
X3J16/96-0023
WG21/N0841

Template Issues and Proposed Resolutions
Revision 14

John H. Spicer

Edison Design Group, Inc.

jhs@edg.com

September 26, 1995

Revision History

Version 1 (93-0039/N0246) { March 5, 1993: Distributed in Portland and in the post-Portland

mailing.

Version 2 (93-0074/N0281) { May 28, 1993: Distributed in pre-Munich mailing. Reects ten-

tative decisions made in Portland and additional issues added after the Portland meeting. In

Portland, the extensions working group reviewed most of the issues from 1.1 to 2.8 and also

reviewed 6.3.

Version 3 (93-0123/N0330) { September 28, 1993: Distributed in pre-San Jose mailing. Reects

decisions made in Munich. No new issues were added in this revision.

Version 4 (93-0183/N0330) { November 24, 1993: Distributed in post-San Jose mailing. Re-

ects decisions made in San Jose. Note that issues that have been closed as a result of formal

motions in San Jose will be omitted from subsequent versions of this paper. In San Jose the

extensions working group identi�ed a number of issues that required additional work. These

issues have not been addressed in this paper but will be addressed in the next revision.

Version 5 (94-0020/N0407) { January 25, 1994: Distributed in the Pre-San Diego mailing. The

41 closed issues have been removed, 20 have been added, and a few existing ones have been

updated.

Version 6 (94-0068/N0455) { March 25, 1994: Distributed in the Post-San Diego mailing. Re-

ects decisions made in San Diego. Note that issues that have been closed as a result of formal

motions in San Diego will be omitted from subsequent versions of this paper. In San Diego the

extensions working group identi�ed a number of issues that required additional work. These

issues have not been addressed in this paper but will be addressed in the next revision.

Version 7 (94-0096/N0483) { June 1, 1994: Distributed in the Pre-Waterloo mailing. The 24

issues closed in version 6 have been removed and 16 new issues have been added.

Version 8 (94-0125/N0512) { November 3, 1994: Distributed in Valley Forge and in the post-

Valley Forge mailing. Reects decisions made in Waterloo. This version contains only issues

closed in Waterloo. Version 9 will be distributed at the same time as version 8 and will contain

the open issues and new issues.

Version 9 (94-0200/N0587) { November 5, 1994: Distributed in Valley Forge and in the post-

Valley Forge mailing. Issues closed in version 8 have been removed and new issues have been

added.

Version 10 (94-0212/N0599) { November 25, 1994: Distributed in the post-Valley Forge mail-

ing. Reects decisions made in Valley Forge. Includes a number of new issues supplied by



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 2

Erwin Unruh.

Version 11 (95-0007/N0607) { January 31, 1995: Distributed in the pre-Austin mailing. In-

cludes a few new issues.

Version 12 (95-0101/N0701) { May 28, 1995: Distributed in the pre-Monterey mailing. Reects

decisions made in Austin. 9 issues have been closed, 12 new issues have been added.

Version 13 (95-0158/N0758) { July 20, 1995: Distributed in the post-Monterey mailing. Re-

ects decisions made in Monterey.

Version 14 (96-0023/N0841) { January 30, 1996: Distributed in the pre-Santa Cruz mailing.

Introduction

This document attempts to clarify a number of template issues that are currently either unde-

�ned or incompletely speci�ed. In general, this document addresses smaller issues.

Of the issues that are addressed, some are covered in far more detail than others. Some of

the resolutions represent solid proposals while others are more like trial balloons. The more

tentative proposals are so designated in the body of the document.

Even those resolutions that represent fairly solid proposals are only proposals. This doc-

ument is not intended as a formal proposal of any speci�c language changes. Rather, it is

intended as to be used as a framework for discussion of these issues. Hopefully this will ulti-

mately result in formal proposals for language changes.

Organization of the Document

The document is organized in sections. Each section consists of a list of questions. Each

question has an answer, a status, the version number of the �rst version of this document that

included the question, and the version number of the last change in the question. This allows

the reader to skip over questions that have not changed since the last time he or she read the

document.

Acknowledgements

I would like to thank Bjarne Stroustrup who contributed greatly by providing issues, reviewing

and improving upon proposed resolutions, and providing insights into other language changes

that may impact templates. Thank you to Erwin Unruh, who has contributed to many of

the issues, and who also contributed the \Erwin Unruh's Issues" section. Thank you to Mike

Karasick and Lee Nackman (and possibly others) from IBM who contributed issues concerning

name binding and member functions of partial specializations of class templates.

Summary of Issues

Because this is a rather long document this summary is provided to allow the reader to quickly

�nd issues in which he or she may be interested. Note that closed issues have been removed



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 3

from the body of the paper. Please refer to a previous version of the paper for additional

information on these issues.

Template Parameters

1.1 Can template parameters have default arguments? (closed in version 4)

1.2 Where can default arguments for template parameters be speci�ed? (closed in

version 4)

1.3 Can a type parameter be used in the type declaration of a nontype parameter?

(closed in version 4)

1.4 Can a nontype parameter as used above have a default argument? (closed in version

4)

1.5 Should it be possible to redeclare a template parameter name to mean something

else inside a template de�nition? (closed in version 4)

1.6 Can the name of a nontype parameter be omitted? (closed in version 4)

1.7 Can the name of a type parameter be omitted? (closed in version 4)

1.8 Can a typedef appear in a template declaration? (closed in version 4)

1.9 Can a nontype parameter have a reference type? (closed in version 4)

1.10 Are quali�ers allowed on nontype parameters? (closed in version 4)

1.11 May a template parameter have the same name as the class template with which it

is associated? (closed in version 4)

Class Template References

2.1 Can a nontype parameter that is not a reference be used as an lvalue or have its

address taken? (closed in version 4)

2.2 Can the class template name be used as a synonym for the current instantiation

inside a class template? (closed in version 4)

2.3 Can a class template have a template parameter as a base class? (closed in version

4)

2.4 Can a local type be used as a type argument of a class template? (closed in version

4)

2.5 Can a character string be a nontype argument? (closed in version 4)

2.6 Can any conversions be done on nontype actual arguments of class templates?

(closed in version 6)

2.7 What causes a template class to be instantiated? (closed in version 4)



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 4

2.8 How can a class template name be used within the de�nition of the template?

(closed in version 6)

2.9 The previous rule makes possible runaway recursive instantiations. How should an

implementation prevent this? (closed in version 5)

2.10 At what point are names injected? (closed in version 6)

2.11 Does an array parameter decay to a pointer type? (closed in version 6)

2.12 What can be used as an actual argument for a parameter that is a reference? (closed

in version 4)

2.13 Can template parameters be used in elaborated type speci�ers? (closed in version

4)

2.14 Can a class template or function template be declared as a friend of a class? (closed

in version 6)

2.15 Can template arguments be supplied in explicit destructor calls? (closed in version

4)

2.16 What happens if the same name is used for a template parameter of an out-of-class

de�nition of a member of a class template and a member of the class? (closed in

version 6)

2.17 What happens if the name of a template parameter of a class template is also the

name of a member of one of its base classes? (closed in version 6)

2.18 When must a type used within a template be completed? (closed in version 6)

2.19 Must a specialization declaration precede the use of a class template in a context

that requires only an incomplete type? (closed in version 6)

2.20 Proposal to defer error checking for operator ->. (closed in version 6)

2.21 When are names considered known in a template dependent base class? (closed in

version 6)

2.22 Proposed revision to rules for explicit instantiation of all class members. (closed in

version 8)

2.23 How does name injection interact with the semantics of friend declarations? (with-

drawn - last in version 10)

2.24 Class template partial specialization clari�cation. (closed in version 13)

2.25 May a nested class within a class template be de�ned outside of the template?

(closed in version 13)

2.26 Question: May a class nested within a template be declared as a template friend?

(closed in version 13)



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 5

2.27 May a friend function be de�ned in a template friend declaration? (closed in version

13)

2.28 Clari�cation of specialization rules for nested classes.

2.29 Can a non-autonomous nested class be specialized?

2.30 Can nested classes and member template classes be specialized?

Function Templates

3.1 Can function templates have default function parameters? (closed in version 4)

3.2 Can the parameters with default arguments involve template parameters in their

types? (closed in version 5)

3.3 Can a local type be used as a type argument of a template function? (closed in

version 4)

3.4 Can any conversions be done when matching arguments to function templates?

(closed in version 5)

3.5 The WP requires that every template parameter be used in an argument type of

a function template. What constitutes a \use" of a template parameter in an

argument type? (closed in version 4)

3.6 Can unnamed types be used as template arguments? (closed in version 4)

3.7 Can template parameters be used in quali�ed names in function template declara-

tions? (closed in version 12)

3.8 Can a noninline function template be instantiated when referenced? (closed in

version 4)

3.9 A proposal to allow conversions in function template calls. (closed in version 6)

3.10 What happens when the explicit speci�cation of function template arguments results

in an invalid type? (closed in version 6)

3.11 How do default arguments work when using new explicit specialization declarations?

(closed in version 6)

3.12 How do old style specialization declarations interact with new style ones? (closed

in version 6)

3.13 Revisiting default arguments. (closed in version 12)

3.14 What are the rules regarding use of the inline keyword in function template decla-

rations? (closed in version 10)

3.15 How may elaborated type speci�ers be used in function template declarations?

(closed in version 8)



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 6

3.16 Clari�cation of template parameter deduction rules. (closed in version 8)

3.17 How may an overloaded function name be used as a function template argument in

a context that requires parameter deduction? (closed in version 8)

3.18 Must a function template declaration be visible when an instance of the template is

called? (closed in version 8) item[3.19] What are the rules regarding the deduction

of template template parameters? (closed in version 8)

3.20 How are type/expression ambiguities resolved in explicitly quali�ed function tem-

plate calls? (closed in version 10)

3.21 May template functions with the same signature coexist with one another? May a

template function with a given signature coexist with a nontemplate function with

the same signature. (closed in version 12)

3.22 Proposed rules for selecting between overloaded function templates (closed in ver-

sion 12)

3.23 Binding of function and array types to template dependent reference parameters.

3.24 Clari�cation regarding nontype parameters deduced from array bounds. (closed in

version 13)

3.25 Can a type parameter be deduced from the type of a nontype parameter? (closed

in version 13)

3.26 What is the type of a constant deduced from an array bound? (closed in version

13)

3.27 Clari�cation of rules regarding expressions used as nontype arguments. (closed in

version 13)

3.28 Elaborated type speci�ers in function template declarations revisited.

3.29 Template argument deduction revisited.

Member Function Templates

4.1 Are inline member functions that are not used by a given class template instance

instantiated? (closed in version 4)

4.2 Can a noninline member function or a static data member be instantiated when

referenced? (closed in version 4)

4.3 Must the template parameter names in a member function de�nition match the

names used in the class de�nition? (closed in version 4)

4.4 What are the rules regarding use of the inline keyword in member function decla-

rations? (closed in version 6)

4.5 How are default arguments for parameters of member functions of class templates

handled? (closed in version 4)



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 7

4.6 Can a class template member function be redeclared outside of the class? (closed

in version 6)

4.7 Can a member function of a class specialization be instantiated from a member

function of the class template? (closed in version 8)

4.8 Can a template member function be declared in a specialization declaration? (closed

in version 8)

4.9 Can a member function de�ned in a class template de�nition be specialized? (closed

in version 8)

4.10 How are members of class templates declared and de�ned? (closed in version 13)

4.11 How are members functions of a partial specialization of a class template de�ned?

(closed in version 13)

Class Template Speci�c Declarations and De�nitions

5.1 Can you create a speci�c de�nition of a class template for which only a declaration

has been seen? (closed in version 4)

5.2 Can you declare an incompletely de�ned object type that is a speci�c de�nition of

a class template? (closed in version 4)

5.3 Can the class template name be used as a synonym for the current speci�c de�nition

inside the speci�c de�nition? (closed in version 4)

5.4 Can a speci�c de�nition of a class template be a local class? (closed in version 4)

Other Issues

6.1 Should classes used as template arguments have external linkage? (closed in version

4)

6.2 When must errors in template de�nitions be issued and when must they not be

issued? (closed in version 4)

6.3 What kinds of types may be used in a function template declaration while still being

able to deduce the template argument types? (closed in version 4)

6.4 Can a static data member of a class template be declared with an incomplete array

type? (closed in version 4)

6.5 How should template arguments that contain \>" be parsed? (closed in version 4)

6.6 Can template versions of operator new and operator delete be declared? (closed

in version 4)

6.7 How can a name that is unde�ned at the point of its use in a template declaration

be determined to be a type or nontype? (closed in version 4)



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 8

6.8 May template declarations be given a linkage speci�cation other than C++. (closed

in version 6)

6.9 Should there be a translation limit that speci�es a minimum depth of recursive

instantiation that must be supported? (closed in version 6)

6.10 Can a single template declaration declare more than one thing? (closed in version

6)

6.11 Can a storage class be speci�ed in a template parameter declaration? (closed in

version 6)

6.12 Can an incomplete type be used as a template argument? (closed in version 6)

6.13 Can a template nontype parameter have a void type? (closed in version 6)

6.14 Can a nontype parameter be a oating point type? (closed in version 6)

6.15 What kind of expressions may be used as nontype template arguments?

6.16 Can a template parameter be used in an explicit destructor call? (closed in version

6)

6.17 Can pointer to member types be used as nontype parameters? (closed in version 8)

6.18 Issues regarding declarations of specializations. (closed in version 12)

6.19 Clari�cation of explicit designation of a name as a type. (closed in version 8)

6.20 Template compilation model proposal. (withdrawn - last in version 7)

6.21 How is a dependent name known to be a template? (closed in version 12)

6.22 Interaction of templates and namespaces. (closed in version 10)

6.23 Floating point template parameters revisited. (closed in version 10)

6.24 May function types be used as template parameters? (closed in version 12)

6.25 WP clari�cation: overloaded functions as template arguments (closed in version 10)

6.26 WP clari�cation: access checking an template arguments (closed in version 10)

6.27 Name binding problems (closed in version 12)

6.28 Can a user-specialization be provided for an operator -> that cannot be instanti-

ated? (closed in version 13)

6.29 How are names from template dependent base classes to be used? (withdrawn, last

in version 12)

6.30 When is a template argument list required in a function declaration?

6.31 Is a template argument list permitted in a function template declaration?



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 9

6.32 Can compiler-generated functions be explicitly specialized or instantiated?

6.33 When is a nested-name-speci�er allowed in the declarator in an explicit instantia-

tion.

6.34 Can an explicit instantiation that refers to a class be used to instantiate all the

members of a nested class?

6.35 typename syntax problems.

6.36 Where is typename permitted?

6.37 Does typename a�ect name lookup?

6.38 Clari�cation of interaction of namespaces and specialization

6.39 Correction of default template argument description.

6.40 Clari�cation of access checkin in explicit instantiation directives.

6.41 Linkage consistency rules for specialization and guiding declarations.

Erwin Unruh's Issues

7.1 Type deduction for conversion operators (closed in version 12)

7.2 How does type deduction interact with overloading (closed in version 13)

7.3 How does type deduction interact with conversions

7.4 What is the point of instantiation really?

7.5 Short addition to 3.17 (closed in version 13)

7.6 Type deduction with several results (closed in version 13)

Nontype Parameters for Function Templates

A proposal for nontype parameters for function templates as required by the Bitset class.

(closed in version 4)

Class Template References

2.28 Clari�cation of specialization rules for nested classes.

Status: Open

The current wording in 7.1.5.3 [dcl.type.elab] does not permit an elaborated type speci�er

containing a quali�ed name to be the sole constituent of a declaration. Unless this is

changed, it will not be possible to name a nested class member of a template class in an

explicit instantiation.



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 10

template <class T> struct A {

struct B {};

};

template <> struct A<int>; // okay

template <> struct A<char>::B; // not allowed by 7.1.5.3

Answer: 7.1.5.3 should be changed to permit this usage.

Version added: 14

Version updated: 14

2.29 Question: Can a non-autonomous nested class be specialized?

Status: Open

It is possible for the de�nition of a nested class to also be used to declare members of

that class type. While it would still be possible to permit classes de�ned in such \non-

autonomous" declarations to be specialized, it seems like a bad idea. Moreover, most such

uses would require the nested class to be instantiated as part of the instantiation of the

enclosing class anyway.

Answer: It is proposed that only named nested class de�ned in \autonomous" declarations

be permitted to be specialized outside of the class. Unnamed classes, and classes de�ned

in \non-autonomous" declarations would be instantiated as part of the instantiation of the

enclosing class and so, could not be specialized later.

template <class T> struct A {

struct B {int i;} b; // instantiated as part of A<T>

union { int i; float f; }; // instantiated as part of A<T>

struct C { long l; }; // not instantiated as part of A<T>

// so can be specialized

};

Version added: 14

Version updated: 14

2.30 Question: Can nested classes and member template classes be specialized?

Status: Open

In Austin, we disallowed specialization of member classes and member template classes.

This was done because the rules that were then in e�ect concerning when nested classes

were instantiated made such specializations impossible. In Monterey, we changed the rules

making such specializations once again possible.

Answer: For consistency with other kinds of members, it is proposed that the ability to

specialize member classes and member class templates be restored.

Version added: 14

Version updated: 14



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 11

Function Templates

3.23 Binding of function and array types to template dependent reference parameters.

Status: Open

WP 14.10.2 [temp.deduct] says that array and function types do not decay when binding

to a parameter that is a reference. The problem with this is it permits array types to be

used in places where the template writer had not intended them to be used. For example,

the HP STL distribution includes a max template that is de�ned as:

template <class T>

inline const T& max(const T& a, const T& b) {

return a < b ? b : a;

}

This works well for most types, but fails for array types such as string literals.

int main()

{

char* x;

x = max("hello", "there"); // T is char[6]

x = max("hi", "there"); // fails because T is char[3]

// and char[6]

}

What is intended is that the resulting function parameter type for const T& is const

char*&. What happens with the current WP wording is that the resulting function pa-

rameter is const char (&)[6]. This causes a problem: the length of the two strings

must be identical for type deduction to succeed, and the return type will end up being a

reference to array of the same size.

Answer: The proposed solution is to revise the deduction rules to say that an array or

function type can only bind to a parameter that is declared with a reference to array or

function type, as in the example that appears below.

More speci�cally, assuming P is the parameter type and A is the argument type: If P is a

reference to an array type and A is an array type, or P is a reference to function type and

A is a function type, and if the values of the all of the template parameters referenced by P

can be deduced from A, then the original type of A is used for type deduction. Otherwise,

� if A is an array type, the result of the array to pointer decay is used in place of A for

type deduction; otherwise,

� if A is a function type, the result of the function to pointer decay is used in place of

A for type deduction.

template <class T, int I1, int I2>

T* f(T (&t1)[I1], T (&t2)[I2]);

int main()

{

char* x;

x = f("hello", "there");

}



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 12

This still permits binding of array types, but only in cases where that is explicitly indicated

by the template writer.

Note that this illustrates another clari�cation that needs to be made. Major array bounds

are part of the parameter type when the parameter is a reference. Consequently, nontype

template parameters may be deduced from a major array bound in such cases.

Version added: 12

Version updated: 12

3.28 Elaborated type speci�ers in function template declarations revisited.

Status: Open

In Waterloo, we decided that an elaborated type speci�er containing a template parameter

name could not be used in a function template declaration.

Now that we have the partial ordering rules for function templates, this issue should be

checked to see if it is still what we want.

With the partial ordering rules, we can now select one template over another based on

one being \more specialized" than another. It seems that these rules could be applied to

elaborated type speci�ers as well.

If this is permitted in the partial ordering of function templates, it should also be permitted

in the partial ordering used for class template partial specializations.

template <class T> class List {};

template <class T> void f(List<struct T> l){} // #1

template <class T> void f(List<union T> l){} // #2

template <class T> void f(List<enum T> l){} // #3

template <class T> void f(List<T> l){} // #3

union U {};

struct S {};

class C {};

enum E {};

int main()

{

List<U> u;

List<S> s;

List<C> c;

List<E> e;

List<int> i;

f(u); // calls #2

f(s); // calls #1

f(c); // calls #1

f(e); // calls #3

f(i); // calls #4

}



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 13

Answer: Open.

Version added: 14

Version updated: 14

3.29 Template argument deduction revisited.

Status: Open

In Tokyo a number of template argument deduction cases were discussed. As a result, I

was asked to reopen the issue of template argument deduction so that the following cases

could be be reexamined:

template <template <class T1> struct X, class T2> void f(X<T2>); // #1

template <class T> void f(A<T>::B); // #2

template <class T> void f(T::B); // #3

1. It was pointed out that it is not currently possible to deduce a template template

parameter from an actual argument whose type is a template instance, that this kind

of deduction can readily be done, and that doing so provides signi�cant functionality.

For example, it permits writing of a function that operates on any of a number of

di�erent containers. For example,

template <class T struct List {};

template <class T struct Vector {};

template <template <class T1> struct Container, class Type>

void print(Container<Type>);

2. The second case is whether a template argument can be deduced from the parent

class of a nested class or nested enumeration. This case is important to maintain the

general rule that a nontemplate class can be converted to a template class. Without

this deduction, nested classes within templates are severely limited. Furthermore,

without this rule member template classes are even more limited. The following

example illustrates the kind of usage that is common for normal nested classes that

cannot currently be done with nested classes and member templates of class templates.

template <class T> struct A {

class B {};

template <class T> class C {};

};

template <class T> A<T>::B operator+(A<T>::B, A<T>::B);

template <class T1> template <class T2>

A<T1>::B<T2> operator+(A<T1>::B<T2>, A<T2>::B<T2>);

A member typedef is just a synonym for another type and so, of course, there is no

way that the class containing the typedef can be deduced from an actual argument

whose type was speci�ed using the typedef.

3. The third case is a generalization of the second. This has been separated out because

it was pointed out that some of the original objections to this issue when it was

previously raised were primarily based on this more general form, which actually

provides very little additional functionality over the more restricted version in #2.



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 14

Version added: 14

Version updated: 14

Other Issues

6.30 Question: When is a template argument list required in a function declaration?

Status: Open

When the requirement that specializations be declared before use was added, a new spe-

cialization syntax was added for use in explicit specializations and explicit instantiations.

The new syntax was:

void f<>(int); // explicit specialization

template f<>(int); // explicit instantiation

In this syntax, the <> was needed to distinguish a specialization from a normal function

declaration. Recently, the explicit specialization syntax was changed to

template <> void f(int); // explicit specialization

which no longer requires the <> in the declarator.

Answer: A template argument list is permitted, but not required, in an explicit special-

ization and an explicit instantiation.

Version added: 14

Version updated: 14

6.31 Question: Is a template argument list permitted in a function template declaration?

Status: Open

template <class T> void f(T); // normal declaration

template <class T> void f<T>(T); // is this permitted?

Answer: No.

Version added: 14

Version updated: 14

6.32 Question: Can compiler-generated functions be explicitly specialized or instantiated?

Status: Open

Answer: No. Only user-declared functions can be explicitly specialized or instantiated.

Version added: 14

Version updated: 14

6.33 Question: When is a nested-name-speci�er allowed in the declarator in an explicit instan-

tiation.

Status: Open



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 15

namespace N {

template <class T> class A {

void f();

};

template <class T> void f(T){}

template A<int>::f(); // okay

template N::A<int>::f(); // not allowed

template N::f(int); // not allowed

}

template N::A<int>::f(); // okay

template N::f(int); // okay

Answer: A nested-name-speci�er is allowed in the declarator in a explicit instantiation

directive for a class member or a namespace member outside of its namespace. These are

the same rules as when a nested-name-speci�er is allowed in a normal function declaration.

Version added: 14

Version updated: 14

6.34 Question: Can an explicit instantiation that refers to a class be used to instantiate all the

members of a nested class?

Status: Open

In the following example, it it possible to use an explicit instantiation directive to instanti-

ate all the members of A<int>::B, or must the class referred to in an explicit instantiation

refer to a \top level" template entity like A<int>?

template <class T> struct A {

class B {

void f();

};

};

template <class T> void A<T>::B::f(){}

template class A<int>::B;

Answer: Yes, an explicit instantiation directive may name a nested class within a template

class.

Version added: 14

Version updated: 14

6.35 typename syntax problems.

Status: Open

There are a few problems with the current typename syntax.

First, there is no way to use typename in a using-declaration.

template <class T> struct A : public T {

typename T::X x; // Declares a member "x" of type T::X



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 16

using T::X; // Introduces X as a nontype

using typename T::X; // Not permitted by the syntax

};

Second, because typename can also be used as an alternative to class in a template

parameter list, we have a new ambiguity between a template type parameter declaration

and a template nontype parameter declaration:

template <class T, typename T::X x> struct B {};

Note that the presence of the parameter name following T::X cannot be used to disam-

biguate, because unnamed parameters are permitted.

Option 1: Both of these problems can be solved, using a suggestion made by Sean Cor�eld,

that typename be changed to work the way that template does when used for disambigua-

tion. The �rst example above would then be rewritten as:

template <class T> struct A : public T {

using T::typename X;

};

The second example would no longer be ambiguous.

Option 2: If option 1 is too extreme at this point in the process, an alternate solution

would be:

� Modify the syntax to allow typename in using-declarations.

� Distinguish the two uses of typename in a template parameter list by seeing whether

the name that follows typename is quali�ed or not. When typename is used to specify

that a name is a type, it must be followed by a quali�ed name. A type parameter

declaration cannot use a quali�ed name.

Option 3: A third alternative, which eliminates the need to disambiguate template param-

eter declarations would be:

� Modify the syntax to allow typename in using-declarations (same as option 2).

� Disallow typename as a synonym for class in a template parameter declaration.

Version added: 14

Version updated: 14

6.36 Question: Where is typename permitted?

Status: Open

The WP places constraints on where the typename speci�er can be used, as shown in the

following text from the WP:

14.2 Name Resolution

...

2 In a template, any use of a quali�ed-name where the quali�er depends on a template-

parameter can be pre�xed by the keyword typename to indicate that the quali�ed-name

denotes a type.

3 ... The quali�ed-name shall include a quali�er containing a template parameter or

a template class name.



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 17

The di�erence in wording between the two paragraph leads to questions such as whether

the quali�er must truly depend on a template parameter or whether any template class

name (including ones that refer to user specializations) is permitted.

I think the wording should be relaxed to allow typename to be used before any quali�ed

name. To illustrate why, consider the following example:

template <class T> struct A {

struct B {};

};

struct AA {

struct B {};

};

template <class T> struct C {

typedef A<T> my_a;

typename my_a::B b;

};

This is already questionable, because it is not clear whether my_a meets the requirement of

paragraph #2 that the quali�er depend on the template parameter. Likewise, paragraph

#3 requires that the quali�ed-name contain a template parameter or template class name.

At the very least, these paragraphs would need to be changed to refer to the type speci�ed

by the quali�er and not the quali�er itself.

But what if class C is changed to the following?

template <class T> struct C {

typedef AA my_a;

typename my_a::B b;

};

It should be possible to write code using the typedef my_a without knowing whether or

not it refers to a template parameter dependent class. You would, of course, need to use

typename if my_a might refer to a template dependent class. But requiring it only when

my_a refers to a template dependent class seems unnecessary.

I'm assuming that typename would still only be permitted in template contexts. This could

be relaxed further by permitting typename to be used anywhere (i.e, even in nontemplate

classes and functions).

Answer: typename may be used before any quali�ed name within the scope of a template

declaration.

Version added: 14

Version updated: 14

6.37 Question: Does typename a�ect name lookup?

Status: Open

I ran into some code that used typename that expected it to restrict the lookup to only

include types. That is, in the following example, they expect the lookup of T::X to �nd

the struct and not the int.



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 18

struct A {

struct X {};

int X;

};

template <class T> class B {

typename T::X ta1; // allowed?

};

B<A> b;

Answer: No. typename is used to permit syntax analysis of template de�nitions, and acts

as an assertion that during an actual instantiation the named entity must be a type. It

does not a�ect the way that names are looked up, however.

Version added: 14

Version updated: 14

6.38 Question: Clari�cation of interaction of namespaces and specialization

Status: Open

If a template is declared in a namespace, but its specializations also be declared in the

namespace before being de�ned outside of the namespace? What about guiding declara-

tions?

namespace N {

template <class T> void f(T);

}

template <> void N::f(int); // okay

void N::f(char); // error - must be declared in namespace

Answer: A specialization may be declared or de�ned either in the namespace in which the

template is declared, or in an enclosing namespace (i.e., wherever a de�nition of a template

declared in a namespace is allowed). A guiding declaration may only appear within the

namespace in which the template is declared, because it actually adds a declaration to the

namespace.

Version added: 14

Version updated: 14

6.39 Correction of default template argument description.

Status: Open

The WP currently says (14.7 [temp.param]): The set of default template-arguments shall

be provided by the �rst declaration of the template in that unit.

This is incorrect. It appears that a previous issue from this list was incorporated into the

WP incorrectly.

The correct rules are (from issues 1.1 and 1.2 of this paper):

1. Default template arguments are permitted on class template declarations and de�ni-

tion.



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 19

2. The defaults need not be speci�ed on the initial declaration.

3. After merging the default arguments from multiple declarations, the last parameter

with a default argument may not be followed by a parameter without a default.

4. Default template arguments are not allowed on function template declarations, or

declarations of members of class templates.

The rule about providing defaults on the initial declaration of a template actually applies

to function parameter default arguments not template parameter default arguments. The

rule, from issue 3.13 is: Default function arguments may only be speci�ed in the initial

declaration of a template function. This means that default arguments for member func-

tions of class templates must be speci�ed in the class de�nition and not on de�nition of

members that appear outside of the class de�nition.

Version added: 14

Version updated: 14

6.40 Clari�cation of access checkin in explicit instantiation directives.

This issue and its resolution are from Bill Gibbons' reector posting c++std-ext-3258.

Status: Open

Bill Gibbons raised the issue that it is not possible to explicitly instantiate templates

where the template arguments or other components of the explicit instantiation directive

reference types that are not accessible.

namespace N {

template <class T> void f(T);

}

namespace M {

class A {

class B {};

void f() {

B b;

N::f(b);

}

};

}

template void N::f(M::A::B); // should be allowed

Answer: The following is the wording suggested by Bill Gibbons to correct this problem,

to be added at the end of 14.4 [temp.explicit]. I have modi�ed Bill's suggested wording

somewhat. My additions are shown in italics.

The usual access checking rules do not apply to explicit instantiations. In particular,

the template arguments, and names used in the function declarator (e.g., including

parameter types, return types, and exception speci�cations) may be private types or

objects which would normally not be accessible and the template may be a member

template or member function which would not normally be accessible.



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 20

Version added: 14

Version updated: 14

6.41 Linkage consistency rules for specialization and guiding declarations.

Status: Open

Answer: I propose that the linkage of specializations and guiding declarations must match

the linkage of the associated template.

template <class T> void f(T);

extern "C" {

template <> void f(int); // not allowed

}

extern "C" void f(double); // not allowed

Version added: 14

Version updated: 14

Erwin Unruh's Issues

Many thanks to Erwin Unruh who provided the following issues in �nished Latex form! These

issues were added to this document in version 10.

7.3 How does type deduction interact with conversions (ext-2320, Erwin Unruh)

Status: Open

At the moment I see the following problems, where templates enter the discussion of

conversions.

1. Conversion from pointer to derived to pointer to base:

Both the derived and the base class could be template classes. At this point there

should be no big problem. Both classes must be complete to allow such a conversion.

The base class must be instantiated for the derived class to be de�ned. The derived

class must be instantiated whenever a pointer to it is subject to a conversion. (see

point 2.7)

2. Conversion of pointers to member

When solving the conversion of template arguments we left out member pointer. So

pointer to member conversions cannot interfere with template type deduction. So

source and target of such a conversion are �xed and it can be checked whether the

types are completely de�ned.

Proposal: When a pointer to a member of a template class may be the target of a

conversion, that class will be instantiated.

3. Constructor templates

This does have a very neat solution after the proposal for the section 13 is accepted

(94-0080). Here the overload resolution goes back to itself whenever a user de�ned

conversion comes into play. So the conversions itself are described using overload

resolution. In this context it is relatively easy to incorporate constructor templates

into that scheme.



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 21

4. Conversion templates

The usage of conversion templates is discussed in Point 7.1. There is however an

additional problem in the declaration matching. Consider the following example:

class A {

operator int();

};

class B : public A {

template <class T> operator T ();

};

class C : public B {

operator char ();

};

The question is whether the template hides the conversion in the base class and

whether a declaration in the derived class may hide (an instance of) the template.

The problem arises since the return type of the conversion operator is considered its

name.

Proposal: The template conversion does hide only the conversions which have an

exact match. A program is ill-formed, if a conversion template is potentially hiding

(or being hidden by) a conversion for which the type deduction can not be done.

To elaborate that rule: If there is a potential hiding between a template and a normal

conversion, try type deduction. If that results in a match, �ne. If the result is that

there is de�nitely no match (int vs. T*), �ne. Otherwise, there is a problem!

Hiding between two template conversions should be discussed when the topic of partial

specialization is resolved. Is it allowed to have two template conversions in the same

class ?

Version added: 10

Version updated: 10

7.4 What is the point of instantiation really? (ext-2547, Erwin Unruh)

Status: Tentatively approved in Monterey.

Answer: The point of instantiation is the point of use, except that local scopes are not

considered for name lookup and name injection.

Discussion: The present rules for the template name binding have a uncomfortable bit.

Consider the following example:

template<class T> void f(T t)

{

g(t);

}

void h()

{

extern void g(char);

f('a'); // error

}



96-0023/N0841 - Template Issues and Proposed Resolutions - Revision 14 22

// \#1

void g(int i)

{

f(i); // error ??

}

With the present rules both instantiations fail. The �rst f<char> should fail, since no g is

in (global) scope at the point of instantiation and the local one is ignored (with very good

reason).

The second however is not so clear cut. The WP says the point of instantiation is #1 and

there is no g in scope. On the other hand one could argue that the function g is known at

the call as it is not local.

This topic is currently (Nov. 1994) still under discussion and should be reviewed in a later

version. It also interacts with the problem of name injection.

Version added: 10

Version updated: 10

Editorial Issues

8.1 The beginning of clause 14 does not su�ciently describe the kind of template declarations

that are permitted. For example, the term \template member" is not de�ned, and could

be construed to include data members, typedefs, etc.

8.2 Nontype conversions (from issue 2.6) are not described in the WP.


