
J16/99-0009
WG21/N1186

February 22, 1999
J. Stephen Adamczyk

jsa@edg.com

Nested Class Access to Enclosing Classes

In J16/95-0015=WG21/N0615, I proposed changing the access rules to give nested classes access
to the enclosing class. At the time, the committee had weightier issues to ponder, and nested class
access was viewed as a relatively minor problem that would be largely corrected by the addition
of class name injection. The committee decided against any change.

Now that the standard is out and the smoke has cleared somewhat, we can see that there are a few
remaining problems with nested classes. I’ve been asked to bring this proposal forward again.

Problem: definitions outside the class

There is one real problem: in certain cases, it is not possible to provide a definition for a member
of a nested class:

 class A {
 class B {
 struct C {};
 static C member;
 };
 };
 A::B::C A::B::member; // Error

The referenceA::B::C gets an access error, becauseB is a private class. (The reference
A::B::member , on the other hand, is allowed because there is a rule that grants special access
when naming a member in the declarator of its definition.) The definition does have access to the
private typeC, but unfortunately there is no way to name that type without using the private type
B. So there is no way to write the definition, short of adding a friend declaration.

Similar problems are possible with the return type on the definition of a member function of a
nested class.

Lesser Problems

The other remaining problems are aesthetic problems.

Class name injection does allow a nested class to refer to the name of its enclosing class, but only
with some forms of name:

Nested Class Access to Enclosing Classes (J16/99-0009 = WG21/N1186) 2

 class A {
 class B {
 A *p; // Okay
 ::A *q; // Okay
 B *r; // Okay
 A::B *s; // Error, perhaps surprisingly
 };
 };

At the very least, this introduces a certain amount of inconsistency that may be confusing to the
programmer. One could go further and say that the access restriction seems pointless; if the name
is accessible as a simple qualified name, why shouldn’t it also be accessible via a qualified name?

More interesting, perhaps, are cases that go to the heart of the issue: is it desirable that a nested
class have access to the members of the enclosing class? For example:

 class A {
 class B {};
 class C {
 B *p;
 };
 };

According to the standard, this is invalid, and yet it seems like a reasonable thing to do. The fact
that the class designer has placedB andC insideA indicates that they are closely bound toA. It
seems appropriate that they should have access to the members ofA so that they can cooperate
using types whose scope is limited toA. There is no hijacking of access here: the author of the
nested classes is also the author of the enclosing class, and he or she presumably trusts the nested
classes (if not, he or she could have chosen to place the nested classes outside the enclosing class).

Note that the proposal does not giveC access to the members ofB, only to the members ofA.
Nested classes are trusted by their parents, but not necessarily by their siblings.

Proposed change

Replace all of 11.8 [class.access.nest] by

A nested class is implicitly a friend (_class.friend_) of each enclosing class. The members of an
enclosing class, on the other hand, have no special access to members of a nested class; the usual
access rules (clause _class.access_) shall be obeyed.

The examples must be reworked accordingly.

Also delete 11 [class.access] paragraph 6, which is no longer needed.

