
#X3J16/96-0030 WG21/N0848

A Standard Adapter to Support Polymorphic Containers

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

There is no direct support for using member functions (object-oriented programming)
together with standard algorithms (generic programming). I propose the addition of stan-
dard library binders,mem_fct() andmem_fct_ref() that allows member functions
to be applied to sequences of pointers to class objects or sequences of class objects by
standard algorithms.

1 Introduction

It is often claimed that STL doesn’t support polymorphism. If true, that would be a serious problem. It is
not. First of all, containers of pointers work just fine (see also Andrew Koenig’s proposal relating to asso-
ciative containers of pointers #96-0020/N0838), and those are the ones we care about when polymorphism
(classical object-oriented programming) is the issue.

However, many standard algorithms apply non-member functions to objects. There are several ways of
dealing with that– many of you will have a favorite. I would like to propose the simplest and most general
that I have found as part of the standard.

Consider the classical example of applyingShape::draw() to every element of an array:

void rotate_all(vector<shape*>& v)
{

for (int i = 0; i<v.size(); ++i) v[i]->rotate(angle);
}

We would like to express this using the standard library algorithmfor_each() . This cannot be done
directly. Like all standard algorithms that takes a function as an argument, that function must be a non-
member function. Thus, we must either provide a new algorithm that takes a member function or somehow
provide a non-member function that does what whatShape::draw() does given aShape* . For exam-
ple:

void draw_shape(Shape* p) { p->draw(); }

void rotate_all2(vector<shape*>& v)
{

for_each(s.begin(),s.end(),&draw_shape);
}

This is tedious, but it works. There may be other fundamental ways of tackling the problem, but I know of
none that are both general and does no violence to the the concepts of the library.

What I propose is to ‘‘mechanize’’ the production of functions such asdraw_shape() by using tem-
plates. For example:

void rotate_all3(vector<shape*>& v)
{

for_each(s.begin(),s.end(),mem_fct(&Shape::draw));
}

The adaptermem_fct() takes a pointer to member and produces something that can be applied to a
Shape* .

This solution has the property of being simple, apparently consisting of a single template function,



- 2 -

introducing little overhead, and applies uniformly over the STL. The rest of this note explains how
mem_fct() can be defined.

The reason for includingmem_fct() into the standard is that otherwise every programmer who wants
to use object-oriented techniques and the standard library will face this problem. I hope that will be essen-
tially every C++ programmer will (at some time) use a combination of OOP and the standard library.

I fear that in the absence of a standard solution to this problem, the standard library algorithms (and pos-
sibly also the containers) will remain underused in favor for a variety of homebrew and commercial ‘‘true
OO’’ solutions. Thus, the intersection of two of the most critical programming paradigms supported by
C++ (object-oriented and generic programming) will be left unsupported by the standard.

2 What shouldmem_fct() Look Like?

Here is a first draft of the adaptor that does the trick:

template<class T> class Mem_fct {
void (T::*pmf)();

public:
explicit Mem_fct(void (T::*p)()) :pmf(p) {}
void operator()(T* p) { (p->*pmf)(); }

};

template<class T> Mem_fct<T> mem_fct(void (T::*f)())
{

return Mem_fct<T>(f);
}

It works (at least on the compiler I tried it on). It covers the case of a member function taking no arguments
and returning no value.

2.1 Objects and Pointers
I expectmem_fct() to be used mostly with containers of pointers. However, there is an equivalent need
to invoke member functions on sequences of objects.

The helper classMem_fct is easily extended to handle both cases:

template<class T> class Mem_fct {
void (T::*pmf)();

public:
explicit Mem_fct(void (T::*p)()) :pmf(p) {}
void operator()(T* p) { (p->*pmf)(); }
void operator()(T& p) { (p.*pmf)(); }

};

However, if we did that, the result would not fit with other function objects and binders (§2.4) so I intro-
duce a separate class to deal with objects (as opposed to pointers to objects):

template<class T> class Mem_fct_ref {
void (T::*pmf)();

public:
explicit Mem_fct(void (T::*p)()) :pmf(p) {}
void operator()(T& p) { (p.*pmf)(); }

};

template<class T> Mem_fct_ref<T> mem_fct_ref(void (T::*f)())
{

return Mem_fct<T>(f);
}

We can now write:



- 3 -

class X {
public:

void m();
};

void f(vector<X>& v, list<X*>& p)
{

for_each(v.begin(), v.end(), mem_fct_ref(&X::m));
for_each(p.begin(), p.end(), mem_fct(&X::m));

}

Because the primary interaction between standard algorithms and member functions is expected to be con-
tainers of pointers, I chose the shortest and most obvious name for the version that applies to pointers.

2.2 Arguments
Overloading makes the definition of a version that takes arguments easy:

template<class T, class A> class Mem_fct1 {
void (T::*pmf)(A);

public:
explicit Mem_fct1(void (T::*p)(A)) :pmf(p) {}
void operator()(T* p, A x) { (p->*pmf)(x); }

};

template<class T, class A> Mem_fct1<T,A> mem_fct(void (T::*f)(A))
{

return Mem_fct1<T,A>(f);
}

Examples of member functions taking more than one argument are plentiful. However, I see no need for a
standardMem_fct2 , Mem_fct3 , etc., The standard library algorithms take functions of no arguments
(that is not non-static members), unary functions (non-static member functions with no arguments), or
binary functions (non-static member function taking one argument). Where needed, binders for more argu-
ments are easily defined given the pattern ofMem_fct1 .

2.3 Return Types
I would prefer the definition ofMem_fct to be:

template<class S, class T> class Mem_fct {
S (T::*pmf)();

public:
explicit Mem_fct(S (T::*p)()) :pmf(p) {}
S operator()(T* p) { return (p->*pmf)(); }

};

template<class S, class T> Mem_fct<S,T> mem_fct(S (T::*f)())
{

return Mem_fct<T>(f);
}

That way, return values are handled in the obvious way. However, this definition does not handle avoid
member function under the current language rules.

If we accept my proposal #X3J16/96-0031,WG21/N0849, this example will handlevoid member
functions correctly. If not, we need to add a (partial) specialization:



- 4 -

template<class S, class T> class<void,T> Mem_fct {
void (T::*pmf)();

public:
explicit Mem_fct(void (T::*p)()) :pmf(p) {}
void operator()(T* p) { (p->*pmf)(); }

};

template<class S, class T> Mem_fct<void,T> mem_fct(void (T::*f)())
{

return Mem_fct<void,T>(f);
}

I would prefer to rely on #X3J16/96-0031,WG21/N0849, but the user interface ofmem_fct() is the same
in either case.

2.4 Binders
The adaptorptr_fun() (§20.3.7) allows functions to be used as predicates and to have their arguments
bound by the binders (§20.3.5). The class generated fromMem_fct as defined above can be called like a
function, but a pointer to it cannot be passed as an argument toptr_fun() . Deriving the versions of
Mem_fct from unary_function andbinary_function , respectively, solves this problem.

Mem_fct_ref is handled similarly. Note that the need to interact properly with binders is the real
reason why we need bothmem_fct() andmem_fct_ref() (§2.1).

3 Working Paper Additions

This proposal is a pure extension. The text is probably best added to §20.3.7
[lib.function.pointer.adaptors]:

template<class S, class T> class Mem_fct
: public unary_function<T*,S> {

public:
explicit Mem_fct(S (T::*p)());
S operator()(T* p);

};

Mem_fct calls the member function it was initialized with given an pointer or a reference
argument.

template<class S, class T, class A> class Mem_fct1
: public binary_function<T*,A,S> {

public:
explicit Mem_fct1(void (T::*p)(A));
S operator()(T* p, A x);

};

Mem_fct1 calls the member function it was initialized with given an pointer or a reference
argument and an additional argument of the appropriate type.

template<class S, class T> Mem_fct<S,T>
mem_fct(S (T::*f)());

template<class S, class T, class A>
Mem_fct1<S,T,A> mem_fct(S (T::*f)(A));

mem_fct(&X::f) returns an object through whichX::f can be called given a pointer to an
X followed by the argument required forf (if any) .



- 5 -

template<class S, class T> class Mem_fct_ref
: public unary_function<T,S> {

public:
explicit Mem_fct_ref(S (T::*p)());
S operator()(T* p);

};

Mem_fct_ref calls the member function it was initialized with given an pointer or a refer-
ence argument.

template<class S, class T, class A> class Mem_fct1_ref
: public binary_function<T,A,S> {

public:
explicit Mem_fct1_ref(void (T::*p)(A));
S operator()(T* p, A x);

};

Mem_fct1_ref calls the member function it was initialized with given an pointer or a refer-
ence argument and an additional argument of the appropriate type.

template<class S, class T> Mem_fct_ref<S,T>
mem_fct_ref(S (T::*f)());

template<class S, class T, class A>
Mem_fct1_ref<S,T,A> mem_fct_ref(S (T::*f)(A));

mem_fct_ref(&X::f) returns an object through whichX::f can be called given a refer-
ence to anX followed by the argument required forf (if any) .

4 Acknowledgements

Matt Austern, Andrew Koenig, and Alex Stepanov made constructive comments on this proposal.


