Doc. no.: X3J16/ 95- 0201R4
WG21/ NOSO1R4

Dat e: 30 January 1996
Proj ect: Programm ng Language C++
Reply to: Beman Dawes

beman@awes. wi n. net

Clause 17 (Library Introduction) |Issues List - Version 4

Hi story:
Initial: Distributed at the start of the Tokyo neeting.
Version 2: Distributed during the Tokyo neeti ng.
Version 3: Distributed in the post-Tokyo nailing. Reflects votes
taken in Tokyo and issues added by the LWG sub-group.
Version 4: Distributed in the pre-Santa Cruz mailing.
o mmm e e e e e e e oo >
Work Group: Li brary C ause 17
I ssue Number: 17-001
Title: Header Inclusion Policy
Secti on: 17.3.4.1 [lib.res.on. headers]
St at us: Open

Descri ption:

The header inclusion policy of allow ng any C++ header to include any other
C++ header results in portability problens with otherw se portable C++

prograns.

The header inclusion policy of specifying exactly which C++ headers include
whi ch other C++ headers is difficult to specify correctly (due to the C++
library’s complex dependency graph) and difficult to implement.

The WP currently (January 1996 troff) states:

Certain types and macros are defined in more than one header. For such
an entity, a second or subsequent header that also defines it may be
included after the header that provides its initial definition
(_basic.def.odr_).

Header inclusion is limited as follows:

--The C headers (.h form, described in Annex D, _ depr.c.headers_)
shall include only their corresponding C++ header, as described above

(_lib.headers_).

--The C++ headers listed in Table 21, C++ Library Headers, shall
include the header(s) listed in their respective Synopsis subclause (
[list of clauses]).23)

23) C++ headers must include a C++ header that contains any needed
definition (_basic.def.odr_).

An editorial box contains:

The header dependencies documented in this draft probably still contain
errors. Worse, implementers may be overly constrained if they must
restrict header inclusion only to the overt dependencies documented
here. The Committee is actively exploring rules for header inclusion

that are kinder to both users and implementers.

Resolution:

Requestor: Beman Dawes
Owner: Andrew Koenig

95-0201

NO0801

Paper s

T L TSIy >
Wor k Group: Li brary d ause 17

I ssue Number: 17-002

Title: Ext endi ng nanespace std

Secti on: 17.3.3.1 [lib. reserved. nanes]

St at us: Closed in Tokyo by accepting the proposed resol ution.
Descri pti on:

The WP currently says (in 17.3.3.1 [lib.reserved. nanes]):
A C++ program shall not extend the nanespace std.
Public comment:

>A C++ program nmust be allowed to extend the nanespace std if only
>to specialize class nuneric_limts.

Pre- neeting neeti ng conment :

>Needs editorial work in 17.3.3.1 to clarify under what conditions
>(if any) specializations of things already in a namespace are
>permtted. Also, this section does not address tenplates --
>what is allowed, etc. Need to address these cases:

>addi ng overl oads; addi ng specializations.

The O ause 17 sub-LWG in Monterey felt that addi ng overl oads was
al ready covered by 17.3.4.4, but that specializations needed to be
| ooked into and that the issue could turn out to be nore that
editorial.
Resol uti on:
Add the underlined wording to 17.3.3.1 [|lib.reserved. nanes]):

A C++ program shall not extend the nanespace std unl ess ot herw se
speci fi ed.

Add wording to 18.2.1 Nuneric_limts [lib.limts]:

A program nay extend the namespace std by supplying tenplate
speci alizations for nuneric_limts.

Request or : Publ i ¢ Comment 95-0136/ N0736 T21-103 page 102

Omner :

Emai | s:

Papers:

S N e R e >
Work Group: Li brary d ause 17

I ssue Number: 17-003

Title: Vi ol ati on of Requires preconditions

Secti on: 17.3.3 [lib.constraints]

St at us: Closed in Tokyo by accepting the proposed resol ution.
Descri ption:

The effect of a programviolating a library "Requires" paragraph are
currently unspecified.

Resol uti on:

Add the followi ng wording (presumably in a new section nunbered
17.3.3.8) as part of 17.3.3 [lib.constraints]:

95-0201 2 NO0801

Violation of preconditions specified in a function’s "Requires"”
paragraph [lib.structure.specifications] results in undefined
behavi or unless the function's "Throws" paragraph specifies
throwi ng a excepti on when the precondition is violated.

Request or: Beman Dawes

Omner :

Emai | s: Li b- 3841, 3851.

Paper s:
ST NS >
Work Group: Li brary d ause 17

I ssue Number: 17-004

Title: Shoul d nanespace std be subdi vi ded?

Secti on: 17.3.1.1 Library contents [|lib.contents]
St at us: Open

Descri pti on:

The original proposal (93-0136/N0343) addi ng nanespaces to the standard
library specified that each header woul d be in a separate namespace with the
same name as the header and nested w thin nanespace std.

These |ibrary sub-nanespaces were later renmoved. It was felt that they added
conplexity without real benefits, and that rmuch the sane effect could be
obt ai ned by users via specific namespace-decl arati ons.

Since that time the library has grown nore conpl ex. Several conmittee nmenbers
feel that reintroducing sub-nanespaces would result in a cleaner design for
the library.

One case has been di scovered where nanespace-decl arati ons cannot achi eve the
same effect as sub-namespaces:

using std::operator+; // currently brings in all operator+'s
/I allowed if each header is in its own namespace within std:

using std::string::operator+; // basic_string +

using std::numeric::operator+; // valarray +

Resolution:

Modify the WP (17.3.1.1 Library contents [lib.contents]) by adding a sentence
after the sentence which reads:

All library entities shall be defined within the namespace std.
The added sentence shall read:

Within namespace std, all library entities shall be defined within a
namespace with the same name as the header the entity is defined in.

Requestor: Randy Smith

Owner:

Emails: lib-4346, 4348, 4355, 4357, 4359, 4361, 4363, 4365, 4367
Papers:

< >

Work Group: Library Clause 17
Issue Number: 17-005

Title: What does “extending namespace std” mean?
Section: 17.3.3.1 [lib.reserved.names]

Status: Open

Description:

95-0201 3 NO0801

The WP (as nodified in Tokyo) says (in 17.3.3.1 [lib.reserved. nanes]):

A C++ program shall not extend the nanespace std unl ess otherw se
speci fi ed.

What does “extend” mean in 17.3.3.1?
Nathan Myers discusses the issues in message c++std-lib-4366:

In Tokyo we discussed the issue of what entities could be
added by users to the "std" namespace. This is a little bit
misleading, because users are not allowed to add names, or
overload existing names, and we should be clear about that.

The issue is really about templates can be specialized in the
std namespace. This is necessary in some cases because the
user of the specialization cannot be expected to know that

the type is specialized. In other cases it would be a
substantial convenience.

Here are a few | (or others) have identified:

In Clause 25, all the algorithms must occasionally be specialized
for certain data structures (or rather, their iterators).
In Clause 18, the numeric_limits template must routinely be
specialized for user types. Each of the containers in clauses
21 and 23 must be specialized for certain user allocators.
Some of the iterator adaptors (e.g. insert) in Clause 24 must
be (partial-) specialized for certain data structures. The
traits template in Clause 27 must be specialized if users are
to benefit by the default traits parameter on stream templates.

This list has got quite long, and my confidence in our ability

to generate an exhaustive and correct list flags. | would like

to propose instead that specializations of any standard template
on any *user-defined type* are permitted. Then it becomes the
responsibility of the definer of that type to ensure that any
specializations implement the semantics described in the standard.

Resolution:
Modify 17.3.3.1 [lib.reserved.names] to read:

A C++ program shall not add declarations or definitions to namespace
std unless otherwise specified. A program may add template
specializations for any standard library template to namespace std.
Such a specialization (complete or partial) of a standard library
template results in undefined behavior unless the declaration depends
on a user-defined name of external linkage and unless the
specialization meets the standard library requirements for the original
template.

Add a footnote after 17.3.3.1 [lib.reserved.names] to read:
Any library code that instantiates other library templates must be
prepared to work adequately with any user-supplied specialization that
meets the minimum requirements of the Standard.

Remove the wording 18.2.1 Numeric_limits [lib.limits] specifying that a
program may extend namespace std with a numeric_limits specialization.

Requestor: John Spicer, Nathan Myers

Owner:

Emails:
lib-4366, 4368, 4370, 4371, 4373, 4375, 4376, 4377, 4380, 4381, 4385,
4394, 4398, 4400

Papers:

95-0201 4 NO0801

Wor k Group: Li brary d ause 17

I ssue Number: 17-006

Title: Action when program extends nanespace std
Secti on: 17.3.3.1 [lib. reserved. nanes]

St at us: Open

Descri pti on:

The WP (as nodified in Tokyo) says (in 17.3.3.1 [lib.reserved. nanes]):

A C++ program shall not extend the nanespace std unl ess otherw se
speci fi ed.

What happens when a program ext ends nanmespace std?

Resol uti on:

Option 1

Take no action.

Violation of “shall not” results in the program being ill-formed and
thus requires the processor “issue at least one diagnostic error
message.” See 1.7 [intro.compliance].

Option 2

Change 17.3.3.1 [lib.reserved.names] to read “It is undefined behavior
for a C++ program to extend . . .”

It may be difficult for some implementations to diagnose illegal

extension of namespace std. Making such extension undefined behavior
gives implementations freedom to diagnose but does not require a
diagnostic.

Requestor: John Spicer
Owner:
Emails:
Papers:

< >

Work Group: Library Clause 17

Issue Number: 17-007

Title: Which C++ headers have .h forms?
Section: 17.3.1.2 [lib.headers]

Status: Open

Description:

How should .h forms be specified for C++ headers?

Many existing C++ programs will be broken by the standard unless .h
forms of headers are included for traditional C++ headers such as
iostream.h.

The list of "C++ headers" that came with cfront 3.0 (and cfront 2.0
as it happens) was:

common.h complex.h fstream.h iomanip.h iostream.h
new.h stdiostream.h stream.h strstream.h task.h vector.h

Of these, the following still exist (as non .h headers) in the
current (Sep 95) WP:

fstream, iomanip, iostream, new, vector

95-0201 5 NO0801

The contents of <vector> is now conpletely different fromthat of
cfront’s <vector.h> and shoul d be di scounted, but it is reasonable
to assunme that existing code that uses the other .h headers from
this list would want themto continue to exist and do approxi mately
t he sane things.

Resol uti on:
Change list of C++ .h headers in the WP to include:
fstreamh
i omani p. h
i ostreamh
new. h

of the Sept 95 WP, the rel evant paragraph is in D. 4

(As
[depr.c. headers], but there is a request pending to nmove it to 17.3.1.2
[li

b. headers] .)

Request or: St eve Runsby

Onner : St eve Runsby

Emai | s:

Paper s:

e m e mm—m—— - -
Work Group: Li brary d ause 17

I ssue Number: 17-008

Title: Rel ati onal operator tenplates

Sect i on: 20.2.1 [lib. operators]

St at us: Open

Not e: Treated as a Cl ause 17 issue due to wi de inpact.
Descri ption:

The STL provides a set of tenplates defining the equality and
inequality operators in ternms of other operators in the set. The

intention is that people defining their own classes to be used with the

STL have to provide only sonme of the necessary operators, and the
others will be "nmgically" provided. Currently, it is practically

i npossible to avoid having these operator tenplates apply to user
written classes, even when they are not appropriate.

There are two obvious solutions to the problem One is to renove the
tenpl ate operators altogether. The other is to put themin a namespace
of their own. | believe that for this to work, no standard nanespace
shoul d "use" this new nanmespace, or the operators will once again |eak
out, but | need to think further about this. The " Koenig | ookup rule"
and the transitive | ookup rules we’ve added recently seemto nmake it
harder to keep these operators under control, but |I’mnot sure.

Resol uti on:

Request or: United Ki ngdom

Owner : St eve Rumsby

Emai | s:

Paper s: 95-0170 = NO770 UK Comments | ssue #135

Qm o e m o o e e o e o ee—— oo >

Work G oup: Li brary C ause 17

| ssue Nunber: 17-009

Title: Separate Library from Core Language i n Docunent

Secti on:

95-0201 6 NO801

St at us: Open
Descri pti on:

The structure of the proposed reference manual shall be revised. W
think that:

B The core | anguage shall be separated fromthe libraries. The
core language is what is handl ed by the conpiler.

B lLanguage support libraries should stay in the core |anguage.

B Oher libraries shall be in required (non-optional) normative
annexes.

Resol uti on:
Take no acti on.

The current separation of the library into several clauses provides
coherent organi zation. Moving sone material to normative annexes woul d
confuse the presentation. The docunent is intended to be an ANSI/I SO
Standard conforming to IEC/1SO Directives - Part 3, Drafting and
presentation. It is not intended to be a reference manual .

Request or: France

Omner :

Emai | s:

Paper s: 95/ 0199 = NO799 I|ssue R3

Work Group: Li brary d ause 17

I ssue Number: 17-010

Title: Too Many Cl asses and Features in Standard Library
Secti on:

St at us: Open

Descri pti on:

The standard library contains far too many cl asses and features. It is
clear that C++ (like C) needs a standard library. The reason for this
is that the | anguage itself has no nethod for comunication with the
system (1/O date/tine and other system dependencies). A standard
library for these system dependent features is necessary to allow
portable code to be witten. The C standard was focused upon these

i ssues, however the proposed C++ standard library introduces many

cl asses and features (in particular standard data structures and

al gorithms) that do not add to the portability of the | anguage.

This is not to say that it would not be nice to have standard
definitions for these features, but it should not be part of the C++

| anguage standard. Adding these features to the CV++ standard
conplicates both the inplenentation (e.g. for enbedded systens) and the
| earning of the | anguage. Furthernore, it is not clear at the nonent
whet her the features included in the library are really what is needed.
In fact, if one considers the currently available comrercial libraries
as an indication. There is much nore need for a standard |library for
handling GUI's. This is understandable, since GUI interfaces are

generally system dependent and a standard library for that would

greatly improve portability. This cannot be said about e.g. a list

data structure. A telling sign about the need for features of the

current library is that currently it is not supported by any of the

major C++ development environments.

Resolution:

Take no action.

95-0201 7 NO0801

The choi ce of classes and functions for the standard |library invol ves
conpl ex tradeoffs between a desire to keep the library small and
tractable, the need to provide a base set of functionality facilitating
comuni cation between third-party libraries, and nmany other factors.

The current library provides a set of classes and functions which has
evol ved over five years of detailed discussions, and the committee is
satisfied that an acceptabl e bal ance has been struck between the
conpeti ng needs.

Request or : Net her | ands

Owner :

Emai | s:

Papers: 95/0199 = NO799 Issue R19
I ST S >
Work G oup: Li brary d ause 17

| ssue Nunber: 17-011

Title: Li brary Defined in Terns of Tenpl ates

Secti on:

St at us: Open

Descri pti on:

NNl objects to the fact that the conplete library has been defined in
terms of tenplates. This makes it nmore difficult to use the library
wi t hout a conplete and in-depth know edge of the |anguage. A grow path
fromCto C+t+ is also not facilitated by the use of tenplates in the
library. Furthernore, it nmakes it inpossible to inplement the library
on ol der systens (where tenplates mght not be supported yet) and on
snmal ler (e.g. enbedded) systens (where tenplates are not inplemented to
save space)

Resol uti on:
Take no action.

Tenpl ates are heavily used in the standard |ibrary because they solve
probl ems of internationalization and generic progranm ng which were
otherwi se intractable. The pros and cons of tenpl ate-based approaches
were debated at great length and for several years during the

devel opnent of the library, and the comittee is satisfied that the

i ssues have been fully aired and carefully considered.

Request or : Net her | ands

Oaner :

Emai | s:

Paper s: 95/0199 = NO799 Issue R20

Qo o o m o o e e o e e e e e e o e e e o e mmmmmee—— oo >

Work G oup: Li brary C ause 17

I ssue Nunber: 17-012

Title: Decoupl e Libraries

Secti on: 17

St at us: Open

Descri pti on:
The general structure of the libraries shall be revised. In
particular, it is necessary to decouple libraries. In the current

proposal, there are unacceptable cross and forward references between
libraries (and sections). The order of introduction of libraries is
not adequat e.

Resol uti on:

95-0201 8 NO0801

Make no specific changes in the WP as a result of this issue.

Work on certain other open issues, such as 17-001 (Header |nclusion

Policy), will have the effect of both better specifying and reducing
coupling between libraries. Certain other recent comittee actions,
such as the “decouple class exception” resolution passed in Austin

(NO665R1 = 95-065R1), also reduced coupling between libraries.

Requestor: France

Owner:

Emails:

Papers: 95/0199 = NO799 Issue R4

< >

Work Group: Library Clause 17

Issue Number: 17-013

Title: How will users access non-ISO C symbols using C++ headers?
Section: 17.3.1.2, Etc.

Status: Open

Description:

It seems that the intent of the draft 26-September-1995 Standard is to require
C++ Standard library vendors to provide two sets of the 18 headers containing

C Standard library facilities (as defined by ISO C and Amendment 1). One set
named <cname> is provided to give C++ Standard library users access to ISO C
features in the namespace std. This includes exactly 54 standard macros, 45
standard values, 19 standard types, 2 structures, and 208 standard functions
(17.3.1.1). The C++ <cname> headers do contain some differences from ISO C
but these are detailed in the draft. In line with this footnote 139 to section
17.3.4.2 (Restrictions on macro definitions) states that a global function can

not be declared by the implementation as taking additional default arguments.
The other set, named <name.h> is provided for compatibility only and is
deprecated C++ functionality (D.4). The draft states that C++ provided

<name.h> headers should only include their corresponding C++ < cname> header
followed by an explicit using-declaration for each name placed in the Standard
library namespace by the header (17.3.4.1, D.4).

This scheme raises the issue of how C++ users access non-ISO C symbols through
the C++ header files. Non-ISO C symbols include symbols placed in these
headers by the various ISO POSIX standards, X/Open CAE Specification, Issue 4,
Version 2, as well as vendor specific extensions. In addition it adds

confusion by supporting two sets of ISO C headers (one set provided by C++ as
per D.4 and one set provided by the C language).

There are many examples of commonly used ISO C extensions in the 18 C++
Standard library headers provided for C library compatibility which would not
be available to C++ users (even in the global namespace) if < chame> and
<name.h> C++ headers do not allow extensions. Use of the Standard C library
localtime(), ctime(), strftime() and mktime() functions whose prototypes will
exist in the C++ supplied <ctime> and <time.h> headers offer one example.
Often the tzset() function (defined by the ISO POSIX standards as well as the
X/Open CAE Specification, Issue 4, Version 2) is used in conjunction with the
time routines to set and access timezone conversion information. Since
tzset() is not defined by 1SO C, it would not be provided by the C++ Standard
library. A C++ user including < ctime> and/or a C++ version of <time.h> would
not have access to the prototype for tzset().

Similarly consider the confusion which arises in the following example of a

C++ program which includes a C library header say newlibc.h which includes
time.h in order to make visible the POSIX symbol CLK_TCK. If the C++ Standard
library headers of the form <name.h> do not provide access to ISO C
extensions then what will be visible to the C++ program including newlibc.h?

Will newlibc.h include the C++ Standard library version of time.h which only
includes <ctime> which does not define CLK_TCK? Or will it include the

existing C library header which contains the symbol?

95-0201 9 NO0801

Resol uti on:

A set of changes to Sections 17.3 (Library-w de requirenents) and subcl ause
D.4 (Standard C library headers) of the draft 26-Septenber-1995 C++ Standard
are proposed to clarify the use of non-1SO C extensions in the C++ headers
for Clibrary facilities. The proposed changes foll ow

1. Section 17.3.1.2 (Headers) paragraph 4 states:
Except as noted in Clauses 18 through 27, the contents of each

header cnane shall be the sane as that of the correspondi ng header
nane. h, as specified in 1SOC (O ause 7) or Anendnent 1, (C ause 7),

as appropriate. In this C++ Standard library, however, the declarations
and definitions are within namespace scope (3.3.5) of the nanespace
std.

Pr oposed Wor di ng:

Except as noted in Clauses 18 through 27, the contents of each

header cnane shall be the sane as that of the correspondi ng header

nane. h, as specified in 1SO C (Cause 7) or Arendnent 1, (C ause 7),

as appropriate. In this C++ Standard |library, however, the declarations
and definitions from1SO C (Cl ause 7) or Arendnent 1 (Clause 7) are
wi t hi n namespace scope (3.3.5) of the nanmespace std.

Rat i onal e:

Thi s change acknow edges the existence of non-1SO C synbols in

the 18 C++ Standard library headers for Clibrary facilities. It
specifies that SO C declarations and definitions are provided within
nanespace scope of the namespace std. Non-1SO C synbols nay be

provi ded but not within the nanespace scope of the namespace std.

2. Section 17.3.4.1 (Headers) paragraph 2 line 1 states:

-- The C headers (.h form described in Annex D, D.4) shall include
only their correspondi ng C++ header, as described above (17.3.1.2)

Proposed Wor di ng:

Strike this section as it is already covered in section D.4 which
i s di scussed bel ow

Rat i onal e:

Keep the discussion of the C++ Standard |ibrary <name.h> headers
in one place.

3. Section 17.3.4.2 (Restrictions on macro definitions) Footnote 139 states:

A gl obal function cannot be declared by the inplenentation as
taki ng additional default argunments. Also, the use of masking
macros for function signatures declared in C headers is

di sal | owed, notwi thstanding the latitude granted in subcl ause
7.1.7 of the C Standard. The use of a masking macro can often
be replaced by defining the function signature as inline.

Proposed Wor di ng:

A gl obal function in the std nanespace cannot be decl ared by the

i npl enentati on as taking additional default arguments. Also, the use
of masking macros for function signatures declared in C headers is
disallowed in the std nanmespace, notw thstanding the |atitude granted
in subclause 7.1.7 of the C Standard. The use of a masking macro can
often be replaced by defining the function signature as inline

Rat i onal e:

95-0201 10 NO0801

Thi s change acknow edges the exi stence of non-1SO C synbols in

the 18 C++ Standard library headers for Clibrary facilities. It
specifies that 1SO C declarations and definitions are provided within
nanespace scope of the namespace std. Non-1SO C synbols may be

provi ded but not within the namespace scope of the nanespace std.

4. Section D.4 (Standard C library headers) paragraph 2 states:

Each C header, whose nane has the form nanme.h includes its

correspondi ng C++ header cnane, followed by an explicit using-declaration
(7.3.3) for each name placed in the standard |ibrary nanespace by

the header (17.3.1.2).

Proposed Wordi ng:

Each C header, whose nane has the form nane. h behaves as if

each nane placed in the Standard |ibrary namespace by the correspondi ng
cnane header is also placed within the namespace scope of the
nanespace std and is followed by an explicit using-declaration (7.3.3).

Rat i onal e:

This wordi ng specifies the intent of the <nane.h> headers wi t hout
specifying the inplenentation. 1t allows C++ Standard library vendors
to supply the <nane. h> headers listed in D.4 in the way that is

nost appropriate to their users.

Request or: Sandra Wit man, DEC

Oaner :

Emai | s: Li b-4348

Paper s:

Qo o e f o o e e o e me e eee—oa >
Work G oup: Li brary C ause 17

I ssue Nunber: 17-014

Title: Requi rements on conpare functions
Secti on: Vari ous

St at us: Open

Descri ption:

In the reflector message listed below, “some problems with the
requirements on comparison objects” are discussed and solutions
provided, including suggested working paper wording.

The suggested changes apply to several library clauses including 20,
23, and 25. The purpose of this issue 17-014 is simply to insure that
all of the issued raised get dealt with as appropriate.

Resolution:

Requestor: Dave Musser

Owner:

Emails:
lib-4386 Requirements on compare functions
lib-4387 Complete list of changes related to compare functions
lib-4402 Re: Complete list of changes related to compare functions
lib-4403 Re: Requirements on compare functions

Papers:

< >
Work Group: Library Clause 17

Issue Number: 17-015
Title: Restrictions on macro definitions clarification

95-0201 11 NO0801

Secti on: 17.3.4.2
St at us: Open
Descri pti on:

In section 17.3.4.2 (Restrictions on nmacro definitions) footnote 139
states that the use of masking macros for function signatures
declared in C headers is disallowed. | would like sonme clarification
about what a masking macro is. An exanple of such a macro in the
footnote woul d hel p explain its use.

Resol uti on:

Editorial. Forward to Editor for clarification.
Request or : Judy Ward
Omer :

Emai | s:
Paper s:

95-0201 12 NO0801

