
X3J16/94-0143
WG21/N0530

const as a Tie-breaker in Overload Resolution

J. Stephen Adamczyk

Edison Design Group, Inc.

jsa@edg.com

July 27, 1994

Introduction

At the Waterloo meeting, Tom Plum's core working group, and later the full committee, briey

discussed the role of const et al. as \tie-breakers" in overload resolution. It became clear a

short time into the full-committee discussion that there was no consensus on the issue and that

additional exposition and discussion were required. The issue was pulled back into the working

group for further study. This paper is a summary of the issue to assist such study.

The ARM text

The concept of a tie-breaker in overload resolution is introduced in ARM 13.2:

Note that functions with arguments of type T, const T, volatile T, T&,

const T&, and volatile T& accept exactly the same set of values. Where nec-

essary, const and volatile are used as tie-breakers as described in rule [1] below.

A few lines later, we �nd rule [1]:

Exact match: Sequences of zero or more trivial conversions are better than

all other sequences. Of these, those that do not convert T* to const T*, T* to

volatile T*, T& to const T&, or T& to volatile T& are better than those that

do.

For example:

struct A {};

void f(A*);

void f(const A*);

main ()

{

A a;

f(&a); // Calls f(A*)

}

The function f(A*) is called in preference to f(const A*) because the conversion of the argu-

ment for the latter involves one of the tie-breaker conversions.

const as a Tie-breaker in Overload Resolution (X3J16/94-0143, WG21/N0530) 2

A couple of points to note:

� Even though this paper's title refers to const as a tie-breaker, that's just to have a punchy

name for the issue. Clearly volatile is also a tie-breaker.

� The conversions of interest are ones that add a type quali�er under a pointer or reference.

A conversion from \pointer to int" to \pointer to const int", for example, is a tie-

breaker, but one from \pointer to int" to \const pointer to int" is not, nor is one from

\int" to \const int".

What does \tie-breaker" mean?

The problem with the ARM wording is that it doesn't make it clear how the tie-breaker cases

a�ect the process of selecting a \best" function in overload resolution. There are two common

interpretations:

1. A match on a particular argument involving a tie-breaker conversion is worse than an oth-

erwise equally-ranked match that does not involve such a conversion (\early tie-breaker").

2. If two function calls are equal on all arguments, ignoring any tie-breakers, the presence

of one of these tie-breaker conversions 1 can be used to pick one function match over the

other (\late tie-breaker").

An example to illustrate the di�erence:

struct A {};

void f(const A*, short);

void f(A*, int);

main ()

{

A a;

f(&a, (short)1); // ?

}

The overload resolution analysis gives:

&a (short)1

f(const A*, short) exact (*) exact

f(A*, int) exact promotion

where the conversion marked with \(*)" is a tie-breaker. Under the \early tie-breaker" rule,

the second function is the best match on the �rst argument, and the �rst function is the best

match on the second argument, so the call is ambiguous. Under the \late tie-breaker" rule,

the two functions are equally good when tie-breakers are ignored, so the tie-breaker is used to

select the second function as the best one.

1If there are tie-breakers on several arguments, they must be consistent; otherwise, the two function calls

remain equally ranked.

const as a Tie-breaker in Overload Resolution (X3J16/94-0143, WG21/N0530) 3

Existing practice

Unfortunately, existing practice varies. cfront, Microsoft Visual C++, Symantec, g++, EDG,

and the IBM OS/2 compiler seem to implement the late tie-breaker. Borland, Sun, Lucid,

and Taligent seem to implement the early tie-breaker. (I'm doing those from memory for the

compilers I don't have access to, so forgive me if I don't have it quite right; the point is that

existing practice shows no consensus.)

The argument for each approach

Arguments for an early tie-breaker:

� It's the simplest rule to describe and teach.

� It makes the bizarre cases where this matters ambiguous, which is probably a favor to

the programmer.

� With the recent rewrite of Clause 13, it's the status quo in the Working Paper.

Arguments for a late tie-breaker:

� It's what cfront implements, and there are known to be large libraries out there that

would be \broken" by a change to an early tie-breaker. (There may also be libraries

that would be broken by a change in the other direction; I can comment only on the bug

reports I've seen.)

� According to Bjarne Stroustrup, it's what he intended when he wrote the ARM.

� Programmers are likely to think of the di�erence between const and non-const versions

of a member function as related to applicability rather than as a \cost." That is, the

programmer thinks \okay, if I want to be able to handle const objects, I need a const

version of the member function. If I need to do di�erent things for const and non-const

objects, I need two versions of the member function. But what about if I can do the

same thing in both cases, and I don't need to modify the object? I just need a const

version, right?" The problem with that reasoning when an early tie-breaker is used by

the compiler is that any call of that member function with a non-const object has a

slight additional cost, which can cause ambiguities. Consider

struct B {

B(int);

};

struct A {

void f(int) const;

void f(B);

};

main () {

A a;

a.f(1); // ?

}

const as a Tie-breaker in Overload Resolution (X3J16/94-0143, WG21/N0530) 4

The overload resolution analysis gives:

a 1

f(int) const exact (*) exact

f(B) exact user-de�ned conv

With an early tie-breaker, this example is ambiguous. The programmer may be surprised

that the \obviously" cheaper f(int) const is not chosen.

Aspects that aren't contentious

Several aspects that might not be entirely clear in the ARM wording nevertheless seem not to

be contentious:

� The rules for pointers and references are the same:

struct A {};

void f(const A&, short);

void f(A&, int);

main ()

{

A a;

f(a, (short)1); // Same as simple pointer case

}

This is true in spite of the fact that tie-breaker conversions to reference types must now

be described as reference initializations that add type quali�ers (that's just a di�erence

in description).

� Whatever rule applies to pointer and reference arguments also applies when binding the

object on which a member function is called:

struct A {

void f(short) const;

void f(int);

};

main ()

{

A a;

a.f((short)1); // Same as simple pointer case

}

const as a Tie-breaker in Overload Resolution (X3J16/94-0143, WG21/N0530) 5

� Whatever rule applies for exact matches also applies for other kinds of matches:

struct A {};

struct B : public A {};

void f(const A*, short);

void f(A*, int);

main ()

{

B b;

f(&b, (short)1); // Same as simple pointer case

}

(In this case, the conversion on the �rst argument is a standard conversion, with addition

of a const for one of the functions.)

� The tie-breaker conversions should actually include all conversions (or reference bind-

ings) that add type quali�ers, not just the ones listed in the ARM text. For example,

const int* to const volatile int* should be a tie-breaker conversion. Likewise, con-

versions that add type quali�ers at levels other than the �rst for multi-level pointers (using

the recent extension in that area) should also be considered tie-breaker conversions (e.g.,

int ** to const int *const *).

� The conversions that add type quali�ers under pointers-to-members (e.g., int A::* to

const A::*) should also be considered tie-breakers.

Summary

I think both the early and late tie-breaker approaches have merit; we should just pick one and

be done with it.

I also recommend that we a�rm the resolutions on the \non-contentious" issues and incorporate

those into the WP, assuming there is in fact consensus on them.

