
ANSI Doc No: X3J16/93-0143
ISO Doc No: WG21/N0350

Date: September 27, 1993
Project: Prog. Language C++

Reply To: Dag Br�uck
dag@dynasim.se

Extension proposal: Boolean data type

Dag Br�uck1 and Andrew Koenig2

1. Introduction

The idea of a Boolean datatype in C++ is a religious issue. Some people,
particularly those coming from Pascal or Algol, consider it absurd that C
should lack such a type, let alone C++. Others, particularly those coming
from C, consider it absurd that anyone would bother to add such a type to
C++.

Why bother indeed? The main reason is that people who like such types
often write header �les that contain things like this:

typedef int bool;

class Mine {

// ...

};

bool operator==(const Mine &, const Mine &);

Such a header �le is just �ne until someone else's header �le says

typedef char bool;

If both header �les used int, there would be no problem, but trying to de�ne
bool as two di�erent types just won't work.

Several widely used C++ libraries, including X11 and InterViews, de�ne
a Boolean datatype. The di�erences in the de�nitions of the Boolean datatype
create very real compatibility problems when mixing libraries from multiple
sources.

In principle, this problem could be solved by agreeing on a single type
de�nition of bool as part of the standard library, just as NULL is part of

1 Author's address: Dynasim AB, Research Park Ideon, S-223 70 Lund, SWEDEN.

E-mail: dag@dynasim.se

2 Author's address: AT&T Bell Laboratories, 600 Mountain Avenue, Room 6D-416B,

PO Box 636, Murray Hill, NJ 07974-0636, USA. E-mail: ark@research.att.com

1

X3J16/93-0143 WG21/N0350

the standard C library. However, that approach has several signi�cant disad-
vantages when compared with the proposal that follows. In particular, any
proposal that makes the Boolean type a synonym for any other built-in type
gives up the possibility of overloading on that type.

On the surface, it is hard to believe that any compromise is possible
between those extremes. After all, a language either has a Boolean type or it
does not. However, closer examination suggests that a middle ground might
be possible: a Boolean type whose existence the programmer has the option
to ignore.

This proposal shows how such a type can work. It is the result of dis-
cussions with a number of people, both in person and via electronic mail. Of
course, any mistakes or misjudgments in this proposal are ours alone.

2. Executive summary

We propose the creation of a new built-in type called bool, with the following
properties:

� bool is a unique signed integral type, just as the wchar_t is a unique
unsigned type.

� There are two built-in constants of this type: true and false.

� Operator ++ is de�ned for bool; it always sets its operand to true. This
operator is an anachronism, and its use is deprecated.

� A bool value may be converted to int by promotion, taking true to one
and false to zero.

� A numeric or pointer value is automatically converted to bool when
needed. This is an anachronism, and its use is deprecated.

� When converting a numeric or pointer value to bool, a zero value becomes
false; a non-zero value becomes true.

� The built-in operators &&, ||, and ! are changed to take bool values as
their arguments and return bool results.

� The relational operators <, >, <=, >=, ==, and != are changed to yield a
bool result.

� Expressions used as conditions in if, for, while, or do statements or as
the �rst operand of a ?: expression, are automatically converted to bool.

We believe this extension is upward compatible except for the new keywords
bool, true, and false.

3. Rationale and examples

Current practice

A quick investigation of one computer system reveals that Boolean datatypes
are quite common in widely used libraries. In the /usr/include area on one
of our machines (bellman.control.lth.se), the de�nitions of Boolean in
Table 1 can be found. Various libraries also de�ne true and false, see Table 2.
The header �les that do not rely on a de�nition of Boolean seem to be part of
the Sun operating system.

2

X3J16/93-0143 WG21/N0350

curses.h #de�ne bool char
X11 #de�ne Bool int
gcc/X11 Multiple de�nitions of Boolean, depends on

machine type etc.
netap/appletalk.h typedef int boolean;
rpc/types.h #de�ne bool t int
rpc/*.h Many uses of bool t
nfs/nfs.h Uses bool t
tfs/tfs.h Uses bool t
sunwindow/rect.h #de�ne bool unsigned
sunwindow/sun.h typedef enum fFalse = 0, True = 1g Bool;
sunwindow/*.h Uses bool
suntool/*.h Uses bool, at least as comment
InterViews typedef unsigned boolean;
NEWMAT matrices bool de�ned as class or char, depends on compiler
C++Views boolean de�ned with typedef
sys/types.h (Solaris) typedef'd as enumeration

Table 1. Current de�nitions of boolean.

curses.h #de�ne TRUE 1
#de�ne FALSE 0

X11/Intrinsic.h (same)
gcc/X11/Intrinsic.h (same)
netat/appletalk.h (same)
pixrect/gtvar.h (same)
sbusdev/audiovar.h (same)
suntool/*.h (2 places) (same)
sunwindow/ (2 places) (same)
scsi/adapters/espvar.h (same)
X11 (2 places) #de�ne True 1

#de�ne False 0
rpc/types.h #de�ne FALSE (0)

#de�ne TRUE (1)
sundev/dfreg.h #de�ne TRUE 1 (but not FALSE!)
sunwindow/sun.h typedef enum fFalse = 0, True = 1g Bool;
InterViews static const unsigned true = 1;

static const unsigned false = 0;
Rogue Wave Matrix (same as curses.h)
C++Views (same as curses.h)
sys/types.h (Solaris) B FALSE and B TRUE enumerators

Table 2. Current de�nitions of true and false.

We have also found the following de�nition of Boolean in sys/types.h
under Solaris 2.2:

typedef enum boolean {B_FALSE, B_TRUE} boolean_t;

with a reference to POSIX. It is however unclear if this de�nition is part of
POSIX or a Sun extension.

Our conclusion is that the boolean datatype is a fact of life whether it
is part of the C++ standard or not. However, there is currently a substantial
variation in the de�nitions, as shown by the tables. These variations create

3

X3J16/93-0143 WG21/N0350

several compatibility problems:

� Di�erent names (e.g., bool, Bool, boolean, bool t) are used to identify
one conceptual type.

� The Boolean datatype may be rede�ned, which in the case of typedefs is
a fatal compilation error.

� Di�erent de�nitions may not be type compatible, for example, Boolean
de�ned as an int and as an enumeration. Overloading on Boolean types
is particularly sensitive.

� Di�erent amounts of storage may be allocated for Boolean types.

C has a less strict type system than C++, so these variations are less of a
problem in C than in C++. Because C++ does not allow implicit conversion
from int to enumeration, current de�nitions of Boolean that use an enumer-
ation cannot be used without a large number of explicit typecasts. In the case
of Solaris 2.2, this is particularly worrying because a de�nition in sys/types.h
is likely to frequently used.

Built-in vs. user-de�ned type

Adding a new type is essential for overloading. For example:

void f(int);

void f(bool);

main() { f(3 < 4); }

In order for this example to work, bool must be a built-in or enumeration
type; there is simply no way around it.

On the other hand, allowing the standard promotion from bool to int is
essential for backward compatibility:

void f(int);

void f(double);

main() { f(3 < 4); }

would change meaning otherwise. The point of the standard promotion is to
permit any bool expression to act precisely like an int expression in the
absence of explicitly declared bool objects.

The Boolean datatype cannot be de�ned as an ordinary class type because
of the rule that says that at most one user-de�ned conversion is automatically
applied:

class X {

public:

X(int);

};

void f(X);

main()

{

f(3 < 4);

}

For f(3<4) to work, the conversion from bool to int must not be a user-
de�ned conversion.

4

X3J16/93-0143 WG21/N0350

Conversion from int to bool

For similar reasons, conversion from numeric or pointer types to bool must
be allowed. We do not expect people to stop using int values to hold ags,
which means that things like

int done = 0;

while (!done) {

// ...

if (/* ... */)

++done;

// ...

}

must remain legal. In this example, the expression !done causes done to be
converted to bool before negation, with exactly the same semantics as always.

Another common idiom, which we probably must keep in the name of
programmer compatibility, is the following:

int* p;

if (p)

*p = 42;

While some people might wish to receive warnings about this, many others
would not.

Why should bool be a signed integral type when the only values are false
(zero) and true (one)? The answer is that otherwise it would have to be pro-
moted to unsigned int, which would probably break code:

void f(int);

void f(unsigned int);

f(3 < 4); // must call f(int)

Boolean as magic enumeration

We also considered de�ning Boolean as a magic built-in enumeration de�ned
in global scope. This approach is quite attractive at �rst sight, for example,
it has the advantage that the new reserved words can be re-de�ned in a local
scope (we are not certain this really is an advantage, though).

We have abandoned this approach, mainly because of the unclear rela-
tionship to the underlying type of this magic enumeration. As an ordinary
enumeration the underlying type would be unsigned, but as explained above,
the promoted type really must be int.

Operations de�ned on bool

Expressions like b1+b2 must produce an int because it would otherwise cause
a C incompatibility in

int n = (x < y) + (y < z);

// n is the number of true conditions

Operators &, | and ^ could yield a bool result if and only if both operands
are bool, but ~ is a problem: in C, ~(3>4) is �1 so we think we have to keep
it that way. That suggests that maybe it's easier to leave &, | and ^ as pure
bitwise operators on integers.

Realistically, people who say ++ today on a Boolean value treat ++a

as (a=true). The real trouble is --a, which won't do the same thing as

5

X3J16/93-0143 WG21/N0350

(a=false). Our vote: ++a means (a=true) but is an anachronism; --a is
ill-formed.

Other concerns

Another issue we have to think about is functions in the standard C library
that conceptually return a Boolean value. The problem is bigger if any stan-
dard function takes a pointer to an int which should be bool. We cannot think
of things that behave like pointer to Boolean; however, things like isupper()
have to start returning bool.

There is no doubt that the keyword bool will step on many programs
that say things like

typedef int bool;

We do not consider this a major drawback. Programs that are actually using
bool to represent a Boolean type will almost surely continue to work after the
o�ending typedef declaration is simply removed. Programs that use bool to
represent some other type deserve to be taken out and shot.

Here is another, slightly contrived, example of code that will break under
this proposal.

template <class T>

T& example(T) { static T x; return x; }

main() { int& x = example(3 < 4); }

We believe that code of this kind is rare, and a weak argument against the
proposal.

We prefer bool to boolean because C++ generally prefers short type
names (int) to longer ones (integer). We prefer boolean to bool because that
is what we really call it, and that is used in many other languages: Ada,
Pascal, Modula-2. We prefer either of these to Bool or Boolean because all
other built-in type names are entirely in lower case.

4. Representation

This proposal implicitly makes it di�cult to pack Boolean arrays by storing
each value in a separate bit because it allows each element of such an array
to have its own address. This follows from the usual equivalence between a+i

and &a[i]. The proposal could have been formulated di�erently, but doing so
would surely break programs that de�ne their own bool type and use arrays
of objects of that type.

Note however that bit�elds of type bool are allowed because bool is an
integral type.

5. Conclusions

This proposal is simple and conservative: so much so that some will wonder
why it's worthwhile. There are two main reasons: allowing overloading on
Boolean expressions and forestalling clashes between libraries that de�ne their
own Boolean types.

6

