
#X3J16/96-0031 WG21/N0849

Relaxing the Rules for Void

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Writing function-like templates often requires a duplication of code to handle value
returning and non-value returning behavior. To eliminate this duplication, I propose to
allow avoid expression to be used to represent ‘‘no value’’ in a return statement and in
a function call where no value is allowed.

1 Introduction

We write

int f();

int g() { ... return f(); }

and

void f1();

void g1() { ... f1(); }

but this is an error:

void f2();

void g2() { ... return f2(); }

I propose to allow this last example. That is, where no return value is allowed, I suggest that an expression
of typevoid should be allowed. Similarly, I propose to allow calling a function that takes no arguments
with an argument of typevoid . This involves lifting a semantic restriction, but not adding new syntax or
new semantics. For that reason, I consider this a truly minimal extension; the smallest extension ever pro-
posed.

The reason to consider this relaxation is to ease the writing of templates. For example:

template<class T> T g(T (*f)()) { ... return f(); }

int ff();

void h()
{

g(ff); // ok
g(h); // currently error, proposed ok

}

I have run into this problem several times. See my proposal formem_fct() (#X3J16/96-
0030,WG21/N0848) for a real example, and for the amount of work needed to circumvent this problem.
The proposed relaxation halves the number of templates you need to write when a pointer to function is
involved by allowing the style above to cover both thevoid and value returning case.
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2 Details

I propose to allow a ‘‘void parameter’’ or a ‘‘void return value’’ to be initialized by a a ‘‘void value ’’.
For example:

void f();

void g()
{

f(); // ok as always
return; // ok as always

f(g()); // proposed ok
return f(); // proposed ok

}

Note that there is (as ever) no difference between

void f();

and

void f(void);

It would be possible to implement a slightly different extension that would also allow

void x = f();

I amnot proposing that. I see no compelling need for ‘‘void objects’’ or ‘‘void values.’’

3 Working Paper Changes

In §6.6.3 [stmt.return] paragraph 2, replace the second sentence up to the semicolon with:
An expression in an return statement in a function that does not return a value must be of type
void ; the expression is evaluated, but no value is returned. In a function that does return a
value, an expression is required in a return statement

I believe that this formulation also clarifies thatreturn; is ill-formed in a value returning function.
In §5.2.2 [expr.call] paragraph [3], add after the first sentence:

An expression of typevoid can be given as an argument for a function that takes no argu-
ments (_dcl.fct_); the expression is evaluated, but no value is passed.

4 Implications

The proposed relaxation can be implemented by a small localized change to the semantic checking in a
compiler front end. It does not involve syntax changes or changes to code generators.

No other part of the language definition is affected.
The current library specification would not be affected by this relaxation. My proposal formem_fct

(#X3J16/96-0030,WG21/N0848) can be implemented without used of specialization given this relaxation.
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