Doc. No.: X3J16/96-0117R1

W&E21/ N0935
Dat e: July 15, 1996
Pr oj ect: Pr ogramm ng Language C++

Reply To: Sandra VWit man
Di gital Equi pnent Corporation
whitman@| e. enet . dec. com

Cl ause 18 (Language Support Library) Issues List - Version 4

Revi si on Hi story

Version 1 - February 1, 1995: Distributed in pre-Austin mailing.

Version 2 - May 30, 1995: Distributed in pre-Mnterey mailing.
3

Ver si on - Septenber 26, 1995: Distributed in pre-Tokyo mailing.
Cl osed issues are conpressed to save

paper.
Version 4 - May 22, 1996: Distributed in pre-Stockhol mmailing.
Version 5 - July 15, 1996: Distributed in post-Stockhol mnailing.

I nt roducti on

This docunment is a summary of the issues identified in Cause 18. For
each issue the status, a short description, and pointers to rel evant
refl ector nmessages and papers are given

Active | ssues

Work G oup: Li brary C ause 18

| ssue Nunber: 18- 015

Title: Shoul d terminate() and unexpected() be in <exception> ?
Secti ons: 18. 6 Exception handling [|ib.support.exception]

18.6.2.4 unexpected [|ib. unexpect ed]
18.6.3.3 terminate [lib.term nate]
St at us: active
Descri ption: Nat han Myers in a private nail:

[The di scussion is why terminate() and unexpected() are decl ared

in <exception>. | had specul ated:]

> 1. They are present so that users can call themto sinulate

> the event normally generated only by the runtime environnent.

> 2. They are present so that users can restore the original behavior
> even if they didn't originally call set_*_handler.

> 3. They are present so their address can be conpared agai nst

> the result of calling set_*_handl er

>
spi cer replied:]

O these, | believe that only #1 is possible. The default terninate
handl er is not terminate(), but rather an inplenentation defined
function that calls abort(). |If you were to do

set _termnate(& erm nate);

you woul d probably end up with an infinite loop (until you ran out

of stack space). For the same reason, a call to set_terninate would
never return the address of terninate() as the previous handl er val ue.
The sane applies to unexpected.

It seens odd to permt #1, particularly for unexpected. | would actually
prefer that it be undefined if a user calls either of these
functions.

VVVVVVVVVVVVVV™—/VVVVYVYVYV

This is worth bringing up in the Lib Wa | suspect
that we didn't really | ook closely enough at this and just assuned
as | did that unexpected() was itself the default handler.

If these functions aren’t nentioned in a header file, and can't
be called by users, why nmention themat all? On the other hand,
wouldn’t it be sinmpler if they were just the default handler?

Pr oposed Resol uti on:

Renove terninate() and unexpected() from <exception>

Change cl ause 18.6 Exception handling [|ib. support.exception]
as foll ows:
1. renove void unexpected(); void terminate(); from
<exception> synopsi s.

2. check usage in 18.6.2.2, 18.6.2.4, 18.6.3.1, 18.6. 3. 3,

8.6.4
Request or: Nat han Myers, ncm@antrip.org
Ownner : Sandra Vhitman
Emai | s: c++std-1ib-4725, 4728
Paper s: None.
Wor k G oup: Li brary C ause 18

| ssue Nunber:
Title:
Sections:

St at us:
Descri ption:

18- 016

nuneric_linmts and LI A-1/ W34/ C Conpl i ance
18.2.1 Nuneric limts [lib.limts]

active

Nat han Myers in a private enmil:

Someone needs to do sonme real analysis here. There are quite a few open

i ssues:

Are we REQU RED to be LIA-1 conpliant?
What are they doing in WG14 in this area?

How do we keep conpatibility with C? Is it possible?

Is it enough to add a few new nenbers to nuneric_linmts, or do we need
to add a whol e bunch of extra stuff (LIA-1, Annex E. 4 suggests a
<lia.h> header for Cinplenentations wishing to comply to LIA-1).

PwNE

Pr oposed Resol uti on:

Conpl ete anal ysis required to provide a solution to the probl em of
LI A-1 conformance.

Request or: Nat han Myers, ncm@antrip.org
M ke Lijewski, |ijewski @oguewave.com

Owner : Sandra Whitman

Emai | s: c++std-all-1262 nmentions LIA-1
c++std-1ib-3975.

Papers: Suggested reading is 1SQO I EC 10967-1: 1994.
(IEC 559 is the sanme as |EEE 754, and it is a subset of
"I SO I EC 10967-1, Language i ndependent arithnetic -

Part 1. Integer and floating point arithmetic"

(al so known as LIA-1).

Work G oup: Li brary C ause 18

| ssue Nunber: 18-017

Title: Run-time Dependent traps in numeric limits

Secti ons: 18.2.1 Nuneric Limts [lib.support.limnts]

St at us: active
Descri ption: M ke Lijewski in c++std-Iib-3975:

>| can imagine an inplenentati on where

>t he val ue of nuneric_linits<double>::traps depends on the setting
>of some user-settable math library flags; i.e. the value of
>numeric_limts<doubl e>::traps could be true in one part of a
>program and fal se in another, depending on what, if any,
>0S-specific math library calls the user’s made. | n any case,
>don’t see a good reason why this should be precl uded.

The problem here is that changing this nenber to be an inline static
(menmber) function would i npose a performance over head.

Pr oposed Resol uti on:

Change nuneric_limts<T>: :traps to an inline static nmenber function

Request or: M ke Lijewski, |ijewski @oguewave.com

Ownner : Sandra Wit man

Emai | s: c++std-1ib-3975.

Papers: Suggested reading is |1SO I EC 10967-1: 1994.
Work G oup: Li brary C ause 18

| ssue Nunber: 18- 018

Title: Run-ti me Dependent Rounding in nunmeric limts
Secti ons: 18.2.1 Numeric limts [lib.limts]

St at us: active

Descri ption:

There are systens where the rounding style for floating point nunbers
isn't constant. This menber:

nuneric_limts<float|doubl e|]l ong doubl e>::round_style

can be changed by calling the | EEE function fpsetround at run tine.
Additionally if the initial rounding style is set by the run-tine
environnment, the initializer for round style isn’'t a constant
expression as it can only be deternined by calling fpgetround and
related functions. (SDW5/96, | believe these are equivalent to
the fesetround/fegetround functions described by W514/ N319,
X3J11/94- 003 Fl oati ng- Poi nt C Extensi ons)

Pr oposed Resol uti on:
1. Add a new enumvalue to "18.2.1.3 [lib.round.style]":

nanespace std {

enum fl oat _round_style {
round_i ndet er ni nat e
round_t oward_zero
round_t o_nearest
round_toward_infinity
round toward neg infinity
round_runti nme_dependent

rWNROPR

/'l New enum val ue
H
}

2. Add a newinline static (nenber) function to "18.2.1.1
[lib.nuneric.limts]":

nanespace std {
tenpl ate<class T> class nuneric_limts {
publi c:

/[l Current I|ist
static float_round style current_round _style() throw); // New

H
}

This function shall return the current round style, and may therefore
not return float_round_style::round_runtine_dependent.

3. It should also be added in the text that these nenbers are neani ngfu
for floating points only.

The text for 2 and 3 above in 18.2.1.2 could be (SDW5/96):
static float _round style current_round style() throw);
Dynami ¢ roundi ng node, if available. My not return

float _round_style::round_runti me_dependent. (SDW5/96

can an error be returned by this routine?)

Meani ngful for floating point types which adhere to | EC 559.

Request or: Domi ni k Strasser, Domi nik. Strasser @rch. sni. de
Owner : Sandra Vhitman

Emai | s: c++std-1ib-4073, 4091

Papers: Suggested reading is 1SQO I EC 10967-1:1994.

Di scussi on

It was difficult to select a good nane for the new enum val ue. Domi nik
and | had at least this list to choose from

round_runti me_dependent /'l Selected
round_varyi ng

round_vari abl e

round_fl uctuate
round_runti ne_det erm nabl e

round_vol atile

round_non_const ant

Soneone fluent in English mght have objections to the suggested nane.

Wirk G oup: Li brary C ause 18

| ssue Nunber: 18- 019

Title: Extra Denorm Menbers in nuneric_linits in Support of |EC 559
Secti ons: 18.2.1 Numeric limts [lib.limts]

St at us: active

Descri ption: Nat han Myers in a private email:

In support of iecb559 there should be two or three other paraneters
descri bi ng denormal i zed nunber behavi or

Proposed Resol uti on:

Add additional denorm nmenbers. (Details from Nat han needed)

Request or: Nat han Myers, ncm@antrip.org

Ownner : Sandra Whitman

Emai | s: c++std-all-1262 nmentions LIA-1

Papers: Suggested reading is 1SQ |1 EC 10967-1:1994.
Wor k G oup: Li brary C ause 18

| ssue Nunber: 18- 020
Title: nunmeric_limts static const int/bool Menbers Mist be

Const ant Expressions.

Secti ons: 18.2.1 Nuneric limts [lib.limts]
St at us: active
Descri ption: Nat han Myers in c++std-1ib-4594

The default definition of the tenplate nuneric_limts<>
is still not right. I1t’s inportant for the int and boo
static const nenbers to be conpile-tine constants, both
in the default definition and in any vendor or user
speci alizations. That is, nenbers should | ook like:

static const int digits = 0;
not
static const int digits;
This makes a difference because user code can say for exanple:
char digits[nuneric limts<T> :digits + 1];
or
case nuneric_linmts<T> :digits:
whi ch woul d not conpile if it were an out-of-line constant. The
ori gi nal proposal specified things this way (and no proposal changed
it) but editorial tinkering has stripped off the definitions.
Pr oposed Resol uti on:
1. Inthe class tenplate declaration in [lib.nuneric.linmts],
for all static const integral or enunerated nenbers:
add " 0" int menbers

add " fal se" to bool nenbers
add " round_toward_zero" to the menmber round_style.

So in 18.2.1.1 nuneric_limts would | ook |ike this:

tenpl ate<class T> class nuneric limts {

publi c:
static const bool is_specialized = fal se;
static T min() throw);
static T max() throw();
static const int digits = 0;
static const int digitsl0 = O;
static const bool is_signed = fal se;
static const bool is_integer = fal se;
static const bool is_exact = false;
static const int radix = 0;
static T epsilon() throw);
static T round_error() throw();
static const int nin_exponent = O;
static const int nin_exponentl0 = O;
static const int nmax_exponent = O;
static const int max_exponent10 = O;
static const bool has_infinity = fal se;
static const bool has_qui et NaN = fal se;
static const bool has_signaling NaN = fal se;
static const bool has_denorm = fal se;
static const bool has_denormloss = fal se;
static T infinity() throw();
static T quiet_NaN() throw();
static T signaling NaN() throw);
static T denormmin() throw);
static const bool is_iec559 = fal se;
static const bool is_bounded = fal se;
static const bool is_nodule = fal se;

static const bool traps = fal se;
static const bool tinyness before = fal se;
static const float _round _style round style = round_toward _zero;

} il
2. Add a paragraph to 18.2.1.1
For all nenbers declared "static const" in the tenplate above,

speci al i zati ons nust define these values in such a way that they
are usable as integral constant expressions.

Request or: Nat han Myers, ncm@antrip.org
Ownner : Sandra Wit man
Emai | s: c++std-1ib-4594, 4596, 4597, 4639
Papers: None
Work G oup: Li brary C ause 18
| ssue Nunber: 18- 021
Title: Correction to nothrow in <new>
Secti ons: 18. 4 Dynani c nenory managenent [|ib. support. dynam c]
St at us: active
Descri ption: John Spicer in a private email:
>l think there is a mnor problemwth the proposed change.
>
>| believe that
>
> const nothrow_ t not hrow,
>
>shoul d be changed to
>
> const nothrow t nothrow = {};
>

>because const objects nust be initialized.
Thanks, John.
Several people want it changed to:

enum not hrow_ t { nothrow };

VVVVVVVVVVVVVVYVYVYVYV

| take it that the objection to the original proposal was that

people didn't like having a "nothrow' object allocated in each
translation unit where it was used? |If so, why not just require that
the library define the object and just have a declaration in the
header file?

| can think of two potential problems wth the enum approach

1. There is an inplicit conversion fromenumto int, so nothrow wll
match an integral argument (although the one taking an enumis
preferred).

2. The decl aration given above gives nothrow the val ue zero,
which will also match any pointer type argunent as it is a
nul | pointer constant. As with point #1, the enumversion is
still preferred.

Wiy is this a problem if the enumversion is preferred?

Because it makes witing class specific operator new functions
nmore error-prone. The followi ng exanple calls the class specific
pl acenment new because the user forgot to supply a nothrow version.

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYV

> In error nmessage would be a nmuch better result.

>

> John.

>

> typedef unsigned int size_t;

> enum nothrow t { nothrow };

>

> struct A {

> voi d* operator new(size t, void*); // placenment new
>}

>

> int main()

>

> A* ap = new (nothrow) A, // calls placenent new
>}

>

Proposed Resol uti on:
Change:

struct nothrow t{};
const nothrow_t not hrow

To (choose one):

1) struct nothrow t{};
const nothrow_ t nothrow = {};

2) enum nothrow t { nothrow };

3) struct nothrowt {};
extern nothrowt nothrow, // defined in library

Request or: John Spicer, Jerry Schwarz

Oaner : Sandra Wi t man

Emai | s: c++std-1ib-4725, 4728

Papers: None

Work G oup: Li brary C ause 18

| ssue Nunber: 18- 022

Title: Make not hrow a Type Instead of a Val ue

Secti ons: 18. 4 Dynani c nenory managenent [lib. support. dynani c]
St at us: active

Descri ption: Clause 18-editorial box 1

Currently section 18.4 contains an editorial box which states:
The division of |abor between the gl obal nanmespace and nanespace
std should probably be reexam ned, as shoul d nmaki ng nothrow a
type instead of a value. ARK 9/95

The i ssue of making nothrow a type was addressed at the Santa Cruz
meeting. It is additionally addressed by 18-021

The i ssue of global namespace verses std namespace may heed further
clarification. (May have been addressed by 18-008)

Proposed Resol uti on:
Renove Box 41 (nmake sure that the nanespace issue is closed).

Request or: Sandra Wit man
Oaner : Sandra Wi t man

Emai | s: None

Papers: None

Work G oup: Li brary C ause 18

| ssue Nunber: 18- 023

Title: Array Form of Operator delete[] Added to 18.4.1.2
Secti ons: 18.4.1.2 Array forns [lib.new del ete.array]

St at us: active

Descri pti on: Clause 18-editorial box 2

Currently section 18.4.1.2 contains an editorial box which states:
The array formvoid operator delete[] (void* ptr, const
std::nothrow& throw); was added during editing to correct

an oversight in issue 18-014. BGD 1/96

Si nce 18-014 has been closed this box shoul d be renoved.

Proposed Resol uti on: Renobve Box 42

Request or: Sandra Wit man

Owner : Sandra Vhitman

Emai | s: None

Paper s: None

Work G oup: Li brary C ause 18

| ssue Nunber: 18- 024

Title: Are Sonme nuneric_limts static const Menbers Really Dynanmic ?
Secti ons: 18.2.1 Nuneric limts [lib. limts]

St at us: active

Descri ption: Daveed Vandevoorde in c++std-I|ib-4637

c++std-1ib-4637 suggests that some of the static constant nemnbers
in numeric_limts mght be dynanic.

> Aren’t sone of these constants are not so constant in practice?
> | believe the rounding style for exanple can be set at run-tine
> on several platforns.

(SDW 5/96) 18-017 proposes replacing the static const bool traps nenber
with a static traps routine. 18-018 proposes adding a routine to provide

a runtime rounding node. Oher static const nuneric limts nenbers
may fall into this category.

Proposed Resol uti on:

Determine if any static const nunmeric linmts nmenbers really require
runti me support.

Request or: Daveed Vandevoorde
Owner : Sandra Wit man
Emai | s: None c++std-|i b-4594, 4596, 4597, 4639
c++std-1ib-4637
Papers: None
Wirk G oup: Li brary C ause 18
| ssue Nunber: 18- 025
Title: Make references to throw references to throwm) in 18.2.1
Secti ons: 18.2.1 Nuneric linmts [lib. limts]
St at us: active

Descri ption: Editorial; throw should be throw() in 18.2.1

Proposed Resolution: Change throwto throw() in 18.2.1

Request or: Sandra Wit man

Ownner : Sandra Whitman

Emai | s: None

Paper s: None

Work G oup: Li brary C ause 18

| ssue Nunber: 18- 026

Title: type_info from 95-0195/ NO795

Secti ons: 18.5.1 dass type_info [lib.type.info]
St at us: active

Descri ption:

type_info::operator!=(const type info& is anbiguous
in the presence of the tenplate operators in <utility> and it is
unnecessary.

Proposed Resolution: It should be renoved.

Request or: P.J. Pl auger

Ownner : Sandra Vhitman

Emai | s: None

Papers: "Updat ed I ssues List for Library" 95-0195/N0795

Wor k G oup: Li brary C ause 18

| ssue Nunber: 18- 027

Title: Descri be roundi ng error

Secti ons: 18.2.1.2 nuneric_limts menbers [lib.nuneric.linmts.nnenbers]
St at us: active

Descri ption: Clause 18-editorial box 40

Currently section 18.2.1.2 contains an editorial box which states:

(Davi d Vandevoorde) This should include or reference the precise
description as per LIA-1. The latter docunment was not avail abl e
at the Santa Cruz post-neeting editing.

Pr oposed Resol uti on:

Renove Box 40 and add a footnote to section 18.2.1.2 nuneric limts
menbers [lib.nuneric.limts. nenbers] paragraph 22 which references
the description of rounding error in LIA-1. So paragraph 22 and the
associ ated footnote shoul d becone:

Measure of the maxi mum rounding error. 166)

166) Rounding error is described in LIA-1 Section 5.2.8 and
Annex A Rationale Section A.5.2.8 - Roundi ng constants.

Request or: Sandra Wit man

Owner : Sandra Wit man

Emai | s: None

Paper s: None

Work G oup: Li brary C ause 18

| ssue Nunber: 18- 028

Title: Type float_round_style edits

Secti ons: 18.2.1.3 Type float _round_style [lib.round. style]
St at us: active

Descri ption: Clause 18-editorial box 41

Currently section 18.2.1.3 contains an editorial box which states:

The notion for introducing the above paragraph (notion 54 in Santa
Cruz) nentioned addition (as copied literally fromthe C standard)
instead of arithnmetic. This alnpbst certainly unintended but it is
uncl ear whet her transcendental functions (square root in particular)
are affected as well.

Proposed Resol ution: Renove Box 41

Request or: Sandra Wit man

Ownner : Sandra Vhitman

Emai | s: None

Paper s: None

Wor k G oup: Li brary C ause 18

| ssue Nunber: 18- 029

Title: nuneric_linmts specializations exanple editorial changes
Secti ons: 18.2.1.4 nunmeric_limts specializations [lib.nuneric.special]
St at us: active

Descri ption: Clause 18-editorial box 42

Currently section 18.2.1.4 contains an editorial box which states:

(Davi d Vandevoorde) | added the throw presentations to bring the
above exanple in agreenent with the foregoing prototypes.

Proposed Resol ution: Renobve Box 42

Request or: Sandra VWit man
Oaner : Sandra Wi t man
Emai | s: None
Papers: None

Cl osed | ssues

| ssue Nunber: 18-001

Title: Typedef typedef void fvoid_t(); not used anywhere
Last Doc.: NO784=95- 0184

| ssue Nunber: 18-002

Title: Redundant typedefs

Last Doc.: NO0784=95- 0184

| ssue Nunber: 18-003

Title: Call to set_new handler() with null pointer

Last Doc.: N0784=95- 0184

| ssue Nunber: 18-004

Title: I nherited nenbers explicitly nmentioned

Last Doc.: NO784=95- 0184

| ssue Nunber: 18-005

Title: Call to set_termnate() or set_unexpected() with null pointer
Last Doc.: NO0784=95- 0184

| ssue Nunber: 18-006

Title: <stdarg. h> and references

Last Doc.: N0784=95- 0184

| ssue Nunber: 18-007

Title: denornal | oss nenber to the nuneric _lints class
Last Doc.: NO784=95- 0184

| ssue Nunber: 18-008
Title: gl obal operator new

Last Doc.:

| ssue Nunber:

Title:
Last Doc.:

| ssue Nunber:

Title:
Last Doc.:

| ssue Nunber:

Title:
Last Doc.:

| ssue Nunber:

Title:
Last Doc.:

| ssue Nunber:

Title:

Last Doc.:

| ssue Nunber:

Title:
Last Doc.:

NO784=95-0184

18- 009

whi t her exception?

NO784=95- 0184

18- 010

Exception specifications for class nunmeric linmts

NO784=95- 0184

18- 011

Exception specifications for set_new handl er()

NO784=95-0184

18- 012

Exception specifications for set_unexpected() and set term nate()

NO784=95- 0184

18-013

del eting a pointer obtained by a nothrow version of
"operator new'

NO784=95- 0184

18- 014

not hr ow ver si ons of

NO784=95-0184

"operator delete”

