
X3J16/96-0034
WG21/N0852

Clarifying Access Control

J. Stephen Adamczyk (jsa@edg.com)

Edison Design Group, Inc.

January 30, 1996

Introduction

The description of access control in 11 [access] fails to mention one rule that seems to be

universally implemented. Perhaps one can intuit the rule from the things that are described,

but probably only if one already knows how access control is \supposed" to work. This paper

proposes to add the missing rule.

The problem

The following program works on everyone's C++ compiler:

class B;

class A {

private:

int i;

friend void f(B *);

};

class B : public A {};

void f(B *p) {

p->i = 1;

}

It's not clear whether this program is well-formed according to the WP, however. The issue is

that the member i is inaccessible in the class B (it's private in the base class A and therefore

inaccessible in the derived class B), so at �rst glance p->i must be an access violation. However,

function f is a friend of class A, so it has permission to implicitly cast a pointer to B to a pointer

to A. In A, i is private, but since function f is a friend, it can access a private member. Therefore

f would be allowed access in this case if the code were written

static_cast<A*>(p)->i = 1;

This formulation does not do any cheating that defeats access control (such as an old-style

explicit cast to the base class), so it seems clear that f does have the access needed to refer

to i in some way. Therefore, it seems reasonable to allow f to have access with the original

formulation also.

Perhaps this seems obvious, and it's certainly existing practice, but I don't think there's any-

thing in [access] that permits it.

I recommend that we modify the WP to say that a nonstatic member can be accessible either

because it's accessible in the class in which it's named, or because it's possible to implicitly

Clarifying Access Control (X3J16/96-0034, WG21/N0852) 2

cast the pointer to the object you have to a base class where you do have access. The same

applies for references using the \." operator, where an implicit cast to a reference to a base

class can be used.

Another reason to care

The namespaces changes added all kinds of interesting new access cases that couldn't come

up previously, and here's one where the fact that using-declarations can do things that access-

declarations formerly couldn't brings up this issue even without a friend declaration:

class A {

public:

int i;

};

class B : public A {

private:

using A::i;

};

void f(B *p) {

p->i = 1;

}

i is private in the derived class, but it's public in the base class; the derivation is public, so

anyone can do an implicit cast to the base class. Therefore by the reasoning above this example

should be well-formed.

Working Paper changes

Add at the end of 11.2 [class.access.base]:

For nonstatic members, the access is a�ected by the class in which the member

is named. This naming class is the class in which the member name was looked up

and found. [Note: this class can be explicit, e.g., when a quali�ed-id is used, or

implicit, e.g., when a class member access operator (expr.ref) is used (including

cases where an implicit \this->" is added).] A nonstatic member m is accessible

when named in class N if

� m as a member of N is public, or

� m as a member of N is private or protected, and the reference occurs in a

member or friend of class N , or

� there exists a base class B of N that is accessible at the point of the reference,

and m is accessible when named in class B.

[Example:

class B;

class A {

private:

int i;

friend void f(B *);

Clarifying Access Control (X3J16/96-0034, WG21/N0852) 3

};

class B : public A {

};

void f(B *p) {

p->i = 1; // Okay: B* can be implicitly cast to A*, and f has

// access to i in A

}

{end example]

