
X3J16/97-0087
WG21/N1125

Template Issues and Proposed Resolutions
Revision 21

John H. Spicer

Edison Design Group, Inc.

jhs@edg.com

September 30, 1997

Revision History

Version 16 (96-0158/N0976) { July 17, 1996: Distributed in the post-Stockholm mailing. Re-

ects decisions made in Stockholm.

Version 17 (97-0011/N1049) { January 28, 1997: Distributed in the pre-Nashua mailing. Re-

ects decisions made in Kona and contains new issues.

Version 18 (97-0015/N1053) { March 7, 1997: Distributed at the Nashua meeting and in the

post-Nashua mailing. Contains additional new issues.

Version 19 (97-0045/N1083) { June 3, 1997: Distributed in the pre-London mailing. Reects

tentative decisions made in Nashua and at the template meeting in May plus additional new

issues.

Version 20 (97-0077/N1115) { September 29, 1997: Distributed in the pre-Morristown mailing.

Reects decisions made at the London meeting.

Version 21 (97-0087/N1125) { September 30, 1997: Distributed in the pre-Morristown mailing.

Contains the remaining open issues and new issues.

Summary of Issues

Other Issues

6.60 What are the semantics of a friend instance declaration?

6.61 Types vs. nontypes in template argument lists

6.62 Lookup of f<...> in friend declaration.

6.63 Lookup of p->f<....

6.64 Clari�cation of explicit template argument list evaluation.

6.65 Clari�cation of function parameter type adjustments when using explicit function

template arguments.

Member Template Issues

8.10 What kind of entity can appear in a template friend declaration?

97-0087/N1125 - Template Issues and Proposed Resolutions - Revision 21 2

Other Issues

6.60 Question: What are the semantics of a friend instance declaration?

Status: Open

Answer:

A friend instance declaration is a friend declaration that refers to an instance (either

generated or explicitly specialized) of a template.

When a friend declaration refers to an entity using an unquali�ed name, an explicit tem-

plate argument list must be supplied to indicate that the declaration refers to the template

and should not be considered to declare a new function.

template <class T> void f(T);

template <class T> struct A {

friend void f<>(T); // refers to template

friend void f(T*); // declares a new function

};

When the friend declaration refers to an entity using a quali�ed name, an explicit template

argument list is only required if the overload set that is named contains both a template

and nontemplate function that match the speci�ed type (because a declaration that uses

a quali�ed name always refers to a previously declared entity). For example,

template <class T> struct A {

template <class T2> void f(T2);

void f(int);

template <class T2> void g(T2);

};

class B {

friend void A<int>::f(int); // nontemplate

friend void A<int>::f<>(int); // template

friend void A<int>::g(int); // template

};

These rules are consistent with the rules for calling a function, in which overload resolution

is used to select the best matching function, but an explicit template argument list, such

as <>, can be used to exclude nontemplates from the set of functions that are considered.

A function cannot be de�ned in a friend instance declaration. An explicit specialization

must be used for this purpose.

Default arguments may not be speci�ed in a friend instance declaration. An instance does

not participate in overload resolution, so such default arguments would be useless (which

is why they are already prohibited in explicit specialization declarations).

The inline speci�er may not be used in a friend instance declaration. Whether or not

an instance is inline is determined by the template declaration, and any specialization

declaration that may apply. It should not be possible to alter this in a friend declaration.

Version added: 19

Version updated: 19

97-0087/N1125 - Template Issues and Proposed Resolutions - Revision 21 3

6.61 Question: Types vs. nontypes in template argument lists

Status: Open

14.3 [temp.arg] paragraph 2 indicates that an ambiguity between a type-id and an ex-

pression is resolved to a type-id, but it does not make clear when such an ambiguity is

considered to exist. For example, if you have a class template declaration that is known

to take an integer argument, should int() be parsed as an expression?

template <class T> struct A {};

template <int I> struct B {};

template <class T> void f(T);

template <int I> void f(T);

A<int()> a;

B<int()> b;

template void f<int()>(int());

On the other hand, ambiguities can exist for both class and function template references,

as illustrated by this example in which the class template is itself dependent on a template

parameter.

template <class T> void f(T)

{

typename T::template X<int()> x;

}

Answer: The normal disambiguation process is always used to determine whether a given

template argument is a type or nontype, even when the argument is used in a context in

which the corresponding template parameter is known to be a type or nontype.

Version added: 19

Version updated: 19

6.62 Lookup of f<...> in friend declaration.

Status: Open

How is a name followed by an explicit template argument list looked up in a friend function

declaration? For example:

template <class T> void f(T) {}

struct A {

friend void f<int>(int);

};

The basic question is whether this is considered a reference to a previously declared f, or

a declaration of a new f. The proposed answer is that this is a reference to a previously

declared f and as such, that it is looked up using the normal lookup rules for unquali�ed

name lookup speci�ed in 3.4.1.

The semantics of a reference like this di�er from the handling of unquali�ed friend decla-

rations without an explicit argument list. A declaration such as \friend void f(int)"

97-0087/N1125 - Template Issues and Proposed Resolutions - Revision 21 4

declares a member of the nearest enclosing namespace, and never refers to the a member of

the current class or a function outside of the nearest enclosing namespace. Such di�erences

are unfortunate, but I think that the di�erences are sensible and necessary.

These di�erences are necessary as a result of the fact that when you see a name followed

by a \<" you need to look up the name to determine whether the < is a less than sign or

the start of a template argument list.

This means that, for name lookup purposes, the example above is a reference to the name

f while the example below is a declaration of f In other words, the example above is

ill-formed if the template f was not previously declared, while the example below is valid

whether or not the global scope includes a function or template named f.

struct A {

void f(int);

friend void f(int); // declares ::f

};

Similarly, a name declared in a friend declaration is a member of the nearest enclosing

namespace and the search for a previous declaration extends only as far as that names-

pace. In the following example, there is no reason for the \friend void f<int>(int)"

declaration not to �nd the template declared in namespace N. The \friend void g(int)"

declaration, on the other hand, declares O::g because the search for a previous declaration

does not extend to namespace N.

namespace N {

template <class T> void f(T);

void g(int);

namespace O {

struct A {

friend void f<int>(int); // N::f

friend void g(int); // declares O::g

};

}

}

The one unfortunate consequence of this rule is that special care needs to be taken when

a friend declaration with an explicit template argument list refers to a name that is also

a member of the current class. In such cases, a quali�ed name must be used in order to

refer to the template from the outer scope.

template <class T> void f(T) {}

struct A {

template <class T> void f(T) {}

friend void ::f<int>(int);

};

Answer: An unquali�ed declarator with an explicit template argument list in a friend

declaration is looked up using the normal lookup rules for an unquali�ed name.

Version added: 21

Version updated: 21

97-0087/N1125 - Template Issues and Proposed Resolutions - Revision 21 5

6.63 Lookup of p->f<....

Status: Open

How is f looked up in an expression like p->f<....

In the following example, it is clear that the f should refer to the template A::f.

struct A {

template <class T> void f(T);

void g(A* p) {

p->f<int>(1);

}

};

Similarly, I believe the following usage is currently permitted by the working paper. The

working paper speci�es special rules for p->class-name-or-namespace-name::..., and

a template-id is a class-name, so presumably this should work.

template <class T> struct f {

struct B {

int i;

};

};

struct A : public f<int>::B {

void g(A* p) {

p->f<int>::B::i = 1;

}

};

In both of these examples the compiler sees p->f<, at which point it has to decide what to

do with f. It is not reasonable, in my opinion, to attempt to scan forward and determine

whether a >:: exists that matches the f<.

The question that this is leading up to, of course, is how to handle examples like the

following:

template <class T> struct f {

struct B {

int i;

};

};

struct A : public f<int>::B {

template <class T> void f(T);

void g(A* p) {

// Which of the following is permitted?

p->f<int>(1);

p->f<int>::B::i = 1;

}

};

97-0087/N1125 - Template Issues and Proposed Resolutions - Revision 21 6

Answer:

The proposed resolution is: If the id-expression is of the form p->identifier<..., the

identi�er is �rst looked up in the class of the object expression. If the identi�er is not

found, it is then looked up in the context of the entire post�x-expression. The program is

ill-formed if the name, when looked up in the context of the entire post�x expression, does

not name a class or function template. If the lookup in the class of the object expression

�nds a template, the name is also looked up in the context of the entire post�x-expression.

If the name is found in the context of the entire post�x-expression, and the name found

is a template, it must refer to the same entity as the one found in the class of the object

expression, otherwise the program is ill-formed.

This di�ers from the rule for looking up A in p->A::B, but a di�erent rule is needed for

this case to avoid breaking code. For example, the addition of the global template f would

render the code ill-formed if the lookup used rules similar to the ones used for p->A::B.

template <int I> void f();

struct A {

int f;

void g(A* p) {

bool b = p->f < 1;

}

};

Version added: 21

Version updated: 21

6.64 Clari�cation of explicit template argument list evaluation.

Status: Open

The subclause that describes the explicit speci�cation of function template arguments

(14.8.1 [temp.arg.explicit]) does not fully describe the steps in which a particular function

template specialization is selected when a set of overloaded function templates is involved.

For example, the WP does not specify the status of the following code. The signi�cant

issue in this example is that int is not a valid template argument for template #2 because

\int int::* is not a valid type.

template <class T> int f(T*); // #1

template <class T> int f(int T::*); // #2

struct A { int i; };

int i1 = f<int>(0);

There are at least two possible interpretations of this example:

1. The code is well formed, and template #1 is called because template #2 would not

be valid.

2. The code is ill-formed because template #2 would not be valid.

What if the type of one of the template arguments does not match the parameter type?

97-0087/N1125 - Template Issues and Proposed Resolutions - Revision 21 7

template <class T, T> int f(int);

template <class T, T*> int f(int);

int i1 = f<int,0>(0); // ambiguous

int i2 = f<int,1>(0); // 1 can't be converted to int*

What if a nontype argument has a type that can be converted to the type of the corre-

sponding parameter, but the value is out of range?

template <int> int f(int);

template <char> int f(int);

int i1 = f<1>(0); // ambiguous

int i2 = f<1000>(0); // is this ambiguous?

Answer:

The proposed answer is that the attempt to create an invalid type while evaluating the

template arguments or the function type result in a given function template from being

eliminated from the set of templates that are considered for a given reference, but value-

based errors do not do so.

Speci�cally, the following conditions disqualify a function template from being used:

1. Attempting to create an array with an element type that is void, a function type, or

a reference type, for example:

template <class T> int f(T[5]);

int i = f<int>(0);

int j = f<void>(0);

2. Attempting to use a type that is not a class type in a quali�ed name.

template <class T> int f(typename T::B*);

int i = f<int>(0);

3. Attempting to use a type in the quali�er portion of a quali�ed name that names a

type when the type does not contain the speci�ed type member.

template <class T> int f(typename T::B*);

struct A { };

struct C { int B; };

int i = f<A>(0);

int j = f<C>(0);

4. Attempting to create a pointer to a reference type.

5. Attempting to create a reference to a reference type or to void.

6. Attempting to create a pointer to member with a type that is not a class type.

template <class T> int f(int T::*); // #2

int i = f<int>(0);

7. Attempting to perform an invalid conversion in either a template argument expression,

or an expression used in the function declaration.

template <class T, T*> int f(int);

int i2 = f<int,1>(0); // 1 can't be converted to int*

97-0087/N1125 - Template Issues and Proposed Resolutions - Revision 21 8

template <class T> int f(int[(T)1]);

int i = f<int*>(0); // 1 cannot be converted to int*

Note that these conditions only disqualify a function template if they occur in the template

parameter list or the function type. If, after selecting a given function template, such an

error were to occur in an exception speci�cation, the program would be ill-formed.

Version added: 21

Version updated: 21

6.65 Clari�cation of function parameter type adjustments when using explicit function template

arguments.

Status: Open

There are several transformations that take place on the parameter types of functions. Top

level quali�ers are removed, function types decay to pointers to functions, and array types

decay to pointers.

When an explicitly speci�ed template argument is used as a function parameter type,

the parameter type undergoes the normal parameter transformations. Note that it is the

function parameter type that is transformed, not the template argument itself.

template <class T> void f(T t) { t++; }

template <class X> void g(const X x) { x++; }

template <class Z> void h(Z, Z*);

int main()

{

// #1: function type is f(int), t is nonconst

f<int>(1);

// #2: function type is f(int), t is const

f<const int>(1);

// #3: function type is g(int), x is const

g<int>(1);

// #4: function type is g(int), x is const

g<const int>(1);

// #5: function type is h(int, const int*)

h<const int>(1,0);

}

Version added: 21

Version updated: 21

Member Template Issues

8.10 Question: What kind of entity can appear in a template friend declaration?

Status: Approved by core-3 in Nashua. Is this in the WP?

The purpose of this issue is to clarify the rules regarding the matching of a template friend

declaration with a prior declaration of a template.

97-0087/N1125 - Template Issues and Proposed Resolutions - Revision 21 9

Answer: A template friend declaration that refers to a member function template must

match the previous declaration of the template. It is not possible to have a \partial friend"

declaration in which some of the template parameters are bound to speci�c types.

template <class T> struct A {

template <class T2> void f(T2);

};

template <class U> class B {

template <class T>

template <class T2> friend void A<T>::f(T2); // okay

template <class T>

template <class T2> friend void A<T2>::f(T); // error

template <>

template <class T2> friend void A<U>::f(T2); // error

template <>

template <class T2> friend void A<int>::f(T2); // error

};

Version added: 17

Version updated: 17

