of bytes

width of the! ogi cal _I O_regi ster jsgreater than or equal to the width of the
devi ce_dat a_bus

the width of the device data bus s |ess than or equa to the
processor _dat a_bus

access-specifications for Different I/O Addressing
Methods

An implementer should consider the following typical addressing methods:

?? Addressisdefined at compiletime:

The addressis a constant. Thisisthe simplest case and also the most common
case with smaller architectures.

Base addressinitialised at runtime:

Variable base-address + constant-offset i.e. the access-specification must
contain an address pair (address of base register + offset of address).

The user-defined base-address is normally initialised at runtime (by some
platform-dependent part of the program). This also enables a set of 1/0 driver
functions to be used with multiple instances of the same iohw.

I ndexed bus addressing:

Also called orthogonal or pseudo-bus addressing. This is a common way to
connect a large number of /O registers to a bus, while still occupying only a
few addresses in the processor address space.

This is how it works: first the index-address (or pseudo-address) of the I/O
register is written to an address bus register located at a given processor
address. Then the data read/write operation on the pseudo-bus is done via the
following processor address, i.e. the access-specification must contain an
address pair (the processor-address of the indexed bus, and the pseudo-bus
address (or index) of the I/O register itself).

This access method also makes it particularly easy for a user to connect
common |/O devices that have a multiplexed address/data bus, to a processor
platform with non multiplexed busses, using a minimum amount of glue logic.
The driver source code for such an I/O device is then automatically made
portable to both types of bus architecture.

?7? Access via user-defined access driver functions:

These are typically used with larger platforms and with small single-chip
processors (e.g. to emulate an external bus). In this case, the access
specification must contain pointers or references to access functions.

The access driver solution makes it possible to connect a given 1/O driver source
library to any kind of platform hardware and platform software using the appropriate
platform-specific interface functions.

In general, an implementation should aways support the ssimplest addressing case,
whether it is the constant-address or base-address method that is used will depend on
the processor architecture. Apart from this, an implementer is free to add any
additional cases required to satisfy a given domain.

Because of the different number of parameters required and parameter ranges used in
an access-specification, it is often convenient to define a number of different access-
specification formats for the different access methods.

A.4 Atomic Operation

It is a requirement of the <ci ohw> implementation, that in each 1/O function, a given
(partial®”) 1/0 register is addressed exactly once during a read or a write operation and
exactly twice during a read-modify-write operation.

It is recommended that each 1/O function in an <ciohw> jmplementation, be
implemented such that the 1/O access operation becomes atomic whenever possible.

However, atomic operation is not guaranteed to be portable across platforms for read-
modify-write operations (i oor , i oand i oxor) or for multi-addressing cases.

The reason for this is simply that many processor architectures do not have the
instruction set features required for assuring atomic operation.

A.5 Read-Modify-Write Operations and Multi-Addressing

In general, read-modify-write operations should perform a complete “read” of the 1/0
register, followed by the modify operation, and concluded by a complete “write” to
the 1/0 register.

It is therefore recommended that an implementation of multi-addressing cases should
not use read-modify-write machine instructions during partial register addressing
operations.

The rationale for this restriction is to use the lowest common denominator of multi-
addressing hardware implementations in order to support the widest possible range of
iohw register implementations.

For instance, more advanced multi-addressing /O register implementations often take
a snap-shot of the whole logical 1/0 register when the first partial register is being
read, so that data will be stable and consistent during the whole read operation.

27 A 32-hit logical register in adevice with an 8-bit data bus contains 4 partial 1/O registers.

Similarly, write registers are often “double-buffered”, so that a consistent data set is
presented to the internal logic at the time when the access operation is completed by
the last partial write.

Such hardware implementations often require that each access operation be completed
before the next access operation is initiated.

A.6 /O Initialisation

With respect to the standardisation process, it is important to make a clear distinction
between 1/O-Hardware (device) related initiaisation, and platform related
initialisation. Typically, three types of initialisation are related to 1/0 handling:

? 1/O-Hardware (device) initialisation
? 1/O accessinitialisation
? 1/O device selector initialisation

Here only 1/0 access initialisation and 1/0 device selector initialisation are relevant
for basic iohw addressing:

Editor’sNote: What it “ I/O device selector” ? The term is not defined. |

iohw initialisation: is a natural part of a hardware driver, and should always be
considered part of the 1/O driver application itself. This initialisation is done
using the standard functions for basic iohw addressing. iohw initidisation is
therefore not a topic for the standardisation process.

/O access initialisation: concerns the initialisation and definition of access_spec
objects themselves.

This process is implementation defined. It depends on both the platform and the
processor architectures, and also on which underlying access methods are
supported by the <ci ohw> jmplementation.

The function:

io_at_init(access_spec)
can be used as a portable way to specify in the source code where and when
such initialisation should take place.

/O device selector initialisation: is used when, for instance, the same 1/O driver
code needs to service multiple iohw devices of the same type.

A common possible solution is to define multiple access-specification objects,
one for each of the iohw devices, and then have the access-specification passed
to the driver functions from the calling function.

Another solution is to use access-specification copying, and access
specifications with dynamic access information. The function:

io_at_cpy(access_spec dest, access_spec src)

provides a portable way to do this.

With most freestanding environments and embedded systems, the platform hardware
iswell defined; so all access-specifications for 1/O registers used by the program can
be completely defined at compile-time. For such platforms, standardised 1/0O access
initialisation is not an issue.

With larger processor systems, iohw is often alocated dynamically at runtime. Here

the access-specification information can only be partly defined at compile-time.
Some platform dependent part of the software must be initialised at runtime.

When designing the access_spec gbjects, a compiler implementer must therefore
make a clear distinction between static information and dynamic information; i.e.

what can be defined and initialised at compile-time, and what must be initialised at
runtime.

Depending on the implementation method, and depending on whether the
access_spec objects need to contain dynamic information, the access_spec objects
may or may not require instantiation in data memory. Better execution performance
can usualy be achieved if more of the information is static.

Appendix B: Generic access
specification for iohw
Addressing

B.1 Generic access-specification Descriptor

This chapter proposes consistent and complete specification syntax for defining 1/0
registers and the access method parameters.

Prior art has used a number of (intrinsic) memory type qualifiers or specia keywords,
which have varied from compiler to compiler and from platform to platform. The
syntax described below represents an alternative approach and a super-set solution,
intended to replace prior art.

For optimal performance, the compiler should pick the right access method
implementation at compile-time based on the access-specification type. This can be
achieved in C++ by using t ypedef s and template specialisations.

B.2 Syntax Specification
access_spec specification:

typedef ACCESS METHOD_CLASS NAME < parameter list >
SYMBOLIC_PORT _NAME;

parameter list:
access method independent parameter list , access method specific parameter list

access method independent parameter list:

type for 1/O register value (size of 1/0 register) ,
access limitation type,
1/0 register device bustype (size and endian of 1/O device bus)

type for 1/O register value (size of /O register):

uint8 t

uintl6 t

uint32_t

uint64 t

bool

(+ optionally any basic type native to the implementation)

access limitation type: // for compile-time diagnostic

rmw_e /l read_modify_write
rw e /l read write
wo_e I/l write_only

ro_e /I read_only

I/O register device bus type:

device8 I register width = device buswidth = 8 hit

devices| /l register width > device buswidth, MSB on low address
device8h /I register width > device buswidth, MSB on high address
devicel6 Il register width = device bus width = 16 bit

devicel6l /I register width > device bus width, MSB on low address
devicel6h /I register width > device bus width, MSB on high address
device32 /I register width = device bus width = 32 bit

device32 /I register width > device bus width, MSB on low address
device32h /I register width > device bus width, MSB on high address
device64 /I register width = device buswidth = 64 bit

(+ optionally any bus width native to the implementation)

access method specific parameter list:

/I Depends on the given access method. Examples are given later.
/I Threetypical parameters are:

primary address constant ,

processor bus width type,

address mask constant

processor bus width type:

bw8 // 8 bit bus

bw16 /1 16 bit bus
bw32 Il 32 bit bus
bw64 I/ 64 bit bus

(i.e. any bus widths native to the implementation)

B.2.1 Bus Connection Parameters

The possible I/O register to bus connections can be completely specified using only
two parameters:

? A bus parameter, which specifies the access relationships between the 1/0
device data bus and the processor data bus

? A multi-addressing and endian parameter, which specifies the access
relationships between the logical 1/0 register and the 1/0 device data bus

For example, a possible definition of general 1/O register connection types might be:

enum bus_t { bw8 = 1, bwl6 = 2, bw32 = 4, bwe4 = 8 };
enum devi ce_t { device8, devi ce8l, device8h, devicel6, devicel6l
devi cel6h, device32, device32l, device32h, device64 };

For another example, an implementation for a given processor architecture may only
support a subset of the /O register connection types. Possible I/O register
connections with the processor H8/300H (supporting only an 8bit and a 16-bit
processor data bus):

enum bus_t { bw8 = 1, bwl6 = 2 };

enum devi ce_t { device8, device8l, device8h, devicel6, devicel6l,
devi cel6h };

B.2.2 Detection of Read / Write Violations in I/O Registers

The access-specifications can specify a limitation parameter, which makes it possible
to detect illegal use of an 1/O register at compile-time.

The minimal parameter set for aread / write limitation specification would be:

?? Defined as Read-Modify-Write register (behaves like a RAM cell)

?? Defined as Read and Write register (read value may be different from write
value)

?? Defined as Write-Only register

?? Defined as Read-Only register

Table: Allowed operations on different 1/O register types:

iowr iord loor ioand ioxor

Read-Modify-Write rmw_e Yes Yes Yes Yes Yes
Read-and-Write rw_e Yes Yes No No No
Write-Only wo_e Yes No No No No
Read-Only ro_e No Yes No No No

The “not-allowed” cases should generate some kind of error message at compile-time.
With a template implementation of <ci ohw>, the compiler will typically diagnose that
no matching function-template can be found for the “not-allowed” cases.

For example:

/1 --- part of the <ciohw> header

/1

/1 Define a type to validate I/O register access

enum rw_t /1l Access node type

{
rnmw_e, /! Read-Mdify-Wite access
rw_e, /1 Read-and- Wite access
wo_e, /1 Wite-Only access
ro_e /! Read-Only access

|

/1 Include ‘exact-width’ integer types (defined in the header
/1l *stdint.h’ in C
#include <stdint.h> // O possibly <cstdint>%®
/1 Define access_spec tenplate for direct addressing
tenplate <class T, rw_t access, device_t devicetype,
address_t address, bus_t busw dth>
class 1OM{ };

%850 C++ was ratified in 1997. At that time, the header file <St di Nt > was not present in 1S0 C, and was added to 1SO C
in 1999. The naming convention used for C headers by 1SO C++ would result in this being known as <¢st di nt >,

/] --- part of the "“iohw_ta.h” header

I

/1 User declaration of I/Oregisters in platform

typedef 1O MM <uint8_t, wo_e, device8, 10200, bwd> WR _PORT;
typedef 1O MM <uint8_t, ro_e, device8, 20400, bw8> RD PORT;
typedef 1O MM <uint8_t, rmw_ e, device8, 20800, bw8> RDWR _PORT;

/1 --- portable user code

uint8_t nyval;

nyval = iord(RD_PORT); /1 ok

nyval += i ord(RDWR_PORT) ; /1 ok

i ow (WR_PORT, nyval) ; /1 ok

i ow (RDWR_PORT, 0x45) ; /1 ok

myval = iord(WR_PORT); /1 1l1legal, generate conpile-tine error
i ow (RD_PORT, 0x55) ; /1 1llegal, generate conpile-tine error

B.2.3 access-specifications for Different Processor Busses

An implementation must define at least one access method for each processor
addressing range. If the processor architecture has multiple different addressing
ranges (i.e. it requires different sets of machine instructions for the different busses),
each addressing range should have its own set of access-specifications.

For example, on the 80x86 family, an implementation must define at least two sets of
access methods; one for the memory-mapped range, and another for the 1/0 mapped
range:

typedef uint32_t address_t; /1 Menory-mapped address range
typedef uintl1l6_t io_addr_t; /1 10 mapped address range

tenplate <class T, rw_t access, device_t devicetype,
address_t address, bus_t busw dth>
class 1OM{ };
tenplate <class T, rw_t access, device_t devicetype,
i o_addr _t address, bus_t busw dt h>
class 1O IOV { };

B.24 access-specifications for Different 1/O Addressing
Methods

If several different access methods are supported for a given address range, then an
access-specification must exist for each access method.

For example:
/1 Define types used in access_spec declarations
typedef uint32_t address_t; /1 Menory mapped address range
typedef uint8_t sub_address_t; // Sub address on indexed bus
typedef uintl6_t io_addr_t; /1 User 1/O driver address
typedef uint8_t bit_pos_t; /1 Bit position in register

/1 Define access_spec tenplate for direct addressing
tenplate <class T, rw_t access, device_t devicetype,
address_t address, bus_t busw dth>
class 1OM{ };

/'l Define access_spec tenplate for addressing via base register
tenplate <class T, rw_t access, device_t devicetype,
address_t* base, address_t offset, bus_t busw dth>
class 10O MM BASE { };

/1 Define access_spec tenplate for indexed bus addressing
tenplate <class T, rw_t access, device_t devicetype,
address_t address, sub_address_t idx, bus_t busw dt h>
class 1O MM IDX { };

/1 Define access_spec for user-supplied access driver functions
tenpl ate<class T, rw_t access, io_addr_t address,
T iord(io_addr_t address),
void iow(io_addr_t address, T val)>
class 1O MM DRV { };

/1 Define access_spec for direct addressing of bit in register

tenpl ate<class T, rw_t access, device_t devicetype,
address_t address, bit_pos_t bitpos, bus_t buswi dth>

class IOMMBIT { };

B.2.5 Optimisation Possibilities for Typical Implementations

B.25.1 Pre-Calculation of Constant Expressons

A high performance compiler would resolve all constant expressions at compile-time.
Using i nli ne functions, both interleave factors and constant buffer indices would be
folded into the address value(s) used in the machine code.

Therefore, the following two 1/0O write statements would result in exactly the same
machine code:

i ow (PORT1, 0x33);
i ow buf (PORT1, 0, 0x33);

An implementation can take advantage of this, because the number of 1/0 functions
that have to be implemented can be reduced with no efficiency penalty using simple
delegation, possibly using macro definitions such as:

#define i ow (access_spec,val) iow buf(access_spec, 0, (val))

or equivaent inline-functions or function-templates.

B.25.2 Multi-Addressing and Endian

Typical candidates for platform dependent optimisations are 1/0 functions for the
multi-addressing cases (logical 1/O register width > 1/O device bus width) where the
width of the device data bus matches the width of the processor data bus; e.g. the
combinations of :

? (device8h or device8l) and bw8
? (devicel6h or devicel6l) and bwl6
? (device32h or device32l) and bw32

In these cases, multi-byte access can often use data types that are directly supported
by the processor for either the LSB or MSB endian functions. The other endian
functions can often be implemented efficiently using one load or store operation, plus
one or more register swap operations.

Appendix C: Bibliography

Alexander, Rene, and Graham Bensley
C++ Footprint and Performance Optimization
Sams Publishing, 2000

More genera than the Bulka-Mayhew book, and omits any mention of the
containers and agorithms in the C++ Standard Library.

Bentley, Jon Louis
Writing Efficient Programs
Prentice-Hall, Inc., 1982

Unfortunately out of print, but a classic catalogue of techniques that can be
used to optimise the space and time consumed by an application (often by
trading one resource to minimise use of the other). Because this book predates
the public release of C++, code examples are given in Pascal.

“The rules that we will study increase efficiency by making changes to a
program that often decrease program clarity, modularity, and robustness.

When this coding style is applied indiscriminately throughout a large system
(as it often has been), it usually increases efficiency slightly but leads to late
software that is full of bugs and impossible to maintain. For these reasons,
techniques at this level have earned the name of "hacks'.... But writing
efficient code need not remain the domain of hackers. The purpose of this
book isto present work at thislevel as a set of engineering techniques.”

Bulka, Dov, and David Mayhew
Efficient C++: Performance Programming Techniques

Addison-Wesley, 2000

Contains many specific low-level techniques for improving time performance,
with measurements to illustrate their effectiveness.

"If used properly, C++ can yield software systems exhibiting not just
acceptable performance, but superior software performance.”

Cusumano, Michael A., and David B. Yoffie
What Netscape L earned from Cross-Platform Softwar e Devel opment
Communications of the ACM, October 1999.

Faster runtime performance brings commercial advantage, sometimes enough
to outweigh other considerations such as portability and maintainability (an
argument also advanced in the Bulka-Mayhew book).

Embedded C++ Technica Committee
Embedded C++ Language Specification, Rationale, & Programming Guidelines

http://ww. caravan. net/ec2pl us

EC++ is a subset of Standard C++ that excludes some significant features of
the C++ programming language, including:

? exception handling (EH)

runtime type identification (RTTI)
templates

multiple- inheritance (M1)
namespaces

N)))

Glass, Robert L
Softwar e Runaways: L essons L earned from M assive Softwar e Project Failures
Prentice Hall PTR, 1998.

Written from a management perspective rather than a technical one, this book
makes the point that a major reason why some software projects have been
classified as massive failures is for failing to meet their requirements for
performance.

"Of all the technology problems noted earlier, the most dominant one in our
own findings in this book is that performance is a frequent cause of failure. A
fairly large number of our runaway projects were real-time in nature, and it
was not uncommon to find that the project could not achieve the response
times and/or functional performance times demanded by the original
requirements.”

Gorlen, Keith, et al.
Data Abstraction and Object Oriented Programming in C++
NIH 1990

Based on the Smalltalk model of object orientation, the “NIH Class Library”
also known as the “OOPS Library” was one of the earliest Object Oriented
libraries for C++. As there were no "standard" classes in the early days of
C++, and because the NIHCL was freely usable having been funded by the US
Government, it had a lot of influence on design styles n C++ in subsequent
years.

Hatton, Les
Does OO Sync with How We Think?
|EEE Software, May/June 1998.

During the life cycle of a software system, time spent on post-release
maintenance is far larger than the time spent in its creation. Therefore,
reliability and ease of modification are important quality factors. This paper
describes two sizable software projects, one in C and one in C++, using
objected-oriented design. The use of OO and inheritance appears to be

associated with more defects, and these defects required more effort to fix,
compared to the C project.

Henrikson, Mats, and Erik Nyquist.
Industrial Strength C++: Rules and Recommendations
Prentice Hall PTR, 1997.

Coding standards for C++, with some discussion on performance aspects that
influenced them.

Hewlett-Packard Corp.
CXperf User's Guide

IBM

http://docs. hp. conl hpux/ onl i nedocs/ B6323-96001/ B6323-96001. ht n

This guide describes the CXperf Performance Analyzer, an interactive runtime
performance analysis tool for programs compiled with HP ANSI C (c89),
ANS| C++ (aCC), Fortran 90 (f90), and HP Parallel 32-bit Fortran 77 (f77)
compilers. This guide helps you prepare your programs for profiling, run the
programs, and analyze the resulting performance data.

AlX Versions 3.2 and 4 Performance Tuning Guide, 5th Edition (April 1996)

http://ww.rs6000.i bm com doc_| i nk/en_US\
/a_doc_lib/aixbman/ prftungd/toc. htm

An extensive discussion of performance issues in many areas, such as CPU
use, disk I/0, and memory management, and even the performance effects of
shared libraries. It discusses AlX tools available to measure performance, and
the compiler options, which can be used to optimise an application for space
or time. The chapter "Design and Implementation of Efficient Programs’

http://ww.rs6000.i bm com doc_I i nk/en_US\
/a_doc_lib/ai xbman/ prftungd/ desni npl . htm

includes low-level recommendations such as these:

"Whenever possible, use int instead of char or short. In most cases, char and
short data items take more instructions to manipulate. The extra instructions
cost time, and, except in large arrays, any space that is saved by using the
smaller data types is more than offset by the increased size of the executable.
If you have to use a char, make it unsigned, if possible. A signed char takes
another two instructions more than an unsigned char each time the variable is
loaded into a register.”

Knuth, Donald E.
The Art of Computer Programming, Volume 1, Reissued 3rd Edition
Addison-Wesley

Fundamenta Algorithms [1997]
Seminumerical Algorithms [1998]
Sorting and Searching [1998]
Note (Lois): Unfortunately, | don't have these classic volumesin my library (yet --

I'm waiting until I'm smart enough to understand them). Can
someone else add a brief remark?

Koenig, Andrew, and Barbara E. Moo
Performance: Myths, M easurements, and Morals
The Journal of Object-Oriented Programming

Part 1. Myths [Oct ‘99
Part 2. Even Easy Measurements Are Hard [Nov/Dec ‘99]
Part 3: Quadratic Behavior Will Get You If You Don't Watch Out [Jan * 00]
Part 4. How Might We Speed Up a Simple Program [Feb *00]
Part 5: How Not to Measure Execution Time [Mar/Apr ‘00]
Part 6: Useful Measurements—Finally [May ‘00]
Part 7: Detailed Measurements of a Small Program [Jun ‘00Q]
Part 8: Experiments in Optimization [Jul/Aug ‘00]
Part 9: Optimizations and Anomalies [Sep *00]
Part 10: Mords [Oct *00]

Measuring the runtime performance of a program can be surprisingly difficult,
because of the interaction of many factors.

"The most important way to obtain good performance is to use good
algorithms."

Lgoie, Joseé

" Exception Handling: Behind the Scenes.”

(Included in C++ Gems, edited by Stanley B. Lippman)
SIGS Reference Library, 1996

A brief overview of the C++ language features, which support exception

handling, and of the underlying mechanisms necessary to support these
features.

Lakos, John
L arge-Scale C++ Softwar e Design
AddisonWedey, 1996

Scalability is the main focus of this book, but scaling up to large systems
inevitably requires performance issues to be addressed. This book predates
the extensive use of templates in the Standard Library.

Lippman, Stan
Inside the C++ Object Model

Explains typica implementations and overheads of various C++ language
features, such as multiple inheritance and virtual functions. A good in-depth
look at the interrals of typical implementations.

Lippman, Stanley B. and Lajoie, Josée
C++ Primer, 3'¢ Edition
AddisonWesley, 1998

This thorough introduction to C++ includes discussions of how various
language constructs produce different executable code, plus measurements of
runtime performance. For example, using reserve() to pre-allocate space for
a vector resulted in dower execution times when the vector held strings or
doubles, but faster times if the value type was a large, complex class.

Mitchell, Mark
Type-Based Alias Analysis
Dr. Dobbs Journal, October 2000.

Some techniques for writing source code that is easier for a compiler to
optimise.

"Although C++ is often criticized as being too slow for high-performance
applications, ... C++ can actually enable compilers to create code that is even
faster than the C equivalent.”

Prechelt, Lutz.

Technical opinion: comparing Java vs. C/C++ efficiency differences to
inter personal differences

Communications of the ACM, October 1999.

This article compares the memory footprint and runtime performance of 40
implementations of the same program, written in C++, C, and Java. The
difference between individual programmers was more significant than the
difference between languages.

"The importance of an efficient technical infrastructure (such as
language/compiler, operating system, or even hardware) is often vastly
overestimated compared to the importance of a good program design and an
economical programming style."

Saks, Dan
C++ Theory and Practice
C/C++ Users Journd

Standard C++ as a High-Level Language? [Nov ‘99]
Replacing Character Arrays with Strings, Part 1 [Jan * 00]
Replacing Character Arrays with Strings, Part 2 [Feb ‘0]

These articles are part of a series on migrating a C program to use the greater
abstraction and encapsulation available in C++. The runtime and executable
Size are measured as more C++ features are added, such as Standard strings,
|OStreams, and containers.

"A seemingly small change in a string algorithm [such as reserving space for
string data, or erasing the data as an additional preliminary step,] might
produce a surprisingly large change in program execution time."

The conclusion is that you should "program at the highest level of abstraction
that you can afford”.

Schilling, Jonathan

Optimizing Away C++ Exception Handling

ACM SIGPLAN Notices, August 1998, also at
http://ww. ocston.org/~j|s/ehopt. htm

This article discusses ways to measure the overhead, if any, of the exception
handling mechanisms. A common implementation of EH incurs no runtime
penalty unless an exception is actually thrown, but at a cost of greater static
data space and some interference with compiler optimisations. By identifying
sections of code in which exceptions cannot possibly be thrown, these costs
can be reduced.

This optimization produces modest but useful gains on some existing C++
code, but produces very significant size and speed gains on code that uses
empty exception specifications, avoiding otherwise serious performance
losses.

Stroustrup, Bjarne
The C++ Programming Language, 3" Edition
AddisonWesley, 1998

This definitive work from the language’ s author has been extensively revised
to present Standard C++.

Stroustrup, Bjarne
The Design and Evolution of C++
Addison-Wesley, 1994

The creator of C++ discusses the design objectives that shaped the
development of the language, especially the need for efficiency.

“The immediate cause for the inclusion of inline functions ... was a project
that couldn't afford function call overhead for some classes involved in real-
time processing. For classes to be useful in that application, crossing the
protection barrier had to befree. [...]

Over the years, considerations along these lines grew into the C++ rule that it
was not sufficient to provide a feature, it had to be provided in an affordable
form. Most definitely, affordable was seen as meaning "affordable on
hardware common among developers’ as opposed to "affordable to
researchers with high-end equipment” or "affordable in a couple of years
when hardware will be cheaper.”

Stroustrup, Bjarne
Learning Standard C++ asa New Language
C/C++ Users Journal, May 1999

http://ww.research. att. com ~bs/ papers. htm

http://ww.research. att.com ~bs/ cuj _code. htm

This paper compares a few examples of ssimple C++ programs written in a
modern style using the standard library to traditional Gstyle solutions. It
argues briefly that lessons from these simple examples are relevant to large
programs. More generaly, it argues for a use of C++ as a higher-leve
language that relies on abstraction to provide elegance without loss of
efficiency compared to lower-level styles.

"I was appalled to find examples where my test programs ran twice as fast in
the C++ style compared to the C style on one system and only half as fast on
another. ... Better-optimized libraries may be the easiest way to improve both
the perceived and actual performance of Standard C++. Compiler
implementers work hard to eliminate minor performance penalties compared
with other compilers. | conjecture that the scope for improvementsis larger in
the standard library implementations.”

Sutter, Herb
Exceptional C++
Addison-Wesley, 2000.

This book includes a long discussion on minimizing compile-time
dependencies using compiler firewals (the pimpl idiom), and how to
compensate for the space and runtime consequences.

Veldhuizen, Todd
Five compilation modelsfor C++ templates
Proceedings of the 2000 Workshop on C++ Template Programming

http://ww. oonunerics. or g/t mpwo0

This paper describes a work in progress on a new C++ compiler. Type
analysis is removed from the compiler and replaced with atype system library,
which istreated as source code by the compiler.

"By making simple changes to the behavior of the partial evaluator, a wide
range of compilation models is achieved, each with a distinct trade-off of
compile-time, code size, and execution speed. ... This approach may solve
several serious problemsin compiling C++: it achieves separate compilation
of templates, allows template code to be distributed in binary form by
deferring template instantiation until runtime, and reduces the code bloat
associated with templates.”

Williams, Stephen

Embedded Programming with C++

Originally published in the Proceedings of the Third USENIX Conference on Object-
Oriented Technologies and Systems, 1997

http://ww. useni x. org/ publications/library/proceedi ngs\
/coots97/williams. htm

Describes experience in programming board-level components in C++,
including a library of minimal run-time support functions portable to any
board.

We to this day face people tdling us that C++ generates inefficient code that
cannot possibly be practical for embedded systems where speed matters. The
criticism that C++ leads to bad executable code is ridiculous, but at the same
time accurate. Poor style or habits can in fact lead to awful results. On the
other hand, a skilled C++ programmer can write programs that match or
exceed the quality of equivalent C programs written by equally skilled C
programmers.

The development cycle of embedded software does not easily lend itself to the
trial-and-error style of programming and debugging, so a stubborn C++
compiler that catches as many errors as possible at compile time significantly
reduces the dependence on run-time debugging, executable run-time support
and compile/download/test cycles.

This saves untold hours at the test bench, not to mention strain on PROM
sockets.

Wind River Systems
Advanced Compiler Optimization Techniques

http://ws.com products/htm /optim zati on_wp. ht m

This technical white paper discusses techniques for compiler optimizations in
general, and more specifically those provided by the Wind River Systems
“Diab” C++ compiler for embedded program development.

	Technical Report on C++ Performance (DRAFT)
	Contents:
	1 Introduction
	1.1 How do we Characterise Application Areas?

	2 Overheads – Cost of Using C++ Features
	2.1 Overheads from Namespaces
	2.2 Overheads from Type Conversion Operators
	2.3 Overheads from Inheritance
	2.3.1 Overhead examples
	2.3.2 RTTI overheads
	2.3.3 General Overheads from Inheritance
	2.3.4 Overheads from Multiple-Inheritance
	2.3.5 Overheads from Virtual-Inheritance
	2.3.6 Overheads from Virtual Functions of class-templates

	2.4 Overheads from Exception Handling
	2.4.1 Myths and Realities of Exception Handling Overheads
	2.4.1.1 Preliminary Remarks
	2.4.1.2 Compile-Time Overhead

	2.4.2 Exception Handling Issues Common to all Implementations
	2.4.3 Implementation Strategies
	2.4.3.1 The "dynamic" Approach.
	2.4.3.1.1 Space Overhead
	2.4.3.1.2 Time Overhead

	2.4.3.2 The "static" Approach
	2.4.3.2.1 Space Overhead
	2.4.3.2.2 Time Overhead

	2.4.4 Predictability of Exception Handling Overhead
	2.4.4.1 Prediction of throw/catch Performance
	2.4.4.2 Empty exception-specification Considerations
	2.4.4.3 Exception Specifications
	2.4.4.4 The "you don’t pay for what you don’t use" Principle
	2.4.4.5 Other Error Handling Strategies
	2.4.4.6 Missing stuff

	2.5 Overheads from Templates
	2.5.1 Template Overheads
	2.5.2 Templates vs. Inheritance

	2.6 Overheads from The Standard IOStreams Library
	2.6.1 Overview - Executable Size
	2.6.2 Overview - Execution Speed
	2.6.3 Overview - Object Size
	2.6.4 Overview – Compile-Time

	3 Performance – Techniques & Strategies
	3.1 Programmer Directed Optimisations
	3.2 Efficient Implementation of Locales and IOStreams
	3.2.1 Locale Implementation Basics
	3.2.2 Reducing Executable Size
	3.2.3 Pre-Processing for Facets
	3.2.4 Compile-Time Decoupling
	3.2.5 Smart Linking
	3.2.6 Object Organization
	3.2.7 Library Recompilation

	3.3 ROMability
	3.3.1 ROMable Objects
	3.3.1.1 User-defined objects
	3.3.1.2 Compiler-generated objects

	3.3.2 Constructors and ROMable Objects

	3.4 Hard Real-Time Considerations
	3.4.1 C++ Features for which an Accurate Timing Analysis is Easy
	3.4.1.1 Templates
	3.4.1.2 Inheritance
	3.4.1.2.1 Multiple-Inheritance
	3.4.1.2.2 Virtual-Inheritance

	3.4.1.3 Virtual Functions

	3.4.2 C++ Features, for which Real-Time Analysis is More Complex
	3.4.2.1 Dynamic Casts
	3.4.2.2 Dynamic Memory Allocation
	3.4.2.3 Exceptions

	3.4.3 Testing Timing

	4 Embedded Systems – Special Needs
	4.1 BASIC I/O-HARDWARE ADDRESSING
	4.1.1 Scope
	4.1.2 Rationale
	4.1.3 Basic Standardisation Objectives

	4.2 Basic I/O-Hardware Addressing Header — <ciohw>
	4.2.1 Overview and Principles
	4.2.2 The Abstract Model
	4.2.2.1 The Module Set

	4.2.3 I/O Register Characteristics
	4.2.4 The Most Basic I/O Operations
	4.2.5 The access-specification

	4.3 The <ciohw> Interface
	4.3.1 Functions for Single Register Access
	4.3.2 Functions for Register Buffer Access
	4.3.3 Functions for access_spec Initialisation
	4.3.4 Functions for access_spec Copying

	Appendix A: Implementing <ciohw>
	A.1 Purpose
	A.1.1 Recommended Steps
	A.1.2 Compiler Considerations

	A.2 Overview of I/O Hardware Connection Options
	A.2.1 Multi-Addressing and I/O Register Endian
	A.2.2 Address Interleave
	A.2.3 I/O Connection Overview:
	A.2.4 Generic Buffer index

	A.3 access-specifications for Different I/O Addressing Methods
	A.4 Atomic Operation
	A.5 Read-Modify-Write Operations and Multi-Addressing
	A.6 I/O Initialisation

	Appendix B: Generic access-specification for iohw Addressing
	B.1 Generic access-specification Descriptor
	B.2 Syntax Specification
	B.2.1 Bus Connection Parameters
	B.2.2 Detection of Read / Write Violations in I/O Registers
	B.2.3 access-specifications for Different Processor Busses
	B.2.4 access-specifications for Different I/O Addressing Methods
	B.2.5 Optimisation Possibilities for Typical Implementations
	B.2.5.1 Pre-Calculation of Constant Expressions
	B.2.5.2 Multi-Addressing and Endian

	Appendix C: Bibliography

