
X3J16/96-0017
WG21/N0835

Conversion Functions

in Overload Resolution

J. Stephen Adamczyk (jsa@edg.com)

Edison Design Group, Inc.

January 26, 1996

Introduction

This document proposes a small change regarding the treatment of conversion functions in

overload resolution. The change makes some cases work the way programmers expect them to,

and brings the Working Paper closer to existing practice.

The status quo

Consider the following example:

struct B {

operator int();

};

struct D : public B {

operator long();

};

main () {

D d;

int i = d; // ??

}

In the line marked with question marks, A::operator int and D::operator long compete

in overload resolution as ways of converting d to type int.

In the current working paper description, the this parameter of A::operator int requires

a derived-to-base standard conversion, whereas the this parameter of D::operator long has

an exact match with the argument/object d. Therefore, D::operator long is chosen. The

comparison of the result types of the conversion functions with the int type being initialized

would happen later in the overload resolution process, but we never get that far. The better

match on the argument conversions ends the process right there.

Why a change is needed

This selection of the operator long function is surprising to programmers. Examples like this

have come up on the core reector several times, with general cries of \this can't be right!"

Furthermore, it's not at all the existing practice. I tried the above test case on the C++ compilers

we have at EDG, and found that EDG's front end, cfront 3.0.2, g++ 2.6.3, Sun 3.0.1, Borland



Conversion Functions in Overload Resolution (X3J16/96-0017, WG21/N0835) 2

4.5, Watcom 10.0, and Microsoft Visual C++ 1.51 all select the operator int. (Microsoft Visual

C++ 4.0 selects the operator long, but perhaps it was changed to match the Working Paper.

Sorry, guys.)

I don't believe the behavior mandated by the WP was chosen deliberately. In fact, I remember

noting that this particular behavior di�ered from what EDG had implemented and from what

cfront did, but I guessed there might be other compilers that did it the other way. And, as Jerry

Schwarz has pointed out many times, we didn't care what the precise behavior is in boundary

cases, so long as it is speci�ed. It turns out, however, that there is consensus both on how this

should work and on how existing compilers implement it. And that consensus doesn't match

the WP.

The suggested change

As it happens, in the years since that decision was made, a similar issue came up as part of

namespaces, and the discussion of that problem led to a resolution that, in my opinion, should

be adopted in this case as well. Speci�cally, 7.3.3 [namespace.udecl] contains the following

paragraph:

For the purpose of overload resolution, the functions which are introduced by a

using-declaration into a derived class will be treated as though they were members

of the derived class. In particular, the implicit this parameter shall be treated as

if it were a pointer to the derived class rather than to the base class. This has no

e�ect on the type of the function, and in all other respects the function remains a

member of the base class.

The proposal is that the same thing be made true of conversion functions, i.e., from the point of

view of the this parameter in overload resolution, they would be considered to be members of

the class of the object being converted. Therefore there would be no derived-to-base standard

conversion in the above example, and the functions would both proceed to the next step, where

A::operator int would be selected because the conversion from its return type to int is better

than the conversion from the return type of D::operator long.

Note that this change would not mean that the this parameter would always be an exact

match in the general case: cv-quali�cation di�erences would still be signi�cant in choosing one

conversion function over another.

Working Paper changes

In 13.3.1 [over.match.funcs], paragraph 4, add after the \example" sentence:

For conversion functions, the function is considered to be a member of the class

of the implicit object argument for the purpose of de�ning the type of the implicit

object parameter. For non-conversion functions introduced by a using-declaration

into a derived class, the function is considered to be a member of the derived class

for the purpose of de�ning the type of the implicit object parameter.


