
Doc. No.: 01-0023/N1309
Date: 18 May 2001
Author: Performance WG

Technical Report on C++ Performance
(DRAFT)

Editor’s Note: The cover page text needs to be written.

The aim of this report is to give its readers a model of time and space overheads
implied by use of various C++ language and library features, to debunk widespread
myths about performance problems, to present techniques for use of C++ in
applications where performance matters, and to present techniques for implementing
C++ language and standard library facilities to yield efficient code.

As far as run-time and space performance is concerned, if you can afford to use C for
an application, you can afford to use C++ in a style that uses C++’s facilities
appropriately for that application.

This report first discussed areas where performance issues matters, such as various
forms of embedded systems programming and high-performance numerical
computation. After that, the main body of the report considered the basic cost of using
language and library facilities, techniques for writing efficient code, and the special
needs of embedded systems programming.

Performance implications of object-oriented programming are presented. This
discussion rests on measurements of key language facilities supporting OOP, such as
classes, class member functions, class hierarchies, virtual functions, multiple
inheritance, and run-time type information (RTTI). It is demonstrated that, with the
exception of RTTI, current C++ implications can match hand-written low-level code
for equivalent tasks. Similarly, the performance implications of generic programming
using templates are discussed. Here, however, the emphasis is on techniques for
effective use. Error handling using exceptions is discussed based on another set of

measurements. Both time and space overheads are discussed. In addition, the
predictability of performance of a given operation is considered.

The performance implications of IOStreams and locales are examined in some detail
and many generally useful techniques for time and space optimisations are discussed
here.

Finally, the special needs of embedded systems programming are presented, including
ROMability and predictability. And appendices present general C and C++ interfaces
to the basic hardware facilities of embedded systems.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 3 of 87

Contents:
1 Introduction.. 7

1.1 How do we Characterise Application Areas? .. 8
2 Overheads – Cost of Using C++ Features.. 11

2.1 Overheads from Namespaces... 11
2.2 Overheads from Type Conversion Operators .. 12
2.3 Overheads from Inheritance... 13

2.3.1 Overhead examples.. 13
2.3.2 RTTI overheads.. 13
2.3.3 General Overheads from Inheritance ... 14
2.3.4 Overheads from Multiple-Inheritance.. 16
2.3.5 Overheads from Virtual- Inheritance .. 16
2.3.6 Overheads from Virtual Functions of class-templates......................... 17

2.4 Overheads from Exception Handling... 17
2.4.1 Myths and Realities of Exception Handling Overheads 17

2.4.1.1 Preliminary Remarks.. 17
2.4.1.2 Compile-Time Overhead.. 18

2.4.2 Exception Handling Issues Common to all Implementations 18
2.4.3 Implementation Strategies.. 19

2.4.3.1 The "dynamic" Approach. .. 19
2.4.3.1.1 Space Overhead.. 20
2.4.3.1.2 Time Overhead... 20

2.4.3.2 The "static" Approach.. 21
2.4.3.2.1 Space Overhead.. 22
2.4.3.2.2 Time Overhead... 22

2.4.4 Predictability of Exception Handling Overhead 23
2.4.4.1 Prediction of throw/catch Performance.. 23
2.4.4.2 Empty exception-specification Considerations 23
2.4.4.3 Exception Specifications.. 24
2.4.4.4 The "you don’t pay for what you don’t use" Principle 24
2.4.4.5 Other Error Handling Strategies .. 24
2.4.4.6 Missing stuff .. 25

2.5 Overheads from Templates .. 25
2.5.1 Template Overheads .. 25
2.5.2 Templates vs. Inheritance .. 26

2.6 Overheads from The Standard IOStreams Library...................................... 29
2.6.1 Overview - Executable Size ... 29
2.6.2 Overview - Execution Speed.. 29
2.6.3 Overview - Object Size .. 29
2.6.4 Overview – Compile-Time .. 29

3 Performance – Techniques & Strategies .. 31
3.1 Programmer Directed Optimisations ... 31
3.2 Efficient Implementation of Locales and IOStreams................................... 35

3.2.1 Locale Implementation Basics... 36
3.2.2 Reducing Executable Size.. 39

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 4 of 87

3.2.3 Pre-Processing for Facets... 42
3.2.4 Compile-Time Decoupling .. 42
3.2.5 Smart Linking .. 44
3.2.6 Object Organization... 46
3.2.7 Library Recompilation... 47

3.3 ROMability .. 48
3.3.1 ROMable Objects... 48

3.3.1.1 User-defined objects .. 49
3.3.1.2 Compiler-generated objects ... 50

3.3.2 Constructors and ROMable Objects .. 52
3.4 Hard Real-Time Considerations ... 52

3.4.1 C++ Features for which an Accurate Timing Analysis is Easy........... 53
3.4.1.1 Templates... 53
3.4.1.2 Inheritance.. 53

3.4.1.2.1 Multiple-Inheritance... 53
3.4.1.2.2 Virtual-Inheritance ... 53

3.4.1.3 Virtual Functions .. 53
3.4.2 C++ Features, for which Real-Time Analysis is More Complex 53

3.4.2.1 Dynamic Casts ... 54
3.4.2.2 Dynamic Memory Allocation .. 54
3.4.2.3 Exceptions .. 54

3.4.3 Testing Timing ... 55
4 Embedded Systems – Special Needs ... 57

4.1 BASIC I/O-HARDWARE ADDRESSING... 57
4.1.1 Scope.. 57
4.1.2 Rationale .. 57
4.1.3 Basic Standardisation Objectives... 57

4.2 Basic I/O-Hardware Addressing Header — <ciohw> 58
4.2.1 Overview and Principles .. 58
4.2.2 The Abstract Model ... 58

4.2.2.1 The Module Set .. 59
4.2.3 I/O Register Characteristics ... 60
4.2.4 The Most Basic I/O Operations ... 60
4.2.5 The access-specification .. 60

4.3 The <ciohw> Interface ... 61
4.3.1 Functions for Single Register Access .. 61
4.3.2 Functions for Register Buffer Access .. 62
4.3.3 Functions for access_spec Initialisation.. 62
4.3.4 Functions for access_spec Copying.. 63

Appendix A: Implementing <ciohw> .. 65
A.1 Purpose... 65

A.1.1 Recommended Steps.. 65
A.1.2 Compiler Considerations ... 65

A.2 Overview of I/O Hardware Connection Options ... 66
A.2.1 Multi-Addressing and I/O Register Endian ... 66
A.2.2 Address Interleave .. 67

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 5 of 87

A.2.3 I/O Connection Overview:... 68
A.2.4 Generic Buffer index... 68

A.3 access-specifications for Different I/O Addressing Methods 69
A.4 Atomic Operation... 70
A.5 Read-Modify-Write Operations and Multi-Addressing............................... 70
A.6 I/O Initialisation... 71

Appendix B: Generic access-specification for iohw Addressing 73
B.1 Generic access-specification Descriptor .. 73
B.2 Syntax Specification .. 73

B.2.1 Bus Connection Parameters ... 74
B.2.2 Detection of Read / Write Violations in I/O Registers 75
B.2.3 access-specifications for Different Processor Busses 76
B.2.4 access-specifications for Different I/O Addressing Methods 77
B.2.5 Optimisation Possibilities for Typical Implementations 77

B.2.5.1 Pre-Calculation of Constant Expressions ... 77
B.2.5.2 Multi-Addressing and Endian.. 78

Appendix C: Bibliography... 79

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 7 of 87

1 Introduction
Definition of terminology and scope of the report:

?? Description of potential resource limitations
?? Problems often encountered in resource- limited environments
?? Criteria used in the selection of an appropriate programming language

"Performance" has many aspects - execution speed, code size, data size, and memory
footprint at runtime, or time and space consumed by the edit/compile/link process. It
could even refer to the time necessary to find and fix code defects. Most people are
primarily concerned with execution speed, although program footprint and memory
usage can be critical for small embedded systems where the program is stored in
ROM, or where ROM and RAM are combined on a single chip.

Efficiency has been a major design goal for C++ from its earliest days; also, the
principle of "zero overhead" for any feature that is not used in a program. It has been
a guiding principle from the earliest days of C++ that "you don't pay for what you
don't use".

Language features that are never used in a program should not have a cost in extra
code size, memory size, or runtime. If there are places where C++ cannot guarantee
zero overheads for unused features, this paper will attempt to document them. It will
also discuss ways in which compiler writers, library vendors, and programmers can
minimize or eliminate performance penalties, and will discuss the trade offs among
different methods of implementation.

Programming for resource-constrained environments is another focus of this paper.
Typically, it is very small or very large programs that run into resource limits of some
kind. Very large programs, such as database servers, may run into limits of disk space
or virtual memory. At the other extreme, an embedded application may be
constrained to run in the ROM and RAM space provided by a single chip, perhaps a
total of 64K of memory, or even smaller.

Apart from the issues of resource limits, some programs must interface with system
hardware on a very low level. Historically the interfaces to hardware have been
implemented as proprietary extensions to the compiler (often as macros). This led to
the situation that code has not been portable, even for programs written for a given
environment, because each compiler for that environment has implemented different
sets of extensions.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 8 of 87

1.1 How do we Characterise Application Areas?
Embedded Systems:

Embedded Systems have many restrictions on memory-size and timing requirements
that are more significant than are typical for non-Embedded systems. Some areas of
concern the Embedded Systems are as follows1:

?? Scale:

o small

These systems typically use single chips containing both ROM and
RAM. Single-chip systems in this category typically hold
approximately 32KBytes for RAM and 32, 48 or 64KBytes for ROM.

Note (Lois): The numbers relate to the C8051 chip family, which has a market
share of approximately two-thirds of the embedded controllers in the
world (according to Detlef quoting Chris Hills).

Examples of applications in this category are:

o Engine control for automobiles
o Hard disk controllers
o Consumer electronic appliances
o Smart cards, also called Integrated Chip (IC) cards – about the

size of a credit card, they usually contain a processor system
with code and data embedded in a chip which is embedded (in
the literal meaning of the word) in a plastic card. A typical size
if 4KBytes of RAM, 96KBytes of ROM and 32KBytes
EEPROM.

o medium

These systems typically use separate ROM and RAM chips to execute
a fixed application, where size is limited. There are different kinds of
memory chip, and systems in this category are typically composed of
several kinds to achieve different objectives for cost and speed.
Examples of applications in this category are:

o Hand-held digital VCR
o Printer
o Copy machine
o Digital still camera – one common model uses 32MBytes of

flash memory to hold pictures, plus faster buffer memory for
temporary image capture, and a processor for on-the-fly image
compression.

1 Typical systems during the Year 2000

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 9 of 87

o large

These systems typically use separate ROM and RAM chips, where the
application is flexible and the size is relatively unlimited. Examples of
applications in this category are:

o Personal Digital Assistant (PDA) – equivalent to a personal
computer without a screen, keyboard, or hard disk.

o Digital television
o Set-top box
o Car navigation system
o Central controllers for large production lines

Note (Lois): The last item is meant to refer to the central CPU that manages a
collection of manufacturing machines in a production line. Each
machine of course may have its own embedded brain.

?? Timing:

Note (Lois): Of course, systems with real-time or hard real-time constraints are
not necessarily embedded systems; they may run on hosted
environments. Anton (who?) made the comment that timing-critical
hard real-time systems are more applicable to industry.

 “Real-Time” refers to a system in which average performance and
throughput must meet defined goals, but some variation in
performance of individual components can be tolerated.

 “Hard Real-Time” means the every operation must meet specified
timing constraints.

o critical (real-time and hard real-time systems)

Examples of applications in this category are:

o Motor control
o Engine control – minimum cycle of engine (3ms; 10,000rpm; 4

cyclinders)
o Hand-held digital VCR
o Mobile phone
o CD or DVD player
o Electronic musical instruments
o Hard disk controllers
o Digital television

o non-critical

Examples of applications in this category are:

o Digital still camera
o Copy machine
o Printer
o Car navigation system

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 10 of 87

Note (Lois) Eliminated table here. Its purpose appeared to be to show a cross-
section of applications in terms of both size and timing constraints. I
think Anton is putting together a revised version. Maybe it should
come last so it can include the large-end applications as well?

Servers:

For server applications, the performance-critical resources are typically speed
(e.g. transactions per second?), and working-set2 size (which also impacts
throughput and speed). In such systems, memory and data storage are
expressed in terms of megabytes or even gigabytes.

Often there are soft real-time constraints, bounded by the need to provide
service to many clients in a timely fashion. Some examples of such
applications include the central computer of a public lottery where transactions
are heavy, or large scale high-performance numerical applications such as
weather forecasting where the calculation must be completed within a certain
time.

[Note (Lois): If it takes 26 hours to forecast the next 24 hours’ weather, there’s no
point]

These systems are often described in terms of dozens or even hundreds of
multiprocessors, and the prime limiting factor may be the Mean Time Between
Failure (MTBF) of the hardware (increasing the amount of hardware results in
a decrease of the MTBF – in such a case, high-efficiency code would result in
greater robustness).

2 the term “working set” refers to the amount of the application which is held in active (not swapped-out virtual) memory at any
given time.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 11 of 87

2 Overheads – Cost of Using C++
Features

Does the C++ language have inherent complexities and overheads, which make it
unsuitable for performance-critical applications? For a program written in the C-
conforming subset of C++, will penalties in code size or execution speed result from
using a C++ compiler instead of a C compiler? Does C++ code necessarily result in
"unexpected" functions being called at runtime, or are certain language features, like
multiple inheritance or templates, just too expensive (in size or speed) to risk using?
Do these features impose overheads even if they aren't explicitly used?

This paper examines the major features of the C++ language that are perceived to
have an associated cost, whether real or not. Some of the language features are
complex and are discussed in a section of their own, while other are discussed in the
following brief:

?? Namespaces
?? Type Conversion Operators
?? Inheritance

o Run-Time Type Identification (RTTI)
?? Exception Handling (EH)
?? Templates
?? The Standard Library (IOStreams)

2.1 Overheads from Namespaces
Namespaces do not add any space or time overheads to code. They do, however, add
some complexity to the rules for name lookup. The principal advantage of
namespaces is that they provide a mechanism for partitioning names in large projects
so as to avoid name clashes.

Namespace qualifiers enable programmers to use shorter identifier name when
compared with alternative mechanisms. In the absence of namespaces, the
programmer has to explicitly alter the names to ensure that name clashes do not occur,
and this usually takes the form of a canonical prefix being used, or the names being
placed inside a class and used in their qualified form. [for example:

static char* mylib_name = “My Really Useful Library”;
static char* mylib_copyright = “June 15, 2000”;

class ThisLibInfo {
 static char* name;
 static char* copyright;
};

char* ThisLibInfo::name = “Another Useful Library”;
char* ThisLibInfo::copyright = “December 18, 2000”;

end example]

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 12 of 87

With namespaces, the number of characters necessary is similar to the class
alternative, but unlike the class alternative, qualification can be avoided by the use of
using which moves the unqualified names into the current scope, thus allowing the
names to be referenced by their shorter form. This has the effect of actually
“reducing” the number of characters in the source program.

2.2 Overheads from Type Conversion Operators
C and C++ permit explicit type conversion using cast notation (§IS-5.4). [for
example:

int i = (int)3.14159;

end example]

Standard C++ adds four additional type conversion operators, using syntax that looks
like function-templates3 [for example:

int i = static_cast<int> (3.14159);

end example]

The four syntactic forms are:

??const_cast<Type>(expression) // §IS-5.2.11
??static_cast<Type>(expression) // §IS-5.2.9
??reinterpret_cast<Type>(expression) // §IS-5.2.10
??dynamic_cast<Type>(expression) // §IS-5.2.7

The semantics of cast notation (which is still recognized) are the same as the type
conversion operators, but distinguish between the different purposes for which the
cast is being used. The type conversion operator syntax is easier to identify in source
code, and thus contributes to writing programs that are more correct4.

It should be noted that as in C, a cast may create a temporary object of the desired
type, so casting can have runtime implications.

3 Indeed, prototype implementations of the type conversion operators were often implemented as function-templates.
4 If the compiler does not provide the type conversion operators nat ively, it is possible to implement them using function-
templates.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 13 of 87

The first three forms of type conversion operator have no size or speed penalty versus
the equivalent cast notation. Indeed, it is typical for a compiler to transform cast
notation into one of the other type conversion operators when generating object code.
However, dynamic_cast<T> may incur some overhead at runtime if the required
conversion involves using RTTI mechanisms [for example, cross-casting:

class Left { ... };
class Right { ... };
...
void func (Left* pL) {
 Right* pR = dynamic_cast<Right*>(pL);
}
...
class Merged: Left, Right {};
Merged m;
func (&m);

end example]

Note: Perhaps some pseudo code would be useful here to show how the
compiler transforms the code? How much overhead is a
dynamic_cast in a single-inheritance hierarchy? Or when virtual
base classes are involved?

2.3 Overheads from Inheritance

2.3.1 Overhead examples
?? runtime type identification (RTTI)
?? multiple inheritance
?? virtual template member functions
?? virtual inheritance
?? class hierarchies
?? unnecessary costs for empty base

Editor’s Note: The cost of empty-bases is not elaborated.

2.3.2 RTTI overheads
?? Typically, a pointer to a type_info object is stored in a class' “virtual table”

or vtbl. RTTI can only be used with classes that have at least one virtual
function5. This restriction is the result of a deliberate compromise that
minimizes the cost per object6 necessary for RTTI.

?? One typical implementation costs one static table per class with enough
storage for the class-name (its typeid) plus 20 bytes, with a resulting cost of

5 This is not an unnatural situation, as the need to determine the dynamic type of an entity is most typical of class hierarchies
where it is probable that virtual functions are used; indeed, it is often recommended that polymorphic classes always provide a
virtual destructor.
6 Since a class with a virtual function already has the associated cost of a vptr (in a typical implementation), adding RTTI
support need have no extra impact on the cost of an instance of that class. Conversely, adding RTTI for non-class data types, and
classes with no virtual functions could incur a significant cost to the program and/or instances of that data type.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 14 of 87

approximately 40 data bytes times the number of RTTI enabled classes in the
application.

?? Often, RTTI is used with dynamic_cast; and if dynamic_cast is used, the
RTTI mechanism is used to determine whether the cast is valid or not. One
important thing to note, is that some typical implementations share common
mechanisms between RTTI and EH, and the use of RTTI may implicitly
require the overheads of Exception Handling to be present also.

?? Whole-Program Analysis (WPA) can help; there is no need to generate RTTI
tables for types not tested, and WPA techniques can determine this, with
potentially significant reduction in costs and overheads. Tools providing
WPA are not yet commonly available, but implementers are encouraged to
develop such WPA capable tools.

?? A class without any virtual functions is equivalent to a simple C struct.

The size of an object of the class is the sum of the sizes of its data members,
(plus any padding required for correct alignment by the implementation).

?? Some observations from tests on commonly available implementations

o Downcasts cost between three and four function calls. This is
independent of:

?? whether the class uses single or multiple inheritance
?? which branch of MI
?? the depth of inheritance (MI and SI)

o Cross-casts are more expensive. A cross-cast costs between 6 and 50
times a single function call, depending on the implementation. They
vary with how deep you start and finish in the hierarchy. Each level
adds about 60% to overhead.

2.3.3 General Overheads from Inheritance
In a typical implementation, data members of a base class occupy space at the
beginning of an object of a derived class. This need not cost any more data
space than the alternate design of creating a data member of the base class
type. In the simplest case, inheritance may save in code size and execution
speed, since delegating functionality to a member object requires pass-through
functions in the containing class. Calls to non-virtual functions are resolved at
compile-time, so there is no runtime penalty from single inheritance.

Indeed, in some cases, an implementation may be able to place new data
members of the deriving class into “holes” in the base-class7; thus costing less
than an equivalent C-style struct.

7 Holes may be present dues to alignment restrictions of the implementation. However, these holes may be of appropriate size
and alignment for new data members introduced by the deriving class.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 15 of 87

?? Do virtual functions add overhead?

Calls to virtual member functions are resolved at runtime, depending on the
dynamic type of the object. In a typical implementation, each object in the
hierarchy acquires an extra data member, a vptr, pointing to a table (the vtbl)
that lists the appropriate versions of the virtual functions for objects of that
class type. So, the cost of virtual functions is an extra data pointer per object,
plus a vtbl per class8.

At runtime, there is a cost associated with calling the virtual function by
indirection through the vptr, indexing into the vtbl, and calling the function
through a pointer. This cost, in a typical implementation, adds between 3 and
10 instructions per call, versus a direct call to a class-specific function,
resolved at compile-time. Alternate mechanisms of determining the
appropriate function to call, such as an if-statement or a switch-statement also
have overheads however, and these alternative mechanisms have a comparable
cost, while lacking the natural extensibility of a virtual function. If a virtual
function is called repeatedly inside a tight loop, a possible “Programmer
Directed Optimisation” (PDO) is to determine the runtime type of the object
outside the time-critical section, and use class-specific direct calls inside the
loop.

Compiler implementations, and especially WPA enabled compilers can
sometimes determine the static type of the object, and automatically perform
this optimisation. However, PDOs can make use of knowledge about the
program that a compiler will never be able to determine.

?? “The principal disadvantage of virtual functions is that they prevent the
compiler from inlining code, since the type of the object won't be known
until runtime.”

This argument is often levelled at virtual functions. Typically, virtual
functions are not also declared inline, due to the fact that a virtual function is
normally called indirectly, requiring that the function be instantiated.

However, whether the programmer directs the implementation by qualifying
the name of a virtual function, or the implementation determines the static type
of the function to be called by other means, it becomes possible for the virtual
function to be called statically, and hence inlined.

Contrary to popular belief, virtual and inline need not be considered mutually
exclusive.

?? Some observations from tests on commonly available implementations

o Static function calls with no arguments are slightly faster than ordinary
member functions (less than 25%) with no arguments (the member
function has an implicit object pointer).

8 The cost of the vtbl is typically a static data cost. On some older implementations, there may be an instance of the vtbl for
each translation unit in which an instance of the associated data type is created or destroyed. Modern implementations typically
have only one instance of the vtbl per program.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 16 of 87

o Function calls are cheaper than they used to be (compared to inline).

o These figures have improved a lot from what they were a few years
ago.

o People should make “less” use of explicit inlining these days, as
modern compilers have got a lot better at determining when inlining is
appropriate.

o Locality – forcing code out of cache. A virtual function call (through a
pointer) had overhead of 20% compared to a plain function call9.
Maybe even 30% if you do a lot of other work in the loop and in the
function call and then factor it out. But still no overhead specific to
Multiple-Inheritance.

2.3.4 Overheads from Multiple-Inheritance
?? Properly implemented, multiple- inheritance should have very little extra cost

over single inheritance. Such small costs can also be restricted to only a part
of the MI graph; typically, the left most branch having the same cost as SI (no
adjustment), with other branches incurring a simple “offset adjustment” to the
object pointer.

?? There is an "offset adjustment" in virtual calls to ensure that the this pointer
passed to the called function is correct. Typical implementations use a
“thunk” to perform this adjustment. A “thunk” is a simple piece of code that
is called instead of the actual function, and which performs the actual constant
adjustment to the object pointer before transferring control to the intended
function.

?? Some observations from tests on commonly available implementations

o No significant differences in runtime speed between ordinary member
function calls, virtual function calls, and virtual function calls among
different branches of multiply inherited (MI) classes.

o The difference diminishes with the number of arguments being passed
to the function; the associated cost of the call becomes proportionally
smaller as the number of arguments increase.

2.3.5 Overheads from Virtual-Inheritance
Virtual base classes add additional overhead. The “adjustment” for the branch in a MI
class can be determined statically by the implementation, so it becomes a simple add
of a constant when needed. With virtual bases, the position of the base object with
respect to the complete object is dynamic, and requires more evaluation than for the
MI adjustment.

9 This is sometimes the result of “block level linking” that attempt to place called code physically closer in memory to the code
that makes the call, a technique that is defeated by indirect calls. A cache “miss” can result in costly reloads or even operating
system intervention.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 17 of 87

2.3.6 Overheads from Virtual Functions of class-templates
Virtual functions of a class-template can incur an overhead:

?? If a class-template has virtual member functions, then each time the class-
template is specialised it will have to generate new specialisations of the
member functions, and their associated support structures such as the virtual
function table (vtbl).

?? A naïve library implementation could produce hundreds of Kbytes in this case,
much of which is pure replication at the instruction level of the program.

?? The problem is a library modularity issue. Putting code into the template
when it doesn't depend on template parameters, and could be separate code
may cause each instantiation to contain potentially large, redundant code
sequences. One PDO suggestion is to use non-template helper functions, and
describe the template implementation in terms of these helper functions.

2.4 Overheads from Exception Handling

2.4.1 Myths and Realities of Exception Handling Overheads

2.4.1.1 Preliminary Remarks
Exception Handling provides a systematic and robust approach to error handling.

Editor’s Note: Error Handling and Exception Handling are not the same thing.
Errors are a normal occurrence in a program exceptions are not.

Note (Lois): The sort of errors that can normally be expected to occur – file not
found, erroneous input, etc.—may more aptly be described as ‘status’
rather than ‘errors’. Exceptions are highly unusual, and often
unrecoverable-from problems that arise in exceptional conditions –
out of memory, network failure, etc. Often the only reasonable
response is to exit gracefully, or at least roll back to an earlier state

The traditional C style of indicating runtime problems is to return an error code. This
error code must be checked each time the function is invoked, and this check is quite
often ignored or forgotten. EH isolates the rare problem-handling code from the
normal flow of program execution, and unlike the error code approach, it cannot be
ignored or forgotten. Also, automatic destruction of stack objects when an exception
is thrown renders a program less likely to leak memory or other resources. With EH,
once a problem is identified, it can't be ignored - failure to catch and handle an
exception results in program termination.

Early implementations of Exception Handling resulted in sizable increases in code
size. This led some programmers to avoid it and compiler vendors to provide
switches to suppress the feature. In some embedded and resource-constrained
environments, EH was deliberately excluded.

It is difficult to discuss EH overheads without a rough idea about possible
implementations.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 18 of 87

Presuming that exceptions are not the norm, we need to distinguish:

?? Try overhead: data and code associated with setting up each
try-block or catch-clause (i.e. getting ready for catching exceptions that may
never occur) - this is true overhead.

?? Regular function overhead: data and code associated with the normal
execution of functions that do not specify any exception related feature (i.e.
recompiling pre-EH code, thus breaking the "pay as you go" principle) – this
is true overhead.

?? Throw cost: data and code associated with actually throwing
an exception. This can hardly be regarded as an overhead! But different
implementations will have different costs, the relative value or impact of
which depends on the problem domain.

2.4.1.2 Compile-Time Overhead
?? Compilation is more difficult, depending on the complexity of the

implementation.

?? Some compile-time optimisations may become trickier (or even impossible?):

o we need examples

Editor’s Note: This section is never developed, should we remove it?

2.4.2 Exception Handling Issues Common to all Implementations
?? try-block Establishes the context for associated catch-clauses

?? catch-clause The EH implementation must provide some runtime type-
information mechanism for finding catch-clauses when an exception is
thrown.

There is some overlapping, but not identical information needed by both RTTI
and EH features. But, the EH type- information mechanism must be able to
match derived classes to base classes even for types without virtual functions,
and to identify built- in types such as int. On the other hand, the EH type-
information does not need support for down-casting or cross-casting.

Because of this overlap, some implementations require that RTTI be enabled
when EH is enabled.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 19 of 87

?? Cleanup of handled exceptions Exceptions, which are not re-thrown,
must be destroyed upon exit of the catch-clause. Since there is no declaration
for the exception object, some "Magic Memory" for the exception object must
be managed by the EH implementation.

?? Automatic and temporary objects with non-trivial destructors Destructors
must be called if an exception occurs after construction and before destruction,
even if no try/catch is present. The EH implementation is required to keep
track of all such objects.

?? Construction of objects with non-trivial destructors If an exception
occurs during construction, all comple tely constructed base classes and sub-
objects must be destroyed. This means that the EH implementation must track
the current state of construction of an object.

?? throw-expression A copy of the exception object being thrown must be
allocated in the "Magic Memory" provided by the EH implementation. The
closest matching catch-clause must then be found using the EH type-
information. Finally, the destructors for automatic, temporary, and partially
constructed objects must be executed before control is transferred to the catch-
clause.

?? Enforcing exception specifications Conformance of the thrown types to the
list of types permitted in the exception-specification must be checked. If a
mismatch is detected, the unexpected-handler must be called.

A similar mechanism to the one implementing try/catch can be used, but if a
mismatch does occur, the unexpected-handler is called.

?? operator new After calling the destructors for the partially constructed
object, the corresponding operator delete must be called if an exception is
thrown during construction.

Again, a similar mechanism to the one implementing try/catch can be used.

2.4.3 Implementation Strategies
Implementations vary in how costs are allocated across these elements.

The two main strategies are the “dynamic” approach often implemented using the
setjmp family of functions and “static” approach that uses compiler generated static
tables.

There are also various hybrid approaches. This paper discusses only the twp principal
implementation approaches.

2.4.3.1 The "dynamic" Approach.
Implementations using this approach have to dynamically maintain auxiliary data-
structures to manage the capture and transfer of the execution contexts, and the
dynamic maintenance of data-structures involved in tracking the objects that need to
be unwound in the event of an exception.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 20 of 87

?? try-block Save the execution environment and reference to catch code on
EH stack at try-block entry (by calling setjmp or equivalent).

?? Automatic and temporary objects with non-trivial destructors Push each
constructed object, with the address of its destructor onto a stack for later
destruction. Pop them upon destruction. Typical implementations use a
linked list structure for the stack.

?? Construction of objects with non-trivial destructors One well-known
implementation increments a counter for each base-class and sub-object as
they are constructed. If an exception is thrown during construction, the
counter is used to determine which parts need to be destructed.

?? throw-expression After the catch-clause has been found, pop objects from
the stack, invoking their destructors, until all objects between the throw-
expression and the associated catch-clause are removed from the stack.

Restore execution environment of associated catch-clause (by calling longjmp
or equivalent).

2.4.3.1.1 Space Overhead
?? No EH cost is associated with an object, so object size is unaffected
?? EH implies a form of RTTI, implying some increase in code and data size
?? The setjmp model implies code generation for try/catch
?? The setjmp model implies dynamic data structures to store the jmp_buf

environments and their mapping to catch-clauses
?? The setjmp model implies the registration of local objects to be destroyed
?? A cost is associated with checking the throw-specifications of the functions

that are called

2.4.3.1.2 Time Overhead
?? On entry to each try-block

o commit changes to variables enclosing the try-block
o stack the jmp_buf execution context
o stack the associated catch-clauses

?? On exit from each try-block
o remove the associated catch-clauses
o remove the stacked execution context

?? On entry to each catch-clause
o remove the associated catch-clauses

?? On exit from each catch-clause
o retire the current exception object (destruct if necessary)

?? When calling regular functions
o if the function has an exception-specification, register it for checking

?? As each local and temporary object is created
o register with the current exception context as they are created

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 21 of 87

?? On throw
o locate the corresponding catch-clause (if any) - this involves some

RTTI-like check
if found:
?? destruct the registered local objects
?? check the exception-specifications of the functions called in-

between
?? use the associated jmp_buf to longjmp to the execution context

of the catch-clause
if not found:
?? call the unexpected-handler

Advantages of this method are that it is relatively simple, portable, and compatible
with implementations that translate C++ to C or another language.

Disadvantages are that the stack space and runtime costs for try-block entry, and for
the bookkeeping of automatic, temporary and partially constructed objects as the EH
stack is modified tends to be quite high.

One vendor reports speed impact of about 6% for a C++ to ANSI C translator.
Another vendor reports that speed and stack space impacts can be greatly reduced by
fine-tuning the code for saving the execution environment and doing object
bookkeeping

Editor’s Note: How should we include information such as the comment above?

2.4.3.2 The "static" Approach
Typical implementations using the static approach will generate read-only tables for
determining the current execution context, locating catch-clauses, and tracking
objects needing destruction.

?? try-block This method incurs no runtime cost. All bookkeeping is pre-
computed as a mapping between program counter and code to be executed in
event of an exception. Tables increase program image size but may be moved
away from working set to improve locality. Tables can be placed in ROM,
and on hosted systems with Virtual Memory, can remain swapped out until an
exception is actually thrown.

?? Automatic and temporary objects with non-trivial destructors No runtime
costs associated with normal execution. Only in the event of an exception is it
necessary to intrude on normal execution.

?? Construction of objects with non-trivial destructors No runtime costs –
see previous bullet.

?? throw-expression The statically generated tables are used to locate
matching handlers and intervening objects needing destruction. Again, no
runtime costs are associated with normal execution.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 22 of 87

2.4.3.2.1 Space Overhead
?? No EH cost is associated with an object, so object size is unaffected
?? EH implies a form of RTTI, implying some increase in code and data size
?? The static model implies static table generation and some common library

runtime support
?? A cost is associated with checking the throw-specifications of the functions

that are called

2.4.3.2.2 Time Overhead
?? On entry to each try-block

o some implementations commit changes to variables in the scopes
enclosing the try-block - other implementations use a more
sophisticated state table10

?? On exit from each try-block
o no overhead

?? On entry to each catch-clause
o no overhead

?? On exit from each catch clause
o no overhead

?? When calling regular functions
o no overhead

?? As each local and temporary object is created
o no overhead

?? On throw
o using the tables, determine if the current frame has an appropriate

catch-clause
If it does, then:
?? destruct each local, temporary and partially constructed objects

that occur between the throw-expression and the catch-clause
?? transfer control to the catch-clause

Otherwise, check that the exception honours the exception-
specification of the current function, and call the unexpected-handler if
it does not.
Otherwise, if there is a previous frame, repeat the above steps,
otherwise call the unexpected-handler

Advantages of this method are that no stack or runtime costs are associated with
managing the try/catch or object bookkeeping.

Disadvantages are that the implementation is more complicated, and does not lend
itself well to implementations that translate to an intermediate language. The static
tables can be quite large, and while this may not be a burden on hosted systems with a
VM, the cost may be a significant factor for embedded systems. All runtime costs
associated occur when an exception is thrown, but because of the need to examine

10 In such implementations, this effectively makes the variables partially volatile and may prejudice other optimisations as a
result.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 23 of 87

potentially complex state tables, the time it takes to respond to an exception may be
large – this needs to be factored in to the probable frequency of exceptions.

One vendor reports a code and data space impact of about 15% for the generated
tables. This is an upper limit, since in the vendor’s environment there was no need to
reduce the image size of programs provided the working set wasn’t increased

Editor’s Note: How should we include information such as the comment above?

2.4.4 Predictability of Exception Handling Overhead

2.4.4.1 Prediction of throw/catch Performance
One of the reservations expressed about EH is the unpredictable time that may elapse
after a throw and before control passes to the catch clause, while automatic objects are
being destroyed. It is important in some systems, especially those with “Real Time”
requirements, to be able to predict accurately how long operations will take.

These concerns are well founded. However, if the call tree can be statically
determined, and the table method of EH implementation is used, it is possible to
statically ana lyse the sequence of events necessary to transfer control from a given
throw-expression to the corresponding catch-clause. Each of the events could then be
statically analysed to determine their contribution to the cost, and the whole sequence
of events aggregated into a single cost domain (worst-case & best-case, unbounded,
indeterminate).

It should be possible to accurately determine the costs of the EH mechanism itself,
and the cost of any destructors invoked would need to be determined in the same way
as the cost of any other functions is determined.

Given such analyses, the term “unpredictable” is inappropriate. The cost may be quite
predictable, with a well-determined upper and lower bound. In some cases (recursive
contexts, or conditional call trees), the cost may not be determined statically. For RT
applications, it is generally most important to have a determinate time domain, with a
small deviation between the upper and lower bound. The actual speed of execution is
often less important.

Another reservation concerns the memory footprint of the necessary data structures.
This has more to do with non-Real-Time embedded applications, where the system
constraints may place a premium on the amount of space that the programs and/or
data may take. Both approaches incur a space cost. The dynamic approach is likely
to have a smaller “data-size” cost and a larger “code-size” cost, than the
corresponding static approach.

Editor’s Note: We do not appear to have comparative “size” costs for the dynamic
versus the static approaches.

2.4.4.2 Empty exception-specification Considerations
Can empty exception-specifications help a compiler produce more optimal code?

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 24 of 87

The use of an empty exception-specification should reduce overheads. If the called
function ensures (statically or dynamically) that it will never throw an exception that
invalidates its exception-specification, then the caller can build on that guarantee,
performing optimisations based on the knowledge that a called function will never
throw any exception.

However, a less capable implementation might produce “worse” code if it produces an
extra try-catch for functions that don't need it.

For example:
int g() throw();

void f() {
 int n = g();
}

// May be implicitly (and poorly) rewritten as --->
void f () {
 int n;
 try {
 n = g();
 } catch (...) {
 unexpected();
 }
}

2.4.4.3 Exception Specifications
The need to enforce exception-specifications at runtime has costs as described above.
However, they can allow optimisation of other code by making catch-clauses
unreachable and violations of other exception-specifications impossible. Empty
exception-specifications can be especially helpful for optimisation.

2.4.4.4 The "you don’t pay for what you don’t use" Principle
Exception-Handling in general imposes costs even if it is not used. For example, if a
function that constructs automatic objects then calls another function, and it cannot be
proven by the compiler that the called function does not throw an exception then the
calling function will incur object bookkeeping costs, even though the function may
never participate in context where an exception is thrown. With the static approach, a
possible optimisation is to strip the associated tables and runtime support code from
the program if it is known that exceptions will never be thrown.

2.4.4.5 Other Error Handling Strategies
All approaches to error handling involve some runtime and static costs. Return codes,
global error values; process termination and ignoring errors all have associated costs
in runtime, space, program correctness, maintenance, and readability. In evaluating
the costs of exception handling, the costs of the alternatives should not be ignored. If
EH is not used, some other mechanisms are invariably required11.

11 And ignoring error conditions does not make for robust code

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 25 of 87

2.4.4.6 Missing stuff
There were some items discussed in the working group, which we were unable to
flesh out. These include:

?? Advice to implementers, specifically references to literature on EH (e.g. ‘C’
Language Translation)

?? Potential implementation pitfalls
?? A comparison of the costs of other strategies

Editor’s Note: Do we really need this section? It doesn’t get elaborated anywhere.

2.5 Overheads from Templates

2.5.1 Template Overheads
class-templates or function-templates will generate a new instantiation of code each
time it is specialised with different template parameters. This can lead to an
unexpectedly large amount of code and data12. A typical way to illustrate this problem
is to create a large number of Standard Library containers to hold pointers of various
types. Each type can result in an extra set of code and data being generated.

In one experiment, a program instantiating 100 instances of a single specialisation of
std::list<T*> for some type T, was compared with a second program instantiating a
single instance of std::list<T*> for 100 different types T. These programs were
compiled with a number of different compilers and a variety of different compiler
options. The results varied widely, with one compiler producing code for the second
programs that was over 19 times as large as the first program; and another compiler
producing code for the first program that was nearly 3 times as large as the second.

The optimisation here is for the compiler to recognise that while there may be many
specialisations with different types, at the leve l of machine code-generation, the
specialisations may actually be identical (the type system is not relevant to machine
code).

While it is possible for the compiler or linker to perform this optimisation
automatically, the optimisation can also be performed by the Standard Library
implementation or by the application programmer.

If the compiler supports partial specialization and member-function-templates, the
library implementor can provide partial specialisations of containers of pointers to a
single underlying implementation that uses void*. This technique is described in
C++ PL 3rd edition.

The same technique can be employed as a PDO, where it is possible to write a class-
template called, perhaps, plist<T>, that is implemented using std::list<void*> to
which all operations of plist<T> are delegated.

12 Virtual function tables, EH state tables, etc.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 26 of 87

Source code must then refer to plist<T> rather than std::list<T*>, so the
technique is not transparent, but it is a workable solution in the absence of tool or
library support. Variations of this technique can be used with other templates too.

2.5.2 Templates vs. Inheritance
Any non-trivial program needs to deal with data structures and algorithms. Because
data structures and algorithms are so fundamental, it is important that their use be as
simple and error- free as possible.

The template containers in the Standard C++ Library are based on principles of
generic programming, rather than the inheritance approach used in other languages
such as Smalltalk. An early set of foundation classes for C++, called the National
Institutes of Health Class Library (NIHCL), was based on a class hierarchy after the
Smalltalk tradition.

Of course, this was before C++ had added templates to the language; but it is useful in
illustrating how inheritance compares to templates in the implementation of
programming idioms such as containers.

In the NIH library, all classes in the tree inherited from a root class Object, which
defined interfaces for identifying the real class of an object, comparing objects, and
printing objects. [The Object class itself inherited from class NIHCL, which
encapsulated some static data members used by all classes.] Most of the functions
were declared virtual, and had to be overridden by deriving classes13. The hierarchy
also included a class Class that provided a library implementation of RTTI (which
was also not yet part of the C++ language). The Collection classes, themselves
derived from Object, could hold only other objects derived from Object which
implemented the necessary virtual functions.

13 Presumably, had the NIHCL been written today, these would have been pure virtual functions.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 27 of 87

But the NIHCL had several disadvantages due to its use of inheritance versus
templates for the implementation of container classes.

The following is a portion of the NIHCL hierarchy (taken from the README file):
NIHCL - Library Static Member Variables and Functions
 Object - Root of the NIH Class Library Inheritance Tree
 Bitset - Set of Small Integers (like Pascal's type SET)
 Class - Class Descriptor
 Collection - Abstract Class for Collections
 Arraychar - Byte Array
 ArrayOb - Array of Object Pointers
 Bag - Unordered Collection of Objects
 SeqCltn - Abstract Class for Ordered, Indexed
 Collections
 Heap - Min-Max Heap of Object Pointers
 LinkedList - Singly-Linked List
 OrderedCltn - Ordered Collection of Object Pointers
 SortedCltn - Sorted Collection
 KeySortCltn - Keyed Sorted Collection
 Stack - Stack of Object Pointers
 Set - Unordered Collection of Non-Duplicate Objects
 Dictionary - Set of Associations
 IdentDict - Dictionary Keyed by Object Address
 IdentSet - Set Keyed by Object Address
 Float - Floating Point Number
 Fraction - Rational Arithmetic
 Integer - Integer Number Object
 Iterator - Collection Iterator
 Link - Abstract Class for LinkedList Links
 LinkOb - Link Containing Object Pointer
 LookupKey - Abstract Class for Dictionary Associations
 Assoc - Association of Object Pointers
 AssocInt - Association of Object Pointer with Integer
 Nil - The Nil Object
 Vector - Abstract Class for Vectors
 BitVec - Bit Vector
 ByteVec - Byte Vector
 ShortVec - Short Integer Vector
 IntVec - Integer Vector
 LongVec - Long Integer Vector
 FloatVec - Floating Point Vector
 DoubleVec - Double-Precision Floating Point Vector

Thus the class KeySortCltn (roughly equivalent to std::map), is seven layers deep
in the hierarchy:

NIHCL
 Object
 Collection
 SeqCltn
 OrderedCltn
 SortedCltn
 KeySortCltn

Because a linker cannot know which virtual functions will be called at runtime, it
typically includes the functions from all the preceding levels of the hierarchy for each
class in the executable program. This can lead to code bloat without templates.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 28 of 87

There are other performance disadvantages to inheritance based collection classes:

? Primitive types cannot be inserted into the collections. Instead, these must be
replaced with classes in the Object hierarchy, which are programmed to have
similar behaviour to primitive arithmetic types, such as Integer and Float.
This circumvents processor optimisations for arithmetic operations on
primitive types. It is also difficult to exactly duplicate the behaviour of
arithmetic data types through class member functions and operators.

? Because C++ has compile-time type checking, providing type-safe containers
for different contained data types requires code to be duplicated for the same
reason that template containers are instantiated multiple times. To avo id this
duplication of code, the NIHCL collections hold pointers to a generic type -
the base Object class. However, this is not type safe, and requires runtime
checks to ensure objects are type compatible with the contents of the
collections. It also leads to many more dynamic memory allocations, which
can hinder performance. Furthermore, type checking is always dynamic
adding further cost to the program using the collections.

?? Because classes used with the NIHCL must inherit from Object and are
required to implement a number of virtual functions, this solution is intrusive
on the design of classes from the problem domain. The C++ Standard Library
containers do not impose such requirements on their contents14 [A class used
in a Standard container must be assignable and copy-constructible; often it
additionally needs to have a default constructor and implement operator ==
and operator <]. For this reason alone, the obligation to inherit from
class Object often means that the use of Multiple Inheritance also becomes
necessary, since domain specific classes may have their own hierarchical
organization.

The C++ Standard Library lays out a set of principles for combining data
structures and algorithms from different sources. Inheritance-based libraries
from different vendors, where the algorithms are implemented as member
functions of the containers; can be difficult to integrate and difficult to extend.

Templates can provide powerful facilities for evaluation at compile-time. Doing more
of the work at compile-time means less work at runtime.

Hints can be exchanged between the compiler and the library to select a more efficient
specialisation, or to select linkage with a reduced-footprint version of the library. In
C, it's possible to optimise printf this way – printf with floating point support vs.
printf without floating point support.

When the linker sees printf, if the symbol __crt_float (or equivalent) is defined,
then invoke printf_float, else invoke printf_int. Defining a float f; has the
side effect of defining __crt_float.

14 A class used in a Standard container must be assignable and copy-constructible; often it additionally needs to have a default
constructor and implement operator == and operator <.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 29 of 87

2.6 Overheads from The Standard IOStreams Library
The Standard IOStreams library (§IS-27) has a well-earned reputation of being
inefficient! Most of this reputation is, however, due to misinformation and naïve
implementation of this library component. Rather than tackling the whole library, this
report addresses efficiency considerations related to a particular aspect used
throughout the IOStreams library, namely those aspects relating to the IOStream's use
of the Locales library (§IS-22). An implementation approach for removing most, if
not all, efficiency problems related to locales is discussed in 3.2.

The efficiency problems come in several forms.

2.6.1 Overview - Executable Size
Typically, using anything from the IOStreams library drags in a huge amount of
library code, most of which is not actually used. The principle reason for this is the
use of std::locale in all base classes of the IOStreams library (e.g. std::ios_base
and std::basic_streambuf). In the worst case, the code for all required facets from
the Locales library (§IS-22.1.1.1.1¶4) is included in the executable. A milder form of
this problem merely includes code of unused functions from a facet, from which one
or more functions are used. This is discussed in 3.2.2.

2.6.2 Overview - Execution Speed
Since certain aspects of IOStream processing are distributed over multiple facets, it
seems that the standard mandates an inefficient implementation. This is not the case
and using some form of pre-processing, lots of the work can be avoided. In addition,
with a slightly smarter linker than is typically used, it is possible to remove additional
inefficiencies. This is discussed in 3.2.3 and 3.2.5.

2.6.3 Overview - Object Size
The standard seems to mandate an std::locale object being embedded in each
std::ios_base and std::basic_streambuf object, in addition to several options
used for formatting and error reporting. This makes for fairly large stream objects.
Using a more advanced organization for stream objects can shift the costs to those
applications actually using the corresponding features. Depending on the exact
approach taken, the costs are shifted to one or more of:

? compilation time
? higher memory usage when actually using the corresponding features
? execution speed

This is discussed in 3.2.6.

2.6.4 Overview – Compile-Time
A widespread approach to cope with the lack of support for the separation model is to
include the template implementation in the headers. This can results in very long
compile and link times if, for example, the IOStreams headers are included, and
especially if optimisations are enabled. With an improved approach using pre-

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 30 of 87

instantiation and consequent decoupling techniques, the compile-time can be reduced
significantly. This is discussed in 3.2.4.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 31 of 87

3 Performance – Techniques &
Strategies

Description of current approaches:

?? Code generation control, including memory placement, initialisation
characteristics, et al.

?? #pragma, and other language modifications
?? Application of measurement results in making choices
?? Transforming virtual calls into non-virtual calls
?? Alternatives to exception handling
?? Effects of restrictions upon character types
?? Characterization of performance guarantees
?? Coding style can affect performance

Editor’s Note: There is no further mention of these, other than a bit about
transforming virtual calls into non-virtual calls, and snippets
showing how coding style can affect performance.

3.1 Programmer Directed Optimisations
Programmers are sometimes surprised when their programs call functions they haven't
specified, maybe even haven't written. While a line of C code typically translates to a
few machine instructions, a single innocuous-looking line of C++ code may translate
to a fairly large number of machine instructions. Simply declaring a variable such as:

C c;

has the potential to be quite expensive15 in C++ if, for instance, the class C has a
default constructor which requires a large amount of code or data to initialise the
object c.

15 It is important to remember however, that in C the object would still need to be initialised, but that code would have to be
explicitly called and is hence visible to the programmer.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 32 of 87

Understanding what a C++ program is doing is important for optimisation. If you
know what functions C++ silently writes and calls, careful programming can keep the
unexpected code to a minimum. Some of the works cited in the bibliography
(Appendix C:) provide more extensive guidance, but the following provides some
suggestions for writing more efficient code:

?? In constructors, prefer initialisation of data members to assignment. Members
of const and reference types must be initialised in the member initialisation
list, but it is advisable to list other members as well. The sequence of steps
taken to construct a variable of class type is as follows:

o the base classes for the class are initialised using their default
constructors unless an explicit initialiser has been provided in the mem-
initializer-list;

o the data members for the class are initialised using their default
constructors16 unless an explicit initialiser has been provided in the
mem-initializer-list;

o finally, the body of the constructor is executed.

Therefore, an assignment to a data member within the constructor body means
that member is effectively initialised twice17.

?? As a general principle, don't define a variable before you are ready to initialise
it. This prevents effectively initialising the variable twice.

?? Use the direct initialisation syntax T a(b); rather than the copy initialisation
syntax T a = b;. Copy-initialisation is permitted to create an intermediate
temporary object, while direct initialisation is not.

?? Shift expensive computations from the most time-critical parts of a program to
the least time-critical parts (often, but not always, program start-up).

?? Whenever possible, compute values and catch errors at translation time rather
than runtime. With sophisticated use of templates, a complicated block of
code can be compiled to a single constant in the executable.

?? Know what functions the C++ compiler silently generates and calls. Simply
defining a variable of some class type may invoke a potentially expensive
constructor function.

?? Passing arguments to a function by value [e.g. void f(T x)] is cheap for
built- in types, but potentially expensive for class types since they may have a
non-trivial copy constructor. Passing by address [e.g. void f(T const* x)]
is light-weight, but changes the way the function is called. Passing by
reference-to-const [e.g. void f(T const& x)] combines the safety of
passing by value with the efficiency of passing by address. But be careful not

16 Built-in data types do not have a default constructor, so unless they are explicitly initialised, they will have an unspecified or
undefined value (according to their type).
17 Actually, an object can only be initialised once – this is really an initialisation followed by an assignment, a distinction that is
not so clear in C, but can very different in C++.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 33 of 87

to create unnecessary temporary objects, by using an argument that must be
converted to the type of the function parameter.

?? Unless you need automatic type conversions, make all one-argument
constructors18 explicit. This will prevent calling them accidentally.
Conversions can still be done when necessary by stating them explicitly in the
code, avoiding the penalty of hidden and unexpected conversions.

?? Understand how and when the compiler generates temporary objects. Often
small changes in coding style can prevent the creation of temporaries, with
consequent benefits for runtime speed and memory footprint. Temporary
objects may be generated when passing parameters to functions, returning
values from functions, or initialising objects.

?? Rewriting expressions can reduce or eliminate the need for temporary objects.
For example, if a, b, and c are objects of class T:

T a; // inefficient: don't create an object before
 // its initialization is really needed
a = b + c; // inefficient: (b + c) creates a temporary
 // object and then assigns it to a
T a(b); a += c; // better: no temporary objects created

?? Use the return value optimisation to give the compiler a hint that temporary
objects can be eliminated. The trick is to return constructor arguments instead
of objects, like this:

const Rational operator * (Rational const & lhs,
 Rational const & rhs)
{
 return Rational(lhs.numerator() * rhs.numerator(),
 lhs.denominator() * rhs.denominator());
}

Less carefully written code might create a local Rational variable to hold the
result of the calculation, use the assignment operator to copy it to a temporary
variable holding the return value, then copy that into a variable in the calling
function. But with the suggested hints, the compiler is able to construct the
return value directly into the variable that is specified to receive it.

?? Prefer pre-increment and -decrement to postfix operators.

Postfix operators like i++ copy the existing value to a temporary object,
increment the internal value, and then return the temporary. Prefix operators
like ++i increment the actual value first and return a refe rence to it. With
objects such as iterators, creating temporary copies is expensive compared
to built- in ints.

?? Dynamic memory allocation and de-allocation can be a bottleneck. Consider
writing class-specific operator new() and operator delete() functions,
optimised for objects of a specific size or type. It may be possible to recycle

18 This refers to any constructor that may be called with a single argument. Multiple parameter constructors with default
arguments can be called as one-argument constructors.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 34 of 87

blocks of memory instead of releasing them back to the heap whenever an
object is deleted.

?? Sometimes it is helpful to “widen” a class' interface with functions that take
different data types to prevent automatic conversions (such as adding an
overload on char * to a function which takes a std::string parameter). The
numerous overloads for operators +, ==, !=, and < in the <string> header are
an example of such a "fat" interface19. If the only supported parameters were
std::strings, then characters and pointers to character arrays would have to
be converted to full std::string objects before the operator was applied.

?? The Standard string class is not a lightweight component. Because it has a
lot of functionality, it comes with a certain amount of overhead (and because
Standard Library container classes throw C++ std::strings, and not C-style
string literals, this overhead may be included in a program inadvertently).

In many applications, strings are created, stored, and referenced, but never
changed. As an extension, or as a PDO, it might be useful to create a lighter-
weight unchangeable-string class.

?? Reference counting is a widely used optimisation technique. In a single-
threaded application, it can prevent making unnecessary copies of objects.
However, in multi- threaded applications, the overhead of locking the shared
data representation may add unnecessary overheads, negating the performance
advantage of reference counting20.

?? Pre-compute values that won't change. To avoid repeated function calls,
rather than writing:

while(myListIterator != myList.end()) ...
for(size_t n = 0; n < myVector.size(), ++n) ...

instead call myList.end() or myVector.size() once “before” the loop,
storing the result in a variable which can then be used in the comparison.

?? Small forwarding functions can usually be inlined to advantage, especially if
they occupy less code space than preparing the stack frame for a function call.

?? The use of dynamic binding and virtual functions has some overhead that can
affect performance. In a typical implementation, every object (which has
virtual functions) in the hierarchy needs an extra member for the vptr, and
dynamic selection of functions at runtime involves de-referencing this vptr.
But the biggest overhead factor, is that compilers are often unable to inline
virtual functions (§2.3.3).

?? Use function objects with the Standard Library algorithms rather than function
pointers. The data flow-analysers of many optimisers are defeated by function

19 It is also worth noting, that even if a conversion is needed, it is so metimes better to have the conversion performed in one
place, where an overloaded “wrapper” function calls the one that really performs the work. This can help to reduce program size,
where each caller would otherwise perform the conversion.
20 Of course, if space is the resource being optimised, reference counting may still be the best choice.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 35 of 87

pointers, but function objects are passed by value and optimisers can easily
handle inline functions on objects.

?? Templates provide compile-time polymorphism, wherein type selection does
not incur any runtime penalty. If appropriate to the design, consider using
templates as interfaces instead of abstract base classes. Templates have
several useful properties: they impose no space or code overhead on the class
used as a template argument, and they can be attached to the class for limited
times and purposes. If the class does not provide the needed functionality, it
can be defined externally through template specialization. If certain functions
in the template interface are never used for a given class, they need not be
defined because they will not be instantiated.

An old rule of thumb is that there is a trade-off between program size and execution
speed -- that techniques such as declaring code inline can make the program larger
but faster. But now that processors make extensive use of on-board cache and
instruction pipelines, the smallest code is often the fastest as well. Furthermore, tests
indicate that the cost of function calls has greatly reduced, and that modern optimisers
are very good at deciding when and where to inline functions automatically (§2.3.3).

Compilers typically use a heuristic process in optimising code that may be different
for small and large programs. Therefore, it is difficult to recommend any techniques
that are guaranteed to improve performance in all environments. It is vitally
important to measure a performance-critical application in the target environment and
concentrate on improving performance where bottlenecks are discovered. Because so
many factors are involved, measuring actual performance can be difficult but remains
an essential part of the performance tuning process.

The best way to optimise a program is to use efficient algorithms. An algorithm with
quadratic performance may be acceptable for small data sets, but gives abysmal
performance on large inputs. Small local optimisations may be effective if profiling
reveals a bottleneck.

3.2 Efficient Implementation of Locales and IOStreams
The definition of Locales in the C++ Standard (§IS-22) seems to imply a pretty
inefficient implementation. This is however not true. It is possible to create efficient
implementations of the Locales library, both in terms of runtime efficiency and
executable size. This does take some thought and this reports discusses some of the
possibilities that can be used to improve the efficiency of std::locale

implementations with a special focus on the functionality as used by the IOStreams
library.

The approaches discussed in this report are primarily applicable to statically bound
executables as are typically found in for example, embedded systems. If shared, or
dynamically loaded libraries are used, different optimisation goals have precedence,
and some of the approaches described here could be counterproductive. Clever
organization of the shared libraries might deal with some efficiency problems too -
however, this is not discussed in this report.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 36 of 87

Nothing described in this report involves magic or really new techniques. It just
discusses how well known techniques may be employed to the benefit of the library
user. It does however involve additional work compared to a trivial implementation,
for the library implementer as well as for the library tester, and in some cases for the
compiler implementer. Some of the techniques focus on just one efficiency aspect
and thus not all techniques will be applicable in all situations (e.g. certain
performance improvements can result in “additional” code). Depending on the
requirements, the library writer or possibly even the library user, has to choose which
optimisations are the most appropriate.

3.2.1 Locale Implementation Basics
Before going into the details of the various optimisations, it is worth introducing the
implementation of locales describing features implicit to the Standard definition.
Although some of the material presented in this section is not strictly required and
there are other implementation alternatives, this section should provide the necessary
details to understand where the optimisations should be directed.

An std::locale object is an immutable collection of immutable objects - or more
precisely - of immutable facets. This immutability trait is important in multi- threaded
environments, because it removes the need to synchronize most accesses to locales
and their facets. The only operations needing multi-threading synchronization are
copying, assigning, and destroying std::locale objects and the creation of modified
locales.

Instead of modifying a locale object to augment the object with a new facet or to
replace an existing one, std::locale constructors or member functions are used,
creating new locale objects with the modifications applied. As a consequence,
multiple locale objects can share their internal representation and multiple internal
representations can (actually - have to) share their facets. When a modified locale
object is created, the existing facets are copied from the original and then the
modification is applied possibly replacing some facets. For correct maintenance of
the facets, the Standard mandates the necessary interfaces allowing reference counting
or some more or less equivalent techniques for sharing facets. The corresponding
functionality is implemented in the class std::locale::facet, the base class for all
facets.

The copying, assigning, and destroying std::locale objects reduces to simple
pointer and reference count operations. When copying a locale object, the reference
count is incremented and the pointer to the internal representation is assigned. When
destroying a locale object, the reference count is decremented and when it drops to 0,
the internal representation is released. Assignment is an appropriate combination of
these two. What remains is the default construction of an std::locale which is just
the same as a copy of the current global locale object. Thus, the basic lifetime
operations of std::locale objects are reasonably fast.

Individual facets are identified using an ID, more precisely an object of type
std::locale::id which is available as a static data member in all base classes
defining a facet. A facet is a class derived from std::locale::facet which has a
publicly accessible static member called id of type std::locale::id (§IS-

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 37 of 87

22.1.1.1.2¶1). Although explicit use of a locale's facets seems to use a type F as an
index, the Locales library internally uses F::id. The std::locale::id simply
stores an index into an array identifying the location of a pointer to the corresponding
facet or 0 if a locale object does not store the corresponding facet.

Taken together, a locale object is basically a reference counted pointer to an internal
representation consisting of an array of pointers to reference counted facets. In a
multi threaded environment, the internal representation and the facets might store a
mutex (or some similar synchronization facility) thus protecting the reference count.
A corresponding excerpt of the declarations might look something like this (with
namespace std and other qualifications or elaborations of names omitted):

class locale {
public:
 class facet {
 // ...
 private:
 size_t refs;
 mutex lock; // optional
 };

 class id {
 // ...
 private:
 size_t index;
 };

 // ...
private:
 struct internal {
 // ...
 size_t refs;
 mutex lock; // optional
 facet* members;
 };
 internal* rep;
};

These declarations are not really required and there are some interesting variations:

? Rather than using a double indirection with an internal struct, a pointer to an
array of unions can be used. The union would contain members suitable as
reference count and possible mutex lock, as well as pointers to facets. The
index 0 could, for example, be used as “reference count” and index 1 as
“mutex”, with the remaining array members being pointer to facets.

? Instead of protecting each facet object with its own mutex lock, it possible to
share the locks between multiple objects. For example, there may be just one
global mutex lock, because the need to lock facets is actually relatively rare
(only when a modified locale object is necessary is there a need for the mutex)
and it is unlikely that this global lock remains held. If this is too coarse
grained, it is possible to place a mutex lock into the static id object, such that
an individual mutex lock exists for each facet type.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 38 of 87

? If atomic increment and decrement/check are available, the reference count is
sufficient, because the only operations needing multi- threading protection are
incrementing and decrementing the reference count.

? The locale objects only need a representation if there are modified locale
objects. If such an object is never created, it is possible to use an empty
std::locale object. Whether or not this is the case can be determined using
some form of "whole program optimisation" (§3.2.5).

? Whether an array or some other data structure is used internally does not really
matter. What is important is that there is a data structure indexed by
std::locale::id.

? A trivial implementation could use a null pointer to indicate that a facet is
absent in a given locale object. If a pointer to a dummy facet is used instead,
std::use_facet() can simply use a dynamic_cast<>() to produce the
corresponding std::bad_cast exception.

In any case, it is reasonable to envision a locale object as being a reference counted
pointer to some internal representation containing an array of reference counted
facets. Whether this is actually implemented so as to reduce runtime by avoiding a
double indirection and whether there are mutex locks and where these are does not
really matter to the remainder of this discussion. It is, however, assumed that the
implementer chooses an efficient implementation of the std::locale.

It is worth noting that the Standard definition of std::use_facet() and
std::has_facet() differ from the CD2 (Committee Draft 2 – pre-IS) version quite
significantly. If a facet is not found in a locale object, it is not available for this
locale. In CD2, the global locale object was searched for a facet not present a given
locale object. The Standard version can be more efficient - to determine whether a
facet is available for a given locale object, a simple array lookup is sufficient.
Basically, the functions std::use_facet() and std::has_facet() could look
something like:

extern std::locale::facet dummy;
template <typename F>
bool has_facet(std::locale const& loc) {
 return loc.rep->facets[F::id::index] == &dummy;
}
template <typename F>
F const& use_facet(std::locale const& loc) {
 return dynamic_cast<F const&>(*loc.rep->facets[Facet::id::index]);
}

Editor’s Note: Should the reference to the CD2 definition be removed, or relegated
to a footnote?

This version of the functions is tuned for speed. A simple array lookup, together with
the necessary dynamic_cast<>() is used to obtain a facet. Since this implies that
there is a slot for each facet possibly used by the program in the array, it may be
somewhat wasteful with respect to memory. Other techniques might check the size of
the array first or store id/facet pairs. In extreme cases, it is possible to locate the

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 39 of 87

correct facet using dynamic_cast<>() and storing only those facets that are actually
available in the given locale.

3.2.2 Reducing Executable Size
Linking unused code into an executable can have a significant impact on the
executable size. Thus, it is best to avoid having unused code in the executable
program. One source of unused code results from trivial implementations. The
default facet std::locale::classic() includes a certain set of facets as described
in IS-22.1.1.1.1¶2. It is tempting to implement the creation of the corresponding
locale with a straightforward approach, namely explicitly registering the listed facets:

std::locale const& std::locale::classic() {
 static std::locale object;
 static bool uninitialized = true;

 if (uninitialized) {
 object.intern_register(new collate<char>);
 object.intern_register(new collate<wchar_t>);
 // ...
 }
 return object;
}

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 40 of 87

This approach however can result in a very large executable, as it drags in all facets
listed in the table. The advantage of this approach is that a relatively simple
implementation of the various locale operations is possible. An alternative is to
include only those facets that are really used. A simple approach for doing this is to
provide specialized versions of use_facet() and has_facet() which might be
appropriate for has_facet() anyway, for example:

template <typename F> struct facet_aux {
 static F const& use_facet(locale const& l) {
 return dynamic_cast<F const&>(*l.rep
 ->facets[Facet::id::index]);
 }
 static bool has_facet(locale const& l) {
 return l.rep->facets[F::id::index] == &dummy;
 }
};
template <> struct facet_aux<ctype<char> > {
 static ctype<char> const& use_facet(locale const& l) {
 try {
 return dynamic_cast<F const&>(*l.rep
 ->facets[Facet::id::index]);
 } catch (bad_cast const&) {
 locale::facet* f = l.intern_register(new ctype<char>);
 return dynamic_cast<ctype<char>&>(*f);
 }
 }
 static bool has_facet(locale const&) { return true; }
};
// similarly for the other facets

template <typename F>
F const& use_facet(locale const& l) {
 return facet_aux<F>::use_facet(l);
}
template <typename F>
bool has_facet(locale const& l) {
 return facet_aux<F>::has_facet(l);
}

Again, this is just one example of many possible implementations for what is
basically a recurring theme. A facet is created only if it is really referenced from the
program. This particular approach is suitable in implementations where exceptions
cause a runtime overhead only if they are indeed thrown because like the normal
execution path, if the lookup of the facet is successful, it is not burdened by the extra
code used to initialise the facet. Although the above code seems to imply that
struct facet_aux has to be specialized for all required facets individua lly, this need
not be the case. By using an additional template argument, it is possible to use partial
specialization together with some tagging mechanism, to determine whether the facet
should be created on the fly if it is not yet present.

Different implementations of the lazy facet initialisation include the use of static
initialisers to register used facets. In this case, the specialised versions of the function
use_facet() would be placed into individual object files together with an object
whose static initialisation registers the corresponding facet. This approach implies
however, that the function use_facet() is implemented out-of-line, possibly causing
unnecessary overhead both in terms of runtime and executable size.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 41 of 87

The next source of unused code is the combination of several related aspects in just
one facet due to the use of virtual functions. Normally, instantiation of a class
containing virtual functions requires that the code for all virtual functions be present,
even if they are unused. This can be relatively expensive as for example, in the case
of the facet dealing with numeric formatting. Even if only the integer formatting
functions are used, the typically bigger code for the floating point formatting gets
dragged in just to resolve the symbols referenced from the "virtual function table”.

A better approach to avoid linking of unused virtual functions involves changing the
compiler such that it generates appropriate symbols, allowing the linker to determine
whether a virtual function is really called. If it is, the reference from the virtual
function table is resolved; otherwise, there is no need to resolve it because it will
never be called anyway.

Author’s Note: Details for this are described elsewhere (currently, I don't have a
reference I can point to but I know that Nathan Myers has dealt with
this for gcc).

For the Standard facets however, there is a “Poor Man's” alternative that comes close
to having the same effect. The idea is to provide a stub implementation for the virtual
functions, which is placed in the library such that it is searched fairly late. The real
implementation is placed before the stub implementation in the same object file along
with the implementation of the forwarding function. Since a use of the virtual
function has to go through the forwarding function, this symbol is also un-referenced,
and resolving it brings in the correct implementation of the virtual function.

Unfortunately, it is not totally true that the virtual function can only be called through
the forwarding function. A class deriving from the facet can directly call the virtual
function because these are protected rather than private. Thus, it is still necessary
to drag in the whole implementation if there is a derived facet. To avoid this, another
implementation can be placed in the same object file as the constructors of the facet,
which can be called using a hidden constructor for the automatic instantiation.
Although it is possible to get these things to work with typical linkers, a modified
compiler and linker provide a much-preferred solution, which if often outside of the
scope of the library implementers.

Basically, most of the normally visible code bloat can be removed using these two
techniques, i.e. by including only used facets and avoiding the inclusion of unused
virtual functions. Some of the approaches described in the other sections can also
result in a reduction of executable size, but the focus of those optimisations is on a
different aspect of the problem. Also, the reduction in code size for the other
approaches is not as significant.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 42 of 87

3.2.3 Pre-Processing for Facets
Once the executable size is reduced, the next observation is that the operations tend to
be slow. Take numeric formatting as an example: to produce the formatted output of
a number, three different facets are involved:

? num_put which does the actual formatting; i.e. determining which digits and
symbols are there; doing padding when necessary; etc.

? numpunct which provides details about local conventions, such as the need to
put in thousands separators; which character to use as a decimal point; etc.

? ctype which transforms the characters produced internally by num_put, into
the appropriate "wide" characters.

Each of the ctype or numpunct functions called is basically a virtual function. A
virtual function call can be an expensive way to determine whether a certain character
is a decimal point; or to transform a character between a narrow and wide
representation. Thus, it is necessary to avoid these calls wherever possible for
maximum efficiency.

At first examination there does not appear to be much room for improvement.
However, on closer inspection, it turns out that the Standard does not mandate calls to
numpunct or ctype for each piece of information. If the num_put facet has widened a
character already, or knows which decimal point to use, it is not required to call the
corresponding functions. This can be taken a step further. When creating a locale
object, certain data can be cached using for example, an auxiliary hidden facet.
Rather than going through virtual functions over and over again, the required data is
simply stored in an appropriate data structure.

For example, the cache for the numeric formatting might consist of a character
translation table resulting from widening all digit and symbol characters during the
initial locale set-up. This translation table might also contain the decimal point and
thousands separator - combining data obtained from two different facets into just one
table. Taking it another step further, the cache might be set up to use two different
functions depending on whether thousands separators are used according to the
numpunct facet or not. Some pre-processing might also improve the performance of
parsing strings like the Boolean values if the std::ios_base::boolalpha flag is set.

Although there are many details to be handled like for example, distinguishing
between normal and cache facets when creating a new locale object, the effect of
using a cache can be fairly significant. It is important that the cache facets are not
generally shared between locale representations. To share the cache, it has to be
verified that all facets contributing to the cached data are identical in each of the
corresponding locales. Also, certain things like, the use of two different functions for
formatting with or without thousands separators only work if the default facet is used.

3.2.4 Compile-Time Decoupling
It may appear strange to talk about improving compile-times when discussing the
efficiency of locales but there are good reasons for this. First of all, compile-time is
just another concern for performance efficiency, and it should be minimized where

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 43 of 87

possible. More important to this paper however, is that some of the techniques
presented below, rely on certain aspects that are related to the compilation process.

The first thing that improves compile-time is the liberal use of declarations, avoiding
definitions wherever possible. A Standard header may be required to include other
headers that provide a needed definition (§IS-17.4.4.1¶1), however, this does not
apply to declarations. As a consequence, a header need not be included just because it
defines a type which is used only a as return or argument type where a declaration is
sufficient. Likewise, a declaration is sufficient if only a pointer or a class is used as a
member.

Looking at the members imbue() and getloc() of the class std::ios_base, it
would seem that an object of this type is required to include <locale> simply for the
definition of std::locale, because apparently, an std::ios_base object stores an
object of this type in a member variable. This is, not required! Instead,
std::ios_base could store the pointer to the locale's internal representation and
construct an std::locale object on the fly. Thus, there is no need for the header
<ios> to include the header <locale>. The header <locale> will be used elsewhere
with the implementation of the std::ios_base class but that is a completely different
issue.

Why does it matter? Current compilers lacking support for the export keyword
require the implementation of the template members of the other stream classes in the
headers anyway and the implementation of these classes will need the definitions
from <locale> - won't they? It is true that some definitions of the template members
will indeed require definitions from the header <locale>. However, this does not
imply that the implementation of the template members is required to reside in the
header files - a simple alternative is to explicitly instantiate the corresponding
templates in suitable object files.

Explicit instantiation obviously works for the template arguments mentioned in the
Standard, for example, explicit specialisation of std::basic_ios<char> and
std::basic_ios<wchar_t> works for the class-template std::basic_ios. But
what happens when the user tries some other type as the character representation, or a
different type for the character traits? Since the implementation is not inline but
requires explicit instantiation, it cannot always be present in the Standard library
shipped with the compiler. The usual approach to this problem is to use the export
keyword but in the absence of this, an entirely different approach is necessary. One
such approach is to instruct the user on how to instantiate the corresponding classes
using for example, some environment specific implementation file, and suitable
compiler switches. For instance, instantiating the IOStream classes for the character
type mychar and the traits type mytraits might look something like:

c++ -o io-inst-mychar-mytraits.o io-inst.cpp \
 -DcharT=mychar -Dtraits=mytraits -Dinclude="mychar.hpp"

Using such an approach causes some trouble to the user and more work for the
implementor, which seems to be a fairly high price to pay for a reduction in
dependencies, and a speed up of compile-time. But note that the improvement in
compile-time is typically significant when compiling with optimisations enabled. The

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 44 of 87

reason for this is simple: with all those inline functions, the compiler causes huge
chunks of codes to be passed on to the optimiser which then has to work extra hard to
improve them. Bigger chunks provide better optimisation possibilities, but they also
cause significantly longer compile-times due to the non- linear increase in the
complexity of the optimisation step as the size of the chunks increases. Furthermore,
the object files written and later processed by the linker are much bigger when all
used instantiations are present in each object file. This can also impact the executable
size, because certain code may be present multiple times embedded in different inline
functions which are different but which have some code from just one other function
in common.

Another reason for having the IOStream and Locale functions in a separate place, is
that it is possible to tell from the undefined symbols, which features are used in a
program, and which are not. This information can then be used by a smart- linker to
determine which particular implementation of a function is most suitable for a given
application.

3.2.5 Smart Linking
The discussion above already addresses how to avoid unused code using a slightly
non-trivial implementation of locales and virtual functions. It does not address how to
avoid unnecessary code. The term “unnecessary code” refers to code that is actually
executed, but which does not really have any effect. For example, the code for
padding formatted results does not have an effect if the width() is never set to a non-
zero value. Similarly, there is no need to go through the virtual functions of the
various facets, if only the default locale ever used. As for all other aspects of C++, it
is reasonable to avoid the costs in code size and performance when the corresponding
feature is not used.

The basic idea for coping with this is to provide multiple implementations of the same
function that avoids unnecessary overheads where possible. Since writing multiple
implementations of the same function can easily become a maintenance nightmare, it
makes sense to write one implementation, which is configured at compile-time to
handle different situations. For example, a function for numeric formatting that
optionally avoids the code for padding might look like this:

template <typename cT, typename OutIt>
num_put<cT, OutIt>::do_put(OutIt it, ios_base& fmt,
 cT fill, long v) const
{
 char buffer[some_suitable_size];
 char* end = get_formatted(fmt, v);
 if (need_padding && fmt.width() > 0)
 return put_padded(it, fmt, fill, buffer);
 else
 return put(it, fmt, buffer);
}

The value need_padding is a constant Boolean which is set to false if the
compilation is configured to avoid padding code. With a clever compiler (normally
requiring optimisation to be enabled) any reference to put_padded() is avoided, as is

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 45 of 87

the check for whether the width() is greater than zero. The library would just supply
two versions of this function and the smart- linker would need to choose the right one.

To choose the right one, the linker has to be told under what circumstances it should
use the one avoiding the padding, i.e. the one where need_padding is set to false. A
simple analysis shows that the only possibility for width() being non-zero is the use
of the std::ios_base::width() function with a parameter. The library does not set
a non-zero variable, and hence the simpler version can be used if
std::ios_base::width() is never referenced from user code.

The example of padding is pretty simple. Other cases are more complex but still
manageable. Another issue worth considering is whether the Locales library has to be
used or if it is possible to provide the functionality directly, possibly using functions
that are shared internally between the Locales and the IOStreams library. That is, if
only the default locale is used, the IOStream functions can call the formatting
functions directly, bypassing the retrieval of the corresponding facet and associated
virtual function call - moreover, bypassing any code related to locales - avoiding the
need to drag in the corresponding locale maintenance code.

The analysis necessary to check if only the default locale is used is more complex
however. The simple test is to check for the locale's constructors. If only the default
and copy constructors are used, then only the default locale is used because one of the
other constructors is required to even create a different locale object. Even then, if
another locale object is constructed, it is not necessarily used with the IOStreams.
Only if the global locale is ever changed, or if std::ios_base::imbue(),
std::basic_ios<...>::imbue(), or std::basic_streambuf<...>::imbue() are
ever called, can the streams be affected by the non-default locale object. Although it
this is somewhat more complex to determine, it is still manageable. There are other
things which might be exploited too, for example, whether the streams have to deal
with exceptions in the input or output functions (this depends on the stream buffer and
locales possibly used); whether calling of callback functions is needed (only if
callbacks are ever registered, is this necessary); etc.

The approach taken by the linker to decide which functionality is used by the
application requires using a set of “rules” provided by the library implementor to
exclude functions. It is important to base these rules only on the application code to
avoid unnecessary restrictions imposed by unused library code. This however results
in more rules and rules that are more complex. To determine which functionality is
used by the application code, the unresolved symbols referenced by the application
code are examined. This requires that any function used as a “rule” is indeed
unresolved and results in the corresponding functions being non- inline.

There are basically three problems with this approach:

? The maintenance of the implementation becomes more complex because extra
work is necessary. This can be reduced to a more acceptable level by relying
on clever compilers eliminating code for branches that the compiler can
determine, are never used.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 46 of 87

? The analysis of the conditions under which code can be avoided is sometimes
non-trivial. Also, the conditions have to be made available to the linker,
which introduces another potential cause of error.

? Even simple functions used to exclude a simple implementation of the
function std::ios_base::width() cannot be inline. This might result in less
efficient and sometimes even bigger code (for simple functions the cost of
calling the function can be bigger than the actual function). See 3.2.7 for an
approach for avoiding this problem.

The same approach can be beneficial to other libraries, and to other areas of the
Standard C++ library than just the IOStreams and Locales library. In general, it can
simplify the library interface by removing similar functions applicable in different
situations, while still retaining the same efficiency. It is however, not always
applicable in such situations and should be used carefully where appropriate.

3.2.6 Object Organization
A typical approach to organise a class is to have member variables for all attributes to
be maintained. This may seem to be a natural approach, but it can result in a bigger
footprint than necessary. For example, in an application where the width() is never
changed, there is no need to actually store the width(). When looking at the
IOStreams library, it turns out that each std::basic_ios object might store a
relatively large amount of data to provide functionality that many C++ programmers
using IOStreams are not even aware of, for example:

? A set of formatting flags is stored in an std::ios_base::fmtflags object.

? Formatting parameters like the width() and the precision() are stored in
std::streamsize objects.

? An std::locale object (or some suitable reference to its internal
representation) is stored.

? The pword() and iword() lists are stored.

? A list of callbacks is stored.

? The error flags and exception flags are stored in objects of type
std::ios_base::iostate. Since these basically consist of just three bits,
they may be folded into just one word.

? The fill character used for padding is stored.

? A pointer to the used stream buffer is stored.

? A pointer to the tie()ed std::basic_ostream is stored.

This results in at least eight extra 32-bit words, even when folding multiple data into
just one 32-bit word where possible (the formatting flags, the state and exception
flags, and the fill character can fit into 32-bits for the character type char). These are
32 bytes for every stream object even if there is just one stream, for example,
std::cout which never uses a different precision, width (and thus no fill character),
or locale; probably does not set up special formatting flags using the pword() or

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 47 of 87

iword() facilities; almost certainly does not use callbacks, and is not tie()ed to
anything. It might get away with being an object needing no members at all, and in
such a case - which is not very unlikely in an embedded application - by just sending
string literals somewhere!

A different organization could be the use of an array of unions and using the
pword()/iword() mechanism to store the data. Each of the pieces of data listed
above is given an index of its position in an array of unions (possibly, several pieces
can share just one union like they shared just one word in the conventional setting).
Only the pword()/iword() pieces would not be stored in this array because they are
required to access the array. A feature never accessed does not get an index and thus
does not require any space in the array. The only complication is how to deal with the
std::locale, because it is the only non-POD data. This can be handled using for
example, a pointer to the locale's internal representation.

Depending on the exact organization, the approach will show different runtime
characteristics. For example, the easiest approach for assigning indices is to do it on
the fly when the corresponding data is initialised or first accessed. This may however,
result in arrays which are smaller than the maximum index and thus the access to the
array has to be bounds-checked (in case of an out-of-bound access, the array might
have to be increased; it is only an error to access the corresponding element if the
index is bigger than the biggest index provided so far by
std::ios_base::xalloc()).

An alternative is to determine the maximum number of slots used by the Standard
library at link time or at start-up time before the first stream object is initialised. In
this case, there would be no need to check for out-of-bound access to the IOStream
features. However, this initialisation is more complex.

A similar approach can be applied to the std::locale objects.

3.2.7 Library Recompilation
So far, the techniques described assume that the application is linked to a pre-
packaged library implementation. Although the library might contain different
variations on some functions, it is still pre-packaged (the templates possibly
instantiated by the user can also be considered to be pre-packaged). This is however,
often not a necessary assumption! If the library code is available, the Standard library
can also be recompiled.

This leads to the “two phase” building of an application; where in a first phase, the
application is compiled against a "normal", fully-fledged implementation. The
resulting object files are automatically analysed for features actually used, by looking
at the unresolved references. The result of this analysis is some configuration
information (possible a file), which uses conditional compilation to remove all unused
features from the Standard library; in particular, removing unused member variables
and unnecessary code. In the second phase, this configuration information is then
used to recompile the Standard library and the application code for the final program.

This approach does not suffer from drawbacks due to dynamic determination of what
are effectively static features. For example, if it is known at compile-time which

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 48 of 87

IOStream features are used, the stream objects can be organised to include members
for exactly those features. Thus, it is not necessary to use a lookup in a dynamically
allocated array, possibly using a dynamically assigned index. Also, in the final
compilation phase, it is possible to inline functions that were not previously inlined
(in order to produce the unresolved symbol references).

3.3 ROMability
For the purposes of this paper, the terms “ROMable” and “ROMability” refer to
entities that are appropriate for placement in “Read-Only-Memory” and to the process
of placing entities into Read-Only-Memory so as to enhance the performance of
programs written in C++.

There are two principal domains that benefit from this process:

?? Embedded programs which have constraints on available memory, where code
and data must be stored in physical ROM whenever possible.

?? Modern operating systems which support the sharing of code and data among
many instances of a program, or among several programs sharing invariant
code and data.

The subject of ROMability therefore has performance application to all programs,
where immutable aspects of the program can be placed in a shared and “Read-Only”
space. On hosted systems, Read-Only is enforced by the memory manager, while in
embedded systems, it is enforced by the physical nature of ROM devices.

For embedded programs where memory requirements are scarce, it is critical that
compilers identify strictly ROMable objects and allocate only ROM area for them.
For hosted systems, the requirement to share ROMable information is not as critical,
but there are inevitable performance advantages to hosted programs as memory
footprint and the time it takes to load a program can be greatly reduced. All the
techniques described in this section will benefit such programs.

3.3.1 ROMable Objects
Most constant information is ROMable. Obvious candidates for ROMability are
objects of static extent that are declared const, and which have constant initialisers;
but there are several other significant candidates too.

Objects which are not declared const can be modified, and are consequently not
ROMable. But these objects may have constant initialisers, and those initialisers may
be ROMable. This paper considers those entities in a program that are obviously
ROMable such as global const objects; entities that are generated by the compilation
system to support functionality such a switch-statements; and also places where
ROMability can be applied to intermediate entities which are not so obvious.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 49 of 87

3.3.1.1 User-defined objects
Objects declared const that are initialised with constant expressions. Examples:

?? An aggregate (§IS-18.5.1) object with static storage duration (§IS-3.7.1)
whose initialisers are all constants:

static const int tab[] = {1,2,3};

?? Objects of scalar type with external linkage:

A const-qualified object of scalar type has internal (§IS-7.1.5.1) or no
(§IS-3.2¶5) linkage and thus can usually be treated as a compile time constant,
i.e. object data areas are not allocated, even in ROM. For example:

const int tabelsize = 48
double table[tablesize]; // table has space for 48 doubles

However, if an object of scalar type is used for initialisation or assignment of
pointer or reference variables, it has internal linkage and is ROMable. For
example:

extern const int a = 1; // extern linkage
const int b = 1; // internal linkage
const int *c = &b; // variable b should be allocated
const int tbsize = 256; // it is expected that tbsize is not
 // allocated at runtime
char ctb[tbsize];

?? String literals:

An ordinary string literal has the type “array of n const char“ (§IS-2.13.4),
and so they are ROMable. A string literal used as the initialiser of a character
array if ROMable, but if the variable to be initialised is not a const-qualified
array of char, then the variable being initialised is not ROMable:

const char *str1 = "abc"; // both str1 and “abc” are ROMable
char str2[] = "def"; // str2 is not ROMable

A compiler may achieve further space savings by sharing the representation of
string literals in ROM. For example:

const char* str1 = “abc”; // only one copy of “abc” needs
const char* str2 = “abc”; // to exist, and it is ROMable

Yet further possibilities for space saving exists if a string literal is identical to
the trailing portion of a larger string literal, as only the larger string literal is
necessary, as the smaller one can reference the common sub-string of the
larger. For example:

const char* str1 = “Hello World”;
const char* str2 = “World”;

// Could be considered to be implicitly:
const char* str1 = “Hello World”;
const char* str2 = str1 + 6;

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 50 of 87

3.3.1.2 Compiler-generated objects
?? Jump tables for switch statements:

If a jump table is generated to implement switch statement, the table is
ROMable, since it consists of a fixed number of constants known at compile-
time.

?? Virtual function tables:

Virtual function tables of a class are usually ROMable.

Note: For some implementations, the virtual function tables may not be
ROMable where dynamic linking is involved, and the virtual function
tables are in a shared library.

Note also: It may be appropriate to discuss flash cards here, and how they can
introduce code into a system.

?? Type identification tables:

When a table is generated to identify RTTI types, the table is usually
ROMable.

Note: For some implementations, the type identification tables may not be
ROMable where dynamic linking is involved, and the type
identification tables are in a shared library.

?? Exception tables:

When exception handling is implemented using a static table, the table is
usually ROMable.

Note: For some implementations, the exception tables may not be ROMable
where dynamic linking is involved, and the exception tables are in a
shared library.

?? Reference to constants:

If a constant expression is specified as the initialiser for a const-qualified
reference, a temporary object is generated (§IS-8.5.3).

This temporary object is ROMable, for example:
// The declaration:
const double & a = 2.0;

// May be represented as:
static const double tmp = 2.0; // ‘tmp’ is ROMable
const double & b = tmp;

?? Initialisers for aggregate objects with automatic storage duration:

If all the initialisers for an aggregate object that has automatic storage duration
are constant expressions, a temporary object that has the value of the constant
expressions and a code that copies the value of the temporary object to the

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 51 of 87

aggregate object may be generated. This temporary object ROMable, for
example:

struct A {
 int a;
 int b;
 int c;
};
void test() {
 A a = {1,2,3};
}

// May be interpreted as:
void test () {
 static const A tmp = {1,2,3}; // ‘tmp’ is ROMable
 A b = tmp;
}

Thus, the instruction code for initialising the aggregate object can be replaced
by a simple bitwise copy, saving both code space and execution time.

?? Constants created during code generation:

Some literals such as integer literals, floating point literals and addresses can
be implemented as either instruction code or data. If they are represented as
data, then these objects are ROMable. For example:

void test() {
 double a;
 a += 1.0;
}

// May be interpreted as:
void test () {
 static const double tmp1 = 1.0; // ‘tmp1’ is ROMable
 const double *tmp2 = &tmp1;
 double a;
 a += *tmp2;
}

Editor’s Note: Why does it need the intermediate ‘tmp2’? I think that this would be
better interpreted as (quite apart from the undefined nature of adding
1.0 to an un-initialised double):

 void test () {
 static const double tmp = 1.0; // ‘tmp’ is ROMable
 double a;
 a += tmp;
 }

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 52 of 87

3.3.2 Constructors and ROMable Objects
In general, objects of classes with constructors must be dynamically initialised.
However, in some cases the initialisation could be performed if static analyses of the
constructors resulted in constant values being used. In this case, the object could be
ROMable. Similar analyses would need to be performed on the destructor.

class A {
 int a;
public:
 A(int v) : a(v) { }
};
const A tab[2] = {1,2};

Editor’s Note: If sufficient analyses reveals that the object eventually gets a
particular value, and the program cannot detect whether it acquired
that value by constant or dynamic means, then it is quite legitimate
for it to be ROMable21.

 Furthermore, even if it is not a const object, the initialisation
“pattern” may be ROMable, and bitwise copied to the object when it
is initialised. For example:

 class X {
 int a;
 char* p;
 public:
 A ()
 : a (7)
 { std::cout << “Hello World” << std::endl”;
 p = “Hi”; }
 };
 A not_const;

 In this case, all objects are initialised to a constant value (the pair

{7,&”Hi”}). This constant initial value is ROMable, and the
constructor could perform a bitwise copy of that constant value and
the calls to the IOStream library.

3.4 Hard Real-Time Considerations
For most embedded systems, only a very small part of the software is really real-time
critical. But for that part of the system, it is important to exactly determine the time a
specific piece of software needs to run. Unfortunately, this is not an easy analysis to
do for modern computer architectures using multiple pipelines and different types of
caches. Nevertheless, for a lot of code sequences it is still quite straightforward to do
a worst-case analysis.

Note (Detlef): Bjarne’s Phrase goes here.

Editor’s Note: What is “Bjarne’s Phrase”?

21 This is an optimisation, and is subject to the so -called “as if rule” (§IS-1.9¶1)

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 53 of 87

This statement also holds for C++. Here is a short description of several C++ features
and their time predictability.

3.4.1 C++ Features for which an Accurate Timing Analysis is Easy

3.4.1.1 Templates
As pointed out in detail in 2.5, there is no real-time relevant overhead for calling
template functions or member functions of class templates. On the contrary,
templates often allow for better inlining and therefore reduce the overhead of the
function call.

If the function is a virtual function, the normal rules for virtual functions apply.

3.4.1.2 Inheritance
Converting a pointer to a derived class to a pointer to base-class22 will not introduce
any run-time overhead in most implementations (see 2.3.3). If there is an overhead
(very few implementations), it is a fixed number of machine instructions (typically
one) and can be easily tested with a test program. Being a fixed overhead, this
overhead does not depend on the deepness of the derivation.

3.4.1.2.1 Multiple-Inheritance
Converting a pointer to a derived class to a pointer to base class might introduce run-
time overhead (see 2.3.4). This overhead is a fixed number of machine instructions
(typically one).

3.4.1.2.2 Virtual-Inheritance
Converting a pointer to a derived class to a pointer to a virtual base class will
introduce run-time overhead in most implementations (see 2.3.5). This overhead is
typically a fixed number of machine instructions.

3.4.1.3 Virtual Functions
Calling a virtual function often does not produce any run-time overhead (see 2.3.3). If
it does, it will typically be a fixed number of machine instructions.

3.4.2 C++ Features, for which Real-Time Analysis is More Complex
The following features are often considered to be prohibitively slow for hard real-time
code sequences. But this is not always true. For one, the run-time overhead of these
features is often quite small, and on the other-hand even in the real-time parts of your
program, you might have quite a number of CPU cycles to spend. And if you have a
complex job to do in your real-time code, a clean structure that allows for an easier
overall timing analysis is often better than a hand-optimised but complicated code – as
long as the former is fast enough. The hand-optimised code might run faster but is in
most cases more difficult to analyse correctly. And the features mentioned below
often allow for clearer designs.

22 Such a conversion is also necessary if a function is called for a derived-class object that is implemented in a base-class.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 54 of 87

3.4.2.1 Dynamic Casts
In most implementations, dynamic casts from a pointer (or reference) to base-class to
pointer (or reference) to derived-class (i.e. a downcast) will produce an overhead that
is not fixed but depends on the details of the implementation and there is no general
rule to test the worst case.

The same is true for cross-casts (see 2.2).

As an alternate option to using dynamic-casts, you should consider the typeid
operator. If you know your target’s dynamic type exactly, this is a much cheaper way
to check for it.

3.4.2.2 Dynamic Memory Allocation
Dynamic memory allocation has in typical implementations a run-time overhead that
is not easy to analyse. In most cases, for the purpose of real-time analysis it is
appropriate to assume dynamic memory allocation (and also memory de-allocation) to
be non-deterministic.

The most obvious way to avoid dynamic memory allocation is to pre-allocate the
memory – either statically at compile- (or more correctly link-) time or during the
general set-up-phase of your system. If you want to defer the initialisation, you can
pre-allocate raw memory and initialise it later using placement new.

If you really need to do dynamic memory allocation in your real-time code, you need
to use an implementation for which you know all the implementation details. The
best way to know all the implementation details is to write your own memory
allocation mechanism. This is easily done in C++ by overriding operator new in
your own class (or globally) or by providing an allocator argument in standard library
containers.

But in all cases, if you use dynamic memory allocation you need to consider the case
when no more memory is available.

3.4.2.3 Exceptions
Enabling exceptions for compilation may introduce overhead on each function call in
your code (see 2.4). In general, it is not so difficult to analyse the overhead of
exception handling as long as you don't throw exception. But you should only enable
exception handling for real-time critical programs if you really use exceptions, and
therefore a complete analysis must always include the throwing of an exception, and
this analysis will always be implementation dependent. On the other hand, the
requirement to act within a deterministic time might loosen in the case of an exception
(e.g. you don’t need to handle any more input from a device when a connection broke
down).

An overview of alternatives for exception handling is given in [Note (Detlef): Insert
Bjarne’s new section]. But as shown there, all options have their run-time costs, and
throwing exceptions might still be the best way to deal with exceptional cases. And
as long as you don’t throw a long way (i.e. if you only leave very few functions in
your throw), it might be even cheap in run-time.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 55 of 87

Note (Detlef): Is this list complete?

3.4.3 Testing Timing
For those features that compile to a fixed number of machine instructions, the number
and nature of these instructions (and therefore an exact worst-case timing) can be
tested with a simple program that includes just this specific feature and then looking
at the created code. In general, for those simple cases, optimisation should not make a
difference. But e.g. if a virtual function call can be resolved to a static function call at
compile time, the overhead of the virtual function call will not show up in the code.
So, you need to make sure that you really test what you want to test.

For the more complex cases, testing the timing is not so easy. Compiler optimisation
can make a big difference, and a simple test case might produce comple tely different
code than the real production code. To test those cases, you must really know the
details for your specific implementation. Given this information, you can normally
produce test programs that produce code from which you can correctly derive the
timing information you need.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 57 of 87

4 Embedded Systems – Special Needs
4.1 BASIC I/O-HARDWARE ADDRESSING

4.1.1 Scope
As the C language has matured over the years, various extensions for accessing basic
I/O-Hardware (iohw) registers have been added to address deficiencies in the
language. Today almost all C compilers for freestanding environments and embedded
systems support some method of direct access to iohw registers from the C source
level. However, these extensions have not been consistent across dialects. As a
growing number of C++ compiler vendors are now entering the same market, the
same I/O driver portability problems become apparent for C++.

This report provides an approach to codifying common practice and providing a
single uniform syntax for basic iohw register addressing.

4.1.2 Rationale

Ideally, it should be possible to compile C or C++ source code that operates directly
on iohw registers with different compiler implementations for different platforms and
get the same logical behaviour at runtime. As a simple portability goal, the driver
source code for some given I/O-Hardware should be portable to all processor
architectures where the hardware itself can be connected.

The problem areas are the same for C and C++, and the standardization method
proposed is applicable for both languages. A proposed iohw addressing interface for
the C language is described in:

Technical Report ISO/IEC WDTR 18037

“ Extensions for the programming language C to support embedded
processors ”

Although this interface is based on C macros, the C++ language provides features
which make it possible to create more efficient and flexible implementations of this
interface, while maintaining I/O driver source code portability.

4.1.3 Basic Standardisation Objectives
A standardisation method for basic I/O-Hardware addressing must be able to fulfil
three requirements at the same time:

?? A standardised interface must not prevent compilers from producing machine
code that has no additional overhead compared to code produced by existing
proprietary solutions. This requirement is essential in order to get widespread
acceptance from the embedded programming community.

?? The I/O driver source code modules should be completely portable to any
processor system without any modifications to the driver source code being

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 58 of 87

required [i.e. the syntax should promote I/O driver source code portability
across different execution environments].

?? A standardised interface should provide an “encapsulation” of the underlying
access mechanisms to allow different access methods, different processor
architectures, and different bus systems to be used with the same I/O driver
source code [i.e. the standardisation method should separate the characteris-
tics of the I/O register itself from the characteristics of the underlying
execution environment (processor architecture, bus system, addresses,
alignment, endian, etc.)].

4.2 Basic I/O-Hardware Addressing Header — <ciohw>
The purpose of the iohw access functions defined in the iohw header file is to promote
portability of iohw driver source code across different execution environments.

4.2.1 Overview and Principles
The iohw access functions create a simple and platform independent interface between
I/O driver source code and the underlying access methods used when addressing the
I/O registers in a given platform.

The primary purpose of the interface is to separate characteristics which are portable
and specific for a given I/O register, for instance the register bit width; from
characteristics which are related to a specific execution environment, such as the I/O
register address; processor bus type and endian; device23 bus size and endian, address
interleave; compiler access method; etc. Use of this separation principle enables I/O
driver source code itself to be portable to all platforms where the I/O registers can be
connected.

In the driver source code, an I/O register must always be referred to using a symbolic
name. The symbolic name must refer to a complete definition of the access method
used with the given register. A standardised I/O syntax approach creates a
conceptually simple model for I/O registers:

symbolic name for I/O register ? complete definition of the access method

When porting the I/O driver source code to a new platform, only the definition of the
access method (definition of the symbolic name) needs to be updated.

4.2.2 The Abstract Model
The standardisation of basic iohw addressing is based on a three layer abstract model:

? The users portable source code

? The users I/O register definitions

? The vendors iohw implementation

23 In this document, the term device is used to mean either a discrete I/O chip or an I/O function block in a single chip processor
system. The data bus width has significance to the access method used for the I/O device.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 59 of 87

The top layer contains the I/O driver code written by the compiler user. The source
code in this layer is fully portable to any platform where the I/O-Hardware can be
connected. This code may only access iohw registers via the standardized functions
described in this section. Each I/O register must be identified using a symbolic name.

The bottom layer is the compiler vendors implementation of the <ciohw> header. It
provides prototypes for the functions defined in this section and specifies the various
access methods supported by the given processor and platform architecture (access
methods refers to the various ways of connecting and addressing I/O registers or I/O
devices in the given processor architecture).

Appendix A: contains some general considerations that should be addressed when a
compiler vendor implements the iohw functionality.

The middle layer contains the users specification of the symbolic I/O register names
used by the source code in the top layer. This layer associates the symbolic names
with access-specifications for the I/O register on the given platform. The syntax
notation and access-specification parameters used in this layer are specific to the
platform architecture and are defined by the compiler vendor in the <ciohw> header.
The user must update these I/O register access-specifications when the I/O driver
source code is ported to a different platform.

Appendix B: proposes a generic C++ syntax for I/O register access-specifications.
Using a general syntax on this layer may extend portability to include users I/O
register specification, so it can be used with different compiler implementations for
the same platform.

4.2.2.1 The Module Set
A typical I/O driver operates with a minimum of three modules, one for each of the
abstraction layers. For example, it is convenient to locate all I/O register name
definitions in a separate header file (called ”iohw_ta.h” in this example):

1. I/O Driver Module

? The I/O driver source code
? Portable across compilers and platforms
? Includes <ciohw> and “iohw_ta.h”

2. <ciohw>
? Defines I/O functions and access methods
? Typically specific for a given compiler
? Implemented by the compiler vendor

3. “iohw_ta.h”
? Defines symbolic I/O register names and their corresponding access

methods
? Specific to the execution environment
? Implemented and maintained by the programmer

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 60 of 87

And might be used as follows:
#include <ciohw>
#include “iohw_ta.h” // my I/O register definitions for target

unsigned char mybuf[10];
//...
iowr(MYPORT1, 0x8); // write single register
for (int i = 0; i < 10; i++)
 mybuf[i] = iordbuf(MYPORT2, i); // read register array

The programmer only sees the characteristics of the I/O register itself. The
underlying platform, bus architecture, and compiler implementation do not matter
during driver programming. The underlying system hardware may later be changed
without modifications to the I/O driver source code being necessary.

4.2.3 I/O Register Characteristics
The principle behind the <ciohw> interface is that all I/O register characteristics
should be visible to the driver source code, while all platform specific characteristics
are encapsulated by the header files and the underlying <ciohw> implementation.

I/O registers often behave differently from the traditional memory model. They may
be “read-only”, “write-only” or “read-modify-write”, often read and write operations
are only allowed once for each event, etc.

All such I/O register specific characteristics should be visible at the I/O driver code
level and should not be hidden by the <ciohw> interface implementation.

4.2.4 The Most Basic I/O Operations
The most common operations on I/O-Hardware registers are “read” and “write”.

Bit-set, bit-clear and bit-invert of individual bits in an iohw register are also
commonly used operations. Many processors have special machine instructions for
doing these.

For the convenience of the programmer, and in order to promote good compiler
optimisation of bit operations, the basic logical operations “or”, “and” and “xor” are
defined by the <ciohw> interface in addition to “read” and “write”.

All other arithmetic and logical operations used by the driver source code can be built
on top of these few basic I/O operations.

4.2.5 The access-specification
The access-specifications defined in the header <ciohw> are used only as parameters
in the functions for defining I/O register access.

The access_spec parameter represents or references a complete description of how
the iohw register should be addressed in the given hardware platform. It is an abstract
data type with a well-defined behaviour24.

24 This use of an abstract data type is similar to the philosophy behind the well-known FILE type in C. Some general properties
for FILE and streams are defined in the Standard, but the Standard deliberately avoids describing how the underlying file system
should be implemented.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 61 of 87

The definition method and the implementation of access-specifications are processor
and platform specific.

In general, an access_spec definition will specify at least the following
characteristics:

? Register size (mapping to a data type)
? Access limitations (read-only, write-only)
? Bus address for register

Other access characteristics typically specified via the access_spec:

? Processor bus (if more than one)
? Access method (if more than one)
? I/O register endian (if register width is larger than the device bus width)
? Interleave factor for I/O register buffers (if bus width for the device is smaller)
? User supplied access driver functions

The definition of an I/O register object may or may not require a memory
instantiation, depending on how a compiler vendor has chosen to implement access-
specifications. For maximum performance, this could be a simple definition based on
compiler specific address range and type qualifiers, in which case no instantiation of
an access_spec object would be needed in data memory.

See also Appendix A: for further details and implementation considerations.

4.3 The <ciohw> Interface
The header <ciohw> declares several functions, which together create a data-type-
independent interface for basic iohw addressing. The provider of <ciohw> may
choose to use inline functions, macros or function-templates to implement these
functions. I/O driver modules using the functions defined by this header can
potentially be compiled with both C and C++ compilers.

Editor’s Note: Why is it a requirement that the C++ Hardware I/O has to be C
compatible?

4.3.1 Functions for Single Register Access
Synopsis:

#include <ciohw>
//...
iord(access_spec)
iowr(access_spec, value)
ioor(access_spec, value)
ioand(access_spec, value)
ioxor(access_spec, value)

Description:

These names map an iohw register operation to an underlying (platform specific)
implementation which provides access to the I/O register identified by access_spec,
and perform the basic operations READ, WRITE, OR, AND or XOR as identified by the
function named on this register.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 62 of 87

The data type (the I/O register size) for value parameters and the value returned by the
function iord are defined by the access-specification definition for the given register.
The functions iowr, ioor, ioand and ioxor do not return a value.

4.3.2 Functions for Register Buffer Access
Synopsis:

#include <ciohw>
//...
iordbuf(access_spec, index)
iowrbuf(access_spec, index, value)
ioorbuf(access_spec, index, value)
ioandbuf(access_spec, index, value)
ioxorbuf(access_spec, index, value)

Description:

These names map an iohw register buffer operation to an underlying (platform
specific) implementation which provides access to the I/O register buffer identified by
access_spec, and perform the basic operations READ, WRITE, OR, AND or XOR as
identified by the function named on this register.

The data type (the I/O register size) for value parameters and the value returned by the
function iordbuf is defined by the access-specification definition for the given
register. The functions iowrbuf, ioorbuf, ioandbuf and ioxorbuf do not return a
value.

The index parameter is an offset in the register buffer (or register array) starting from
the I/O location specified by access_spec, where element 0 is the first element
located at the address defined by access_spec, and element n+1 is located at a higher
address than element n.

It should be noted that the index parameter is the offset in the iohw buffer, not the
processor address offset. Conversion from a logical index to a physical address
requires that interleave calculations are performed by the underlying implementation.
This is discussed further in A.2.2.

4.3.3 Functions for access_spec Initialisation
Synopsis:

#include <ciohw>
//...
io_at_init(access_spec)
io_at_release(access_spec)

Description:

The io_at_init function maps to an underlying (platform specific) implementation,
which provides any access-specification specific initialisation befo re performing any
other operation on the I/O register (or set of I/O registers) identified by access_spec.
This call should be placed in the driver source code so that it is invoked at least once
before any other operations on the related registers are performed. This function does
not return a value.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 63 of 87

The io_at_release function maps to an underlying (platform specific)
implementation which releases any resources obtained by a previous call to
io_at_init for the same access-specification. This call should be placed in the
driver source code so it is invoked once after all operations on the related registers
have been completed. This function does not return a value.

For example:

In an implementation for a hosted environment, the call to io_at_init is used
to identify the point in an execution sequence where the underlying access
method should obtain, or have obtained, a handle from the operating system.
This handle is used in all following access operations on the I/O register. The
call to io_at_exit identifies the point in an execution sequence where the
handle can be returned to the operating system.

If a set of memory mapped I/O registers is specified to use based addressing,
then the underlying implementation would dynamically obtain the base
address for the I/O range from the operating system when io_at_init is
invoked (i.e. when the base pointer is initialised). During all the following I/O
access operations, the I/O register address is calculated as (base-address + I/O
register offset). The underlying implementation later releases the memory
range when io_at_exit is invoked.

If no access-specification specific initialisation is required by a given <ciohw>
implementation, the io_at_init and io_at_release definitions may be empty.

In C++, the implementation may use a class whose constructor and destructor
implement this functionality.

4.3.4 Functions for access_spec Copying
Synopsis:

#include <ciohw>
//...
io_at_cpy(access_spec dest, access_spec src)

Description:

This function maps to an underlying (platform specific) implementation, which copies
the dynamic part of the source access_spec to the destination access_spec. The
two parameters must have the same access-specification type. This function does not
return a value.

If access-specification copying is not supported by a given <ciohw> implementation,
or a given access-specification does not contain any dynamic elements, the
io_at_cpy function may be empty.

A typical use for io_at_cpy is when a set of driver functions for a given I/O device
type are used with multiple instances of the same hardware device. It often provides a
faster alternative than passing the access_spec as a function parameter.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 64 of 87

For example:
#include <ciohw>
#include “iohw_ta.h” // MYDEV_CFG and MYDEV_DATA are defined
 // relative to a dynamic MYDEV_BASE

// Portable driver function
uint8_t my_device_driver(void)
{
 iowr(MYDEV_CFG, 0x33);
 return iord(MYDEV_DATA);
}

// Users driver application
uint8_t d1,d2;
// Read from our 2 I/O devices
io_art_cpy(MYDEV_BASE, DEVICE1); // Select device 1
d1 = my_device_driver();
io_art_cpy(MYDEV_BASE, DEVICE2); // Select device 2
d2 = my_device_driver();

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 65 of 87

Appendix A: Implementing <ciohw>

(A guide for implementers)

A.1 Purpose
The <ciohw> header defines a standardised function syntax for basic I/O-Hardware
(iohw) addressing. This header would normally be provided by the compiler vendor.

While a standardised function syntax for basic iohw addressing provides a simple,
easy-to-use method for a programmer to write portable and ha rdware-platform-
independent I/O driver code, the <ciohw> header itself may require careful
consideration to achieve an efficient implementation.

This section gives some guidelines for implementers on how to implement the
<ciohw> header in a relatively straightforward manner given a specific processor and
bus architecture.

A.1.1 Recommended Steps
Briefly, the recommended steps for implementing the <ciohw> header are:

?? Get an overview of all the possible and relevant ways the iohw register is
typically connected with the given bus hardware architectures, and get an
overview of the basic software methods typically used to address such iohw
registers.

?? Define a number of functions, macros and access-specifications which support
the relevant I/O access methods for the intended compiler market.

?? Provide a way to select the right I/O function at compile-time and generate the
right machine code based on the access-specification type or the access-
specification value.

A.1.2 Compiler Considerations
In practice, an implementation will often require that very different machine code is
generated for different I/O access cases. Furthermore, with some processor
architectures, iohw access will require the generation of special machine instructions
not typically used when generating code for the traditional C or C++ memory model.

Selection between different code generation alternatives must be determined solely
from the access-specification declaration for each I/O register. Whenever possible,
this access method selection should be implemented such that it may be determined
entirely at compile-time, in order to avoid any runtime or machine code overhead.

For a compiler vendor, selection between code generation alternatives can always be
implemented by supporting different intrinsic access-specification types and
keywords designed specially for the given processor architecture, in addition to the
Standard types and keywords defined by the language.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 66 of 87

However, with a conforming C++ compiler, an efficient, all-round implementation of
the <ciohw> header can usually be made using template functionality. A template-
based solution allows the number of compiler specific intrinsic I/O types or intrinsic
I/O functions to be minimized or even removed completely, depending on the
processor architecture.

For compilers not supporting templates (such as C compilers) other implementation
methods must be used. In any case, at least the most basic iohw functionality can be
implemented efficiently using a mixture of macros, inline functions and intrinsic
types or functions. Fully featured iohw implementations will usually require direct
compiler support (or using extensions to the language).

Fully featured, zero-overhead implementations of <ciohw> can be done using
templates. An approach to doing this is discussed in Appendix B:.

A.2 Overview of I/O Hardware Connection Options
The various ways of connecting an I/O register to processor hardware are determined
primarily by combinations of the following three hardware characteristics:

?? The bit width of the logical I/O register
?? The bit width of the data-bus of the I/O device
?? The bit width of the processor-bus

A.2.1 Multi-Addressing and I/O Register Endian
If the width of the logical I/O register is greater than the width of the I/O device data
bus, an I/O access operation will require multiple consecutive addressing operations.

The I/O register endian information describes whether the MSB or the LSB byte of
the logical I/O register is located at the lowest processor bus address.

(Note that the I/O register endian has nothing to do with the endian of the underlying
processor hardware architecture).

Table: Logical I/O register / I/O device addressing overview25

I/O device bus widths

8-bit device bus

16-bit device bus

32-bit device bus

64-bit device bus

Logical I/O
register widths

LSB-MSB

MSB-LSB

LSB-MSB

MSB-LSB

LSB-MSB

MSB-LSB

LSB-MSB

MSB-LSB

8-bit register

Direct

n/a

n/a

n/a

16-bit register

r8{0-1}

r8{1-0}

Direct

n/a

n/a

32-bit register

r8{0-3}

r8{3-0}

r16{0-1}

r16{1-0}

Direct

n/a

64-bit register

r8{0-7}

r8{7-0}

r16{0-3}

r16{3-0}

r32{0-1}

r32{1-0}

Direct

(For byte-aligned address ranges)

25 Note, that this table describes some common bus and register widths for I/O devices. A given hardware platform may use
other register and bus widths.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 67 of 87

A.2.2 Address Interleave
If the size of the I/O device data bus is less than the size of the processor data bus,
buffer register addressing will require the use of address interleave.

For example:
If the processor architecture has a byte-aligned addressing range with a 32-bit
processor data bus, and an 8-bit I/O device is connected to the 32-bit data bus, then
three adjacent registers in the I/O device will have the processor addresses:

<addr + 0>, <addr + 4>, <addr + 8>

This can also be written as
<addr + interleave*0>, <addr + interleave*1>, <addr + interleave*2>

where interleave = 4.

Table: Interleave overview: (bus to bus interleave relationship)

Processor bus width

I/O device bus
widths

8-bit bus

16-bit bus

32-bit bus

64-bit bus

8-bit device bus

interleave 1

interleave 2

interleave 4

interleave 8

16-bit device bus

n/a

interleave 2

interleave 4

interleave 8

32-bit device bus

n/a

n/a

interleave 4

interleave 8

64-bit device bus

n/a

n/a

n/a

interleave 8
(For byte-aligned address ranges)

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 68 of 87

A.2.3 I/O Connection Overview:
The two tables above when combined show all relevant cases for how I/O hardware
registers can be connected to a given processor hardware bus, thus:

Table: Interleave between adjacent I/O registers in buffer

Device bus

Processor data bus width

Width=8

Width=16

Width=32

Width=64

I/O

Register
width

Width

LSB
MSB

No.

Oper-
ations.

size 1

size 2

size 4

size 8

8-bit

8-bit

n/a

1

1

2

4

8

LSB

2

2

4

8

16

8-bit
MSB

2

2

4

8

16 16-bit

16-bit

n/a

1

n/a

2

4

8

LSB

4

4

8

16

32

8-bit
MSB

4

4

8

16

32

LSB

2

n/a

4

8

16

16-bit
MSB

2

n/a

4

8

16

32-bit

32-bit

n/a

1

n/a

n/a

4

8

MSB

8

8

16

32

64

8-bit
LSB

8

8

16

32

64

LSB

4

n/a

8

16

32

16-bit
MSB

4

n/a

8

16

32

LSB

2

n/a

n/a

8

16

32-bit
MSB

2

n/a

n/a

8

16

64-bit

64-bit

n/a

1

n/a

n/a

n/a

8

(For byte-aligned address ranges)

A.2.4 Generic Buffer index
The interleave distance between two logically adjacent registers in an I/O register
array can be calculated from26:

?? The size of the logical I/O register in bytes
?? The processor data bus width in bytes
?? The device data bus width in bytes

26 For systems with byte-aligned addressing.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 69 of 87

Conversion from I/O register index to address offset can be calculated using the
following general formula:

Address_offset = index *
 sizeof(logical_IO_register) *
 sizeof(processor_data_bus) /
 sizeof(device_data_bus)

Assumptions:

? bytes are 8-bits wide
? address range is byte-aligned
? data bus widths are a whole number of bytes
? width of the logical_IO_register is greater than or equal to the width of the

device_data_bus
? the width of the device_data_bus is less than or equal to the

processor_data_bus

A.3 access-specifications for Different I/O Addressing
Methods

An implementer should consider the following typical addressing methods:

?? Address is defined at compile-time:

The address is a constant. This is the simplest case and also the most common
case with smaller architectures.

?? Base address initialised at runtime:

Variable base-address + constant-offset i.e. the access-specification must
contain an address pair (address of base register + offset of address).

The user-defined base-address is normally initialised at runtime (by some
platform-dependent part of the program). This also enables a set of I/O driver
functions to be used with multiple instances of the same iohw.

?? Indexed bus addressing:

Also called orthogonal or pseudo-bus addressing. This is a common way to
connect a large number of I/O registers to a bus, while still occupying only a
few addresses in the processor address space.

This is how it works: first the index-address (or pseudo-address) of the I/O
register is written to an address bus register located at a given processor
address. Then the data read/write operation on the pseudo-bus is done via the
following processor address, i.e. the access-specification must contain an
address pair (the processor-address of the indexed bus, and the pseudo-bus
address (or index) of the I/O register itself).

This access method also makes it particularly easy for a user to connect
common I/O devices that have a multiplexed address/data bus, to a processor
platform with non-multiplexed busses, using a minimum amount of glue logic.
The driver source code for such an I/O device is then automatically made
portable to both types of bus architecture.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 70 of 87

?? Access via user-defined access driver functions:

These are typically used with larger platforms and with small single-chip
processors (e.g. to emulate an external bus). In this case, the access-
specification must contain pointers or references to access functions.

The access driver solution makes it possible to connect a given I/O driver source
library to any kind of platform hardware and platform software using the appropriate
platform-specific interface functions.

In general, an implementation should always support the simplest addressing case,
whether it is the constant-address or base-address method that is used will depend on
the processor architecture. Apart from this, an implementer is free to add any
additional cases required to satisfy a given domain.

Because of the different number of parameters required and parameter ranges used in
an access-specification, it is often convenient to define a number of different access-
specification formats for the different access methods.

A.4 Atomic Operation
It is a requirement of the <ciohw> implementation, that in each I/O function, a given
(partial27) I/O register is addressed exactly once during a read or a write operation and
exactly twice during a read-modify-write operation.

It is recommended that each I/O function in an <ciohw> implementation, be
implemented such that the I/O access operation becomes atomic whenever possible.

However, atomic operation is not guaranteed to be portable across platforms for read-
modify-write operations (ioor, ioand, ioxor) or for multi-addressing cases.

The reason for this is simply that many processor architectures do not have the
instruction set features required for assuring atomic operation.

A.5 Read-Modify-Write Operations and Multi-Addressing
In general, read-modify-write operations should perform a complete “read” of the I/O
register, followed by the modify operation, and concluded by a complete “write” to
the I/O register.

It is therefore recommended that an implementation of multi-addressing cases should
not use read-modify-write machine instructions during partial register addressing
operations.

The rationale for this restriction is to use the lowest common denominator of multi-
addressing hardware implementations in order to support the widest possible range of
iohw register implementations.

For instance, more advanced multi-addressing I/O register implementations often take
a snap-shot of the whole logical I/O register when the first partial register is being
read, so that data will be stable and consistent during the whole read operation.

27 A 32-bit logical register in a device with an 8-bit data bus contains 4 partial I/O registers.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 71 of 87

Similarly, write registers are often “double-buffered”, so that a consistent data set is
presented to the internal logic at the time when the access operation is completed by
the last partial write.

Such hardware implementations often require that each access operation be completed
before the next access operation is initiated.

A.6 I/O Initialisation
With respect to the standardisation process, it is important to make a clear distinction
between I/O-Hardware (device) related initialisation, and platform related
initialisation. Typically, three types of initialisation are related to I/O handling:

? I/O-Hardware (device) initialisation
? I/O access initialisation
? I/O device selector initialisation

Here only I/O access initialisation and I/O device selector initialisation are relevant
for basic iohw addressing:

Editor’s Note: What it “I/O device selector”? The term is not defined.

iohw initialisation: is a natural part of a hardware driver, and should always be
considered part of the I/O driver application itself. This initialisation is done
using the standard functions for basic iohw addressing. iohw initialisation is
therefore not a topic for the standardisation process.

I/O access initialisation: concerns the initialisation and definition of access_spec
objects themselves.

This process is implementation defined. It depends on both the platform and the
processor architectures, and also on which underlying access methods are
supported by the <ciohw> implementation.

The function:
io_at_init(access_spec)

can be used as a portable way to specify in the source code where and when
such initialisation should take place.

I/O device selector initialisation: is used when, for instance, the same I/O driver
code needs to service multiple iohw devices of the same type.

A common possible solution is to define multiple access-specification objects,
one for each of the iohw devices, and then have the access-specification passed
to the driver functions from the calling function.

Another solution is to use access-specification copying, and access-
specifications with dynamic access information. The function:

io_at_cpy(access_spec dest, access_spec src)

provides a portable way to do this.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 72 of 87

With most freestanding environments and embedded systems, the platform hardware
is well defined; so all access-specifications for I/O registers used by the program can
be completely defined at compile-time. For such platforms, standardised I/O access
initialisation is not an issue.

With larger processor systems, iohw is often allocated dynamically at runtime. Here
the access-specification information can only be partly defined at compile-time.
Some platform dependent part of the software must be initialised at runtime.

When designing the access_spec objects, a compiler implementer must therefore
make a clear distinction between static information and dynamic information; i.e.
what can be defined and initialised at compile-time, and what must be initialised at
runtime.

Depending on the implementation method, and depending on whether the
access_spec objects need to contain dynamic information, the access_spec objects
may or may not require instantiation in data memory. Better execution perfo rmance
can usually be achieved if more of the information is static.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 73 of 87

Appendix B: Generic access-
specification for iohw
Addressing

B.1 Generic access-specification Descriptor
This chapter proposes consistent and complete specification syntax for defining I/O
registers and the access method parameters.

Prior art has used a number of (intrinsic) memory type qualifiers or special keywords,
which have varied from compiler to compiler and from platform to platform. The
syntax described below represents an alternative approach and a super-set solution,
intended to replace prior art.

For optimal performance, the compiler should pick the right access method
implementation at compile-time based on the access-specification type. This can be
achieved in C++ by using typedefs and template specialisations.

B.2 Syntax Specification
access_spec specification:

typedef ACCESS_METHOD_CLASS_NAME < parameter list >
SYMBOLIC_PORT_NAME;

parameter list:
access method independent parameter list , access method specific parameter list

access method independent parameter list:
type for I/O register value (size of I/O register) ,
access limitation type ,
I/O register device bus type (size and endian of I/O device bus)

type for I/O register value (size of I/O register):
uint8_t
uint16_t
uint32_t
uint64_t
bool
(+ optionally any basic type native to the implementation)

access limitation type: // for compile-time diagnostic

rmw_e // read_modify_write
rw_e // read_write
wo_e // write_only
ro_e // read_only

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 74 of 87

I/O register device bus type:
device8 // register wid th = device bus width = 8 bit
device8l // register width > device bus width, MSB on low address
device8h // register width > device bus width, MSB on high address
device16 // register width = device bus width = 16 bit
device16l // register width > device bus width, MSB on low address
device16h // register width > device bus width, MSB on high address
device32 // register width = device bus width = 32 bit
device32l // register width > device bus width, MSB on low address
device32h // register width > device bus width, MSB on high address
device64 // register width = device bus width = 64 bit
(+ optionally any bus width native to the implementation)

access method specific parameter list:
// Depends on the given access method. Examples are given later.
// Three typical parameters are:
primary address constant ,
processor bus width type,
address mask constant

processor bus width type:
bw8 // 8 bit bus
bw16 // 16 bit bus
bw32 // 32 bit bus
bw64 // 64 bit bus
(i.e. any bus widths native to the implementation)

B.2.1 Bus Connection Parameters
The possible I/O register to bus connections can be completely specified using only
two parameters:

? A bus parameter, which specifies the access relationships between the I/O
device data bus and the processor data bus

? A multi-addressing and endian parameter, which specifies the access
relationships between the logical I/O register and the I/O device data bus

For example, a possible definition of general I/O register connection types might be:
enum bus_t { bw8 = 1, bw16 = 2, bw32 = 4, bw64 = 8 };
enum device_t { device8, device8l, device8h, device16, device16l,
 device16h, device32, device32l, device32h, device64 };

For another example, an implementation for a given processor architecture may only
support a subset of the I/O register connection types. Possible I/O register
connections with the processor H8/300H (supporting only an 8-bit and a 16-bit
processor data bus):

enum bus_t { bw8 = 1, bw16 = 2 };
enum device_t { device8, device8l, device8h, device16, device16l,
 device16h };

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 75 of 87

B.2.2 Detection of Read / Write Violations in I/O Registers
The access-specifications can specify a limitation parameter, which makes it possible
to detect illegal use of an I/O register at compile-time.

The minimal parameter set for a read / write limitation specification would be:

?? Defined as Read-Modify-Write register (behaves like a RAM cell)
?? Defined as Read and Write register (read value may be different from write

value)
?? Defined as Write-Only register
?? Defined as Read-Only register

Table: Allowed operations on different I/O register types:

iowr

iord

Ioor

ioand

ioxor

Read-Modify-Write rmw_e

Yes

Yes

Yes

Yes

Yes

Read-and-Write rw_e

Yes

Yes

No

No

No

Write-Only wo_e

Yes

No

No

No

No

Read-Only ro_e

No

Yes

No

No

No

The “not-allowed” cases should generate some kind of error message at compile-time.
With a template implementation of <ciohw>, the compiler will typically diagnose that
no matching function-template can be found for the “not-allowed” cases.

For example:
// --- part of the <ciohw> header
//
// Define a type to validate I/O register access
enum rw_t // Access mode type
{
 rmw_e, // Read-Modify-Write access
 rw_e, // Read-and-Write access
 wo_e, // Write-Only access
 ro_e // Read-Only access
};

// Include ‘exact-width’ integer types (defined in the header
// ‘stdint.h’ in C)
#include <stdint.h> // Or possibly <cstdint>28

// Define access_spec template for direct addressing
template <class T, rw_t access, device_t devicetype,
 address_t address, bus_t buswidth>
 class IO_MM { };

28 ISO C++ was ratified in 1997. At that time, the header file <stdint.h> was not present in ISO C, and was added to ISO C
in 1999. The naming convention used for C headers by ISO C++ would result in this being known as <cstdint>.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 76 of 87

// --- part of the “iohw_ta.h” header
//
// User declaration of I/O registers in platform
typedef IO_MM <uint8_t, wo_e, device8, 10200, bw8> WR_PORT;
typedef IO_MM <uint8_t, ro_e, device8, 20400, bw8> RD_PORT;
typedef IO_MM <uint8_t, rmw_e, device8, 20800, bw8> RDWR_PORT;

// --- portable user code
uint8_t myval;
myval = iord(RD_PORT); // ok
myval += iord(RDWR_PORT); // ok
iowr(WR_PORT,myval); // ok
iowr(RDWR_PORT,0x45); // ok

myval = iord(WR_PORT); // Illegal, generate compile-time error
iowr(RD_PORT,0x55); // Illegal, generate compile-time error

B.2.3 access-specifications for Different Processor Busses
An implementation must define at least one access method for each processor
addressing range. If the processor architecture has multiple different addressing
ranges (i.e. it requires different sets of machine instructions for the different busses),
each addressing range should have its own set of access-specifications.

For example, on the 80x86 family, an implementation must define at least two sets of
access methods; one for the memory-mapped range, and another for the I/O mapped
range:

typedef uint32_t address_t; // Memory-mapped address range
typedef uint16_t io_addr_t; // IO-mapped address range

template <class T, rw_t access, device_t devicetype,
 address_t address, bus_t buswidth>
 class IO_MM { };
template <class T, rw_t access, device_t devicetype,
 io_addr_t address, bus_t buswidth>
 class IO_IOM { };

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 77 of 87

B.2.4 access-specifications for Different I/O Addressing
Methods

If several different access methods are supported for a given address range, then an
access-specification must exist for each access method.

For example:
// Define types used in access_spec declarations
typedef uint32_t address_t; // Memory mapped address range
typedef uint8_t sub_address_t; // Sub address on indexed bus
typedef uint16_t io_addr_t; // User I/O driver address
typedef uint8_t bit_pos_t; // Bit position in register

// Define access_spec template for direct addressing
template <class T, rw_t access, device_t devicetype,
 address_t address, bus_t buswidth>
 class IO_MM { };

// Define access_spec template for addressing via base register
template <class T, rw_t access, device_t devicetype,
 address_t* base, address_t offset, bus_t buswidth>
 class IO_MM_BASE { };

// Define access_spec template for indexed bus addressing
template <class T, rw_t access, device_t devicetype,
 address_t address, sub_address_t idx, bus_t buswidth>
 class IO_MM_IDX { };

// Define access_spec for user-supplied access driver functions
template<class T, rw_t access, io_addr_t address,
 T iord(io_addr_t address),
 void iowr(io_addr_t address, T val)>
 class IO_MM_DRV { };

// Define access_spec for direct addressing of bit in register
template<class T, rw_t access, device_t devicetype,
 address_t address, bit_pos_t bitpos, bus_t buswidth>
 class IO_MM_BIT { };

B.2.5 Optimisation Possibilities for Typical Implementations

B.2.5.1 Pre-Calculation of Constant Expressions
A high performance compiler would resolve all constant expressions at compile-time.
Using inline functions, both interleave factors and constant buffer indices would be
folded into the address value(s) used in the machine code.

Therefore, the fo llowing two I/O write statements would result in exactly the same
machine code:

iowr(PORT1,0x33);
iowrbuf(PORT1, 0, 0x33);

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 78 of 87

An implementation can take advantage of this, because the number of I/O functions
that have to be implemented can be reduced with no efficiency penalty using simple
delegation, possibly using macro definitions such as:

#define iowr(access_spec,val) iowrbuf(access_spec,0,(val))

or equivalent inline-functions or function-templates.

B.2.5.2 Multi-Addressing and Endian
Typical candidates for platform dependent optimisations are I/O functions for the
multi-addressing cases (logical I/O register width > I/O device bus width) where the
width of the device data bus matches the width of the processor data bus; e.g. the
combinations of:

? (device8h or device8l) and bw8
? (device16h or device16l) and bw16
? (device32h or device32l) and bw32

In these cases, multi-byte access can often use data types that are directly supported
by the processor for either the LSB or MSB endian functions. The other endian
functions can often be implemented efficiently using one load or store operation, plus
one or more register swap operations.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 79 of 87

Appendix C: Bibliography
Alexander, Rene, and Graham Bensley
C++ Footprint and Performance Optimization
Sams Publishing, 2000

More general than the Bulka-Mayhew book, and omits any mention of the
containers and algorithms in the C++ Standard Library.

Bentley, Jon Louis
Writing Efficient Programs
Prentice-Hall, Inc., 1982

Unfortunately out of print, but a classic catalogue of techniques that can be
used to optimise the space and time consumed by an application (often by
trading one resource to minimise use of the other). Because this book predates
the public release of C++, code examples are given in Pascal.

“The rules that we will study increase efficiency by making changes to a
program that often decrease program clarity, modularity, and robustness.
When this coding style is applied indiscriminately throughout a large system
(as it often has been), it usually increases efficiency slightly but leads to late
software that is full of bugs and impossible to maintain. For these reasons,
techniques at this level have earned the name of "hacks".... But writing
efficient code need not remain the domain of hackers. The purpose of this
book is to present work at this level as a set of engineering techniques.”

Bulka, Dov, and David Mayhew
Efficient C++: Performance Programming Techniques
Addison-Wesley, 2000

Contains many specific low-level techniques for improving time performance,
with measurements to illustrate their effectiveness.

"If used properly, C++ can yield software systems exhibiting not just
acceptable performance, but superior software performance."

Cusumano, Michael A., and David B. Yoffie
What Netscape Learned from Cross-Platform Software Development
Communications of the ACM, October 1999.

Faster runtime performance brings commercial advantage, sometimes enough
to outweigh other considerations such as portability and maintainability (an
argument also advanced in the Bulka-Mayhew book).

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 80 of 87

Embedded C++ Technical Committee
Embedded C++ Language Specification, Rationale, & Programming Guidelines

http://www.caravan.net/ec2plus

EC++ is a subset of Standard C++ that excludes some significant features of
the C++ programming language, including:

? exception handling (EH)
? runtime type identification (RTTI)
? templates
? multiple- inheritance (MI)
? namespaces

Glass, Robert L
Software Runaways: Lessons Learned from Massive Software Project Failures
Prentice Hall PTR, 1998.

Written from a management perspective rather than a technical one, this book
makes the point that a major reason why some software projects have been
classified as massive failures is for failing to meet their requirements for
performance.

"Of all the technology problems noted earlier, the most dominant one in our
own findings in this book is that performance is a frequent cause of failure. A
fairly large number of our runaway projects were real-time in nature, and it
was not uncommon to find that the project could not achieve the response
times and/or functional performance times demanded by the original
requirements."

Gorlen, Keith, et al.
Data Abstraction and Object Oriented Programming in C++
NIH 1990

Based on the Smalltalk model of object orientation, the “NIH Class Library”
also known as the “OOPS Library” was one of the earliest Object Oriented
libraries for C++. As there were no "standard" classes in the early days of
C++, and because the NIHCL was freely usable having been funded by the US
Government, it had a lot of influence on design styles in C++ in subsequent
years.

Hatton, Les
Does OO Sync with How We Think?
IEEE Software, May/June 1998.

During the life cycle of a software system, time spent on post-release
maintenance is far larger than the time spent in its creation. Therefore,
reliability and ease of modification are important quality factors. This paper
describes two sizable software projects, one in C and one in C++, using
objected-oriented design. The use of OO and inheritance appears to be

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 81 of 87

associated with more defects, and these defects required more effort to fix,
compared to the C project.

Henrikson, Mats, and Erik Nyquist.
Industrial Strength C++: Rules and Recommendations
Prentice Hall PTR, 1997.

Coding standards for C++, with some discussion on performance aspects that
influenced them.

Hewlett-Packard Corp.
CXperf User's Guide

http://docs.hp.com/hpux/onlinedocs/B6323-96001/B6323-96001.html

This guide describes the CXperf Performance Analyzer, an interactive runtime
performance analysis tool for programs compiled with HP ANSI C (c89),
ANSI C++ (aCC), Fortran 90 (f90), and HP Parallel 32-bit Fortran 77 (f77)
compilers. This guide helps you prepare your programs for profiling, run the
programs, and analyze the resulting performance data.

IBM
AIX Versions 3.2 and 4 Performance Tuning Guide, 5th Edition (April 1996)

http://www.rs6000.ibm.com/doc_link/en_US\
/a_doc_lib/aixbman/prftungd/toc.htm

An extensive discussion of performance issues in many areas, such as CPU
use, disk I/O, and memory management, and even the performance effects of
shared libraries. It discusses AIX tools available to measure performance, and
the compiler options, which can be used to optimise an application for space
or time. The chapter "Design and Implementation of Efficient Programs"
http://www.rs6000.ibm.com/doc_link/en_US\

/a_doc_lib/aixbman/prftungd/desnimpl.htm

includes low-level recommendations such as these:

"Whenever possible, use int instead of char or short. In most cases, char and
short data items take more instructions to manipulate. The extra instructions
cost time, and, except in large arrays, any space that is saved by using the
smaller data types is more than offset by the increased size of the executable.
If you have to use a char, make it unsigned, if possible. A signed char takes
another two instructions more than an unsigned char each time the variable is
loaded into a register."

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 82 of 87

Knuth, Donald E.
The Art of Computer Programming, Volume 1, Reissued 3rd Edition
Addison-Wesley

Fundamental Algorithms [1997]
Seminumerical Algorithms [1998]
Sorting and Searching [1998]

Note (Lois): Unfortunately, I don't have these classic volumes in my library (yet --
I'm waiting until I'm smart enough to understand them). Can
someone else add a brief remark?

Koenig, Andrew, and Barbara E. Moo
Performance: Myths, Measurements, and Morals
The Journal of Object-Oriented Programming

Part 1: Myths [Oct ‘99]
Part 2: Even Easy Measurements Are Hard [Nov/Dec ‘99]
Part 3: Quadratic Behavior Will Get You If You Don't Watch Out [Jan ‘00]
Part 4: How Might We Speed Up a Simple Program [Feb ‘00]
Part 5: How Not to Measure Execution Time [Mar/Apr ‘00]
Part 6: Useful Measurements—Finally [May ‘00]
Part 7: Detailed Measurements of a Small Program [Jun ‘00]
Part 8: Experiments in Optimization [Jul/Aug ‘00]
Part 9: Optimizations and Anomalies [Sep ‘00]
Part 10: Morals [Oct ‘00]

Measuring the runtime performance of a program can be surprisingly difficult,
because of the interaction of many factors.

"The most important way to obtain good performance is to use good
algorithms."

Lajoie, Joseé
"Exception Handling: Behind the Scenes."
(Included in C++ Gems , edited by Stanley B. Lippman)
SIGS Reference Library, 1996

A brief overview of the C++ language features, which support exception
handling, and of the underlying mechanisms necessary to support these
features.

Lakos, John
Large-Scale C++ Software Design
Addison-Wesley, 1996

Scalability is the main focus of this book, but scaling up to large systems
inevitably requires performance issues to be addressed. This book predates
the extens ive use of templates in the Standard Library.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 83 of 87

Lippman, Stan
Inside the C++ Object Model

Explains typical implementations and overheads of various C++ language
features, such as multiple inheritance and virtual functions. A good in-depth
look at the internals of typical implementations.

Lippman, Stanley B. and Lajoie, Josée
C++ Primer, 3rd Edition
Addison-Wesley, 1998

This thorough introduction to C++ includes discussions of how various
language constructs produce different executable code, plus measurements of
runtime performance. For example, using reserve() to pre-allocate space for
a vector resulted in slower execution times when the vector held strings or
doubles, but faster times if the value type was a large, complex class.

Mitchell, Mark
Type-Based Alias Analysis
Dr. Dobbs’ Journal, October 2000.

Some techniques for writing source code that is easier for a compiler to
optimise.

"Although C++ is often criticized as being too slow for high-performance
applications, ... C++ can actually enable compilers to create code that is even
faster than the C equivalent."

Prechelt, Lutz.
Technical opinion: comparing Java vs. C/C++ efficiency differences to
interpersonal differences
Communications of the ACM, October 1999.

This article compares the memory footprint and runtime performance of 40
implementations of the same program, written in C++, C, and Java. The
difference between individual programmers was more significant than the
difference between languages.

"The importance of an efficient technical infrastructure (such as
language/compiler, operating system, or even hardware) is often vastly
overestimated compared to the importance of a good program design and an
economical programming style."

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 84 of 87

Saks, Dan
C++ Theory and Practice
C/C++ Users Journal

Standard C++ as a High-Level Language? [Nov ‘99]
Replacing Character Arrays with Strings, Part 1 [Jan ‘00]
Replacing Character Arrays with Strings, Part 2 [Feb ‘0]

These articles are part of a series on migrating a C program to use the greater
abstraction and encapsulation available in C++. The runtime and executable
size are measured as more C++ features are added, such as Standard strings,
IOStreams, and containers.

"A seemingly small change in a string algorithm [such as reserving space for
string data, or erasing the data as an additional preliminary step,] might
produce a surprisingly large change in program execution time."

The conclusion is that you should "program at the highest level of abstraction
that you can afford”.

Schilling, Jonathan
Optimizing Away C++ Exception Handling
ACM SIGPLAN Notices, August 1998, also at

http://www.ocston.org/~jls/ehopt.html

This article discusses ways to measure the overhead, if any, of the exception
handling mechanisms. A common implementation of EH incurs no runtime
penalty unless an exception is actually thrown, but at a cost of greater static
data space and some interference with compiler optimisations. By identifying
sections of code in which exceptions cannot possibly be thrown, these costs
can be reduced.

This optimization produces modest but useful gains on some existing C++
code, but produces very significant size and speed gains on code that uses
empty exception specifications, avoiding otherwise serious performance
losses.

Stroustrup, Bjarne
The C++ Programming Language, 3rd Edition
Addison-Wesley, 1998

This definitive work from the language’s author has been extensively revised
to present Standard C++.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 85 of 87

Stroustrup, Bjarne
The Design and Evolution of C++
Addison-Wesley, 1994

The creator of C++ discusses the design objectives that shaped the
development of the language, especially the need for efficiency.

 “The immediate cause for the inclusion of inline functions ... was a project
that couldn't afford function call overhead for some classes involved in real-
time processing. For classes to be useful in that application, crossing the
protection barrier had to be free. [...]

Over the years, considerations along these lines grew into the C++ rule that it
was not sufficient to provide a feature, it had to be provided in an affordable
form. Most definitely, affordable was seen as meaning "affordable on
hardware common among developers" as opposed to "affordable to
researchers with high-end equipment" or "affordable in a couple of years
when hardware will be cheaper.”

Stroustrup, Bjarne
Learning Standard C++ as a New Language
C/C++ Users Journal, May 1999

http://www.research.att.com/~bs/papers.html

http://www.research.att.com/~bs/cuj_code.html

This paper compares a few examples of simple C++ programs written in a
modern style us ing the standard library to traditional C-style solutions. It
argues briefly that lessons from these simple examples are relevant to large
programs. More generally, it argues for a use of C++ as a higher- level
language that relies on abstraction to provide elegance without loss of
efficiency compared to lower- level styles.

"I was appalled to find examples where my test programs ran twice as fast in
the C++ style compared to the C style on one system and only half as fast on
another. ... Better-optimized libraries may be the easiest way to improve both
the perceived and actual performance of Standard C++. Compiler
implementers work hard to eliminate minor performance penalties compared
with other compilers. I conjecture that the scope for improvements is larger in
the standard library implementations."

Sutter, Herb
Exceptional C++
Addison-Wesley, 2000.

This book includes a long discussion on minimizing compile-time
dependencies using compiler firewalls (the pimpl idiom), and how to
compensate for the space and runtime consequences.

Technical Report on C++ Performance (DRAFT) 01-0023/N1309

Page 86 of 87

Veldhuizen, Todd
Five compilation models for C++ templates
Proceedings of the 2000 Workshop on C++ Template Programming

http://www.oonumerics.org/tmpw00

This paper describes a work in progress on a new C++ compiler. Type
analysis is removed from the compiler and replaced with a type system library,
which is treated as source code by the compiler.

"By making simple changes to the behavior of the partial evaluator, a wide
range of compilation models is achieved, each with a distinct trade-off of
compile-time, code size, and execution speed. ... This approach may solve
several serious problems in compiling C++: it achieves separate compilation
of templates, allows template code to be distributed in binary form by
deferring template instantiation until runtime, and reduces the code bloat
associated with templates."

Williams, Stephen
Embedded Programming with C++
Originally published in the Proceedings of the Third USENIX Conference on Object-
Oriented Technologies and Systems, 1997

http://www.usenix.org/publications/library/proceedings\
/coots97/williams.html

Describes experience in programming board-level components in C++,
including a library of minimal run-time support functions portable to any
board.

We to this day face people telling us that C++ generates inefficient code that
cannot possibly be practical for embedded systems where speed matters. The
criticism that C++ leads to bad executable code is ridiculous, but at the same
time accurate. Poor style or habits can in fact lead to awful results. On the
other hand, a skilled C++ programmer can write programs that match or
exceed the quality of equivalent C programs written by equally skilled C
programmers.

The development cycle of embedded software does not easily lend itself to the
trial-and-error style of programming and debugging, so a stubborn C++
compiler that catches as many errors as possible at compile time significantly
reduces the dependence on run-time debugging, executable run-time support
and compile/download/test cycles.

This saves untold hours at the test bench, not to mention strain on PROM
sockets.

01-0023/N1309 Technical Report on C++ Performance (DRAFT)

 Page 87 of 87

Wind River Systems
Advanced Compiler Optimization Techniques

http://wrs.com/products/html/optimization_wp.html

This technical white paper discusses techniques for compiler optimizations in
general, and more specifically those provided by the Wind River Systems
“Diab” C++ compiler for embedded program development.

	Technical Report on C++ Performance (DRAFT)
	Contents:
	1 Introduction
	1.1 How do we Characterise Application Areas?

	2 Overheads – Cost of Using C++ Features
	2.1 Overheads from Namespaces
	2.2 Overheads from Type Conversion Operators
	2.3 Overheads from Inheritance
	2.3.1 Overhead examples
	2.3.2 RTTI overheads
	2.3.3 General Overheads from Inheritance
	2.3.4 Overheads from Multiple-Inheritance
	2.3.5 Overheads from Virtual-Inheritance
	2.3.6 Overheads from Virtual Functions of class-templates

	2.4 Overheads from Exception Handling
	2.4.1 Myths and Realities of Exception Handling Overheads
	2.4.1.1 Preliminary Remarks
	2.4.1.2 Compile-Time Overhead

	2.4.2 Exception Handling Issues Common to all Implementations
	2.4.3 Implementation Strategies
	2.4.3.1 The "dynamic" Approach.
	2.4.3.1.1 Space Overhead
	2.4.3.1.2 Time Overhead

	2.4.3.2 The "static" Approach
	2.4.3.2.1 Space Overhead
	2.4.3.2.2 Time Overhead

	2.4.4 Predictability of Exception Handling Overhead
	2.4.4.1 Prediction of throw/catch Performance
	2.4.4.2 Empty exception-specification Considerations
	2.4.4.3 Exception Specifications
	2.4.4.4 The "you don’t pay for what you don’t use" Principle
	2.4.4.5 Other Error Handling Strategies
	2.4.4.6 Missing stuff

	2.5 Overheads from Templates
	2.5.1 Template Overheads
	2.5.2 Templates vs. Inheritance

	2.6 Overheads from The Standard IOStreams Library
	2.6.1 Overview - Executable Size
	2.6.2 Overview - Execution Speed
	2.6.3 Overview - Object Size
	2.6.4 Overview – Compile-Time

	3 Performance – Techniques & Strategies
	3.1 Programmer Directed Optimisations
	3.2 Efficient Implementation of Locales and IOStreams
	3.2.1 Locale Implementation Basics
	3.2.2 Reducing Executable Size
	3.2.3 Pre-Processing for Facets
	3.2.4 Compile-Time Decoupling
	3.2.5 Smart Linking
	3.2.6 Object Organization
	3.2.7 Library Recompilation

	3.3 ROMability
	3.3.1 ROMable Objects
	3.3.1.1 User-defined objects
	3.3.1.2 Compiler-generated objects

	3.3.2 Constructors and ROMable Objects

	3.4 Hard Real-Time Considerations
	3.4.1 C++ Features for which an Accurate Timing Analysis is Easy
	3.4.1.1 Templates
	3.4.1.2 Inheritance
	3.4.1.2.1 Multiple-Inheritance
	3.4.1.2.2 Virtual-Inheritance

	3.4.1.3 Virtual Functions

	3.4.2 C++ Features, for which Real-Time Analysis is More Complex
	3.4.2.1 Dynamic Casts
	3.4.2.2 Dynamic Memory Allocation
	3.4.2.3 Exceptions

	3.4.3 Testing Timing

	4 Embedded Systems – Special Needs
	4.1 BASIC I/O-HARDWARE ADDRESSING
	4.1.1 Scope
	4.1.2 Rationale
	4.1.3 Basic Standardisation Objectives

	4.2 Basic I/O-Hardware Addressing Header — <ciohw>
	4.2.1 Overview and Principles
	4.2.2 The Abstract Model
	4.2.2.1 The Module Set

	4.2.3 I/O Register Characteristics
	4.2.4 The Most Basic I/O Operations
	4.2.5 The access-specification

	4.3 The <ciohw> Interface
	4.3.1 Functions for Single Register Access
	4.3.2 Functions for Register Buffer Access
	4.3.3 Functions for access_spec Initialisation
	4.3.4 Functions for access_spec Copying

	Appendix A: Implementing <ciohw>
	A.1 Purpose
	A.1.1 Recommended Steps
	A.1.2 Compiler Considerations

	A.2 Overview of I/O Hardware Connection Options
	A.2.1 Multi-Addressing and I/O Register Endian
	A.2.2 Address Interleave
	A.2.3 I/O Connection Overview:
	A.2.4 Generic Buffer index

	A.3 access-specifications for Different I/O Addressing Methods
	A.4 Atomic Operation
	A.5 Read-Modify-Write Operations and Multi-Addressing
	A.6 I/O Initialisation

	Appendix B: Generic access-specification for iohw Addressing
	B.1 Generic access-specification Descriptor
	B.2 Syntax Specification
	B.2.1 Bus Connection Parameters
	B.2.2 Detection of Read / Write Violations in I/O Registers
	B.2.3 access-specifications for Different Processor Busses
	B.2.4 access-specifications for Different I/O Addressing Methods
	B.2.5 Optimisation Possibilities for Typical Implementations
	B.2.5.1 Pre-Calculation of Constant Expressions
	B.2.5.2 Multi-Addressing and Endian

	Appendix C: Bibliography

