
 X3J16 / 93-0137 09/24/93
WG21 / N0344 John Bruns

 NationsBanc-CRT

Expressions of Class Type

A previous paper by Tom Plum and Scott Turner (N0293 / 93-0086) discussed the
lvalue-ness of
temporaries. The original paper noted a number of consequences of deciding that these
expressions
are lvalues, const lvalues, or non-lvalues (assuming the C model). The only real decision
made was that
they were not completely lvalues. The result was a vote by the committee that these constucts
were not
"lvalues" but in some sense refered to objects. (N0306 / 93-0099).

Since then much discussion has been seen on the core reflector. It is evident that there are two
schools
of thougth. Some want such objects to be first class objects in all sense of the word, and
behave much
more like lvalues. I will refer to this school of thought as like lvalues or LLV. Others want these
objects
to behave much more like C built in types and be totally value oriented. This school I will refer
to as the
abstract data types, or ADT. I took some info from the net and some in conversations from
Kent Budge,
but this is a synthesis of how I think the ADT camp wants things. Furthermore, I will
shamelessly steal
from the original paper in format and analysis and call such constructor or function expressions
CI expr.

class C {

public: C();

int i;

const int c;

void mf();

};

extern C f(); // returns C

class Derived : public C {}; // derived from C

class S {

public: int i;

C c; // member of type C

};

extern S sf();

1. Result of function-call/explicit-conversion is not a an lvalue.

&f() // error both

&C() // error both

AGREED This is the essence of the decision that these object are not lvalues.

2. Non-lvalueness preserved when selecting a member.

&(sf().i) // error both

AGREED Neither camp wants this behavior

3. Non-const member function may be called.

f().mf() // error ADT, OK LLV

C().mf() // error ADT, OK LLV

DIFFER Here we have a disagreement. LLV sees these as real object, ADT as rvalues only. Both ADT
and LLV support binding these values to constant member functions.

4. Initialization by [CI expr] does not use copy constructor.

C c1 = C(); // Both - interpret as C c1();

C c2 = f(); // copy constructor must be accessible , can be optimized away

return C(); // default constructor used.

{ C c; return c; } // copy constructor must be accessible, can be optimized away

AGREED Here we both agree, but there is some area of controversy that compared to how things work
now that I will go into later.

5. Initialization of reference converts [CI expr] to referenced type.

const C &cref = Derived();

AGREED // both refer to the C in temporary of type Derived().

6. Overloading

f() // ADT value of type const C, LLV - value of type C

C() // ditto.

DIFFER In the ADT case these expresion could be bound to a const C & argument or used directly (copy
constructor optimized away) by a argument of type C. It would not overload to an argument
of type C &.
For LLV these would bind to C&, const C &, directly but would require a copy to supply a
argument of
type C.

7. Binding to a non-const reference allowed.

C &cref = f(); // error ADT, OK LLV.

C &cref = C(); // error ADT, OK LLV.

C &cref = Derived(); // error ADT, OK LLV entire Derived

DIFFER Again the difference is again the LLV wants these items to bind to non-const references and
ADT wants only constant references.

The State of the Art
How do current compilers handle the current constructs. I do not have an exhaustive set, I
tested these
constructs on Borland 3.1, Cfront 2.1, Cfront 3.0 and GNU 2.2 (NeXTStep release, I know
the current
GNU compiler does better, but not what it does).

Case #3 All bind to mf() without any problems or warnings.

Case #6 All overloaded to a type C (ie choses C& not const C&) but all but GNU complained that it
was an anachronism. Cfront 3.1

Case #7 All allowed the construct, all but GNU complained about it.

The conclusion I reach is that the support leans to the LLV school of thought. In particular,
that is the
way most compilers work today. However, there a twist. Although all compilers allow the
return value
of a function to be cv-quailfied, Cfront gives some meaning to this. In particular, const and
non-const
value are used to select overloaded member functions.

Extending overloading of class values
using cv-qualified returns

class C {

public:

C();

int i;

void mf();

void mf() const;

void mf2();

void mf3() const;

};

extern C f(); // returns C

extern const C g(); // returns a const C

Consider items 3,6, and 7 in this context.

3. Member function may be called.

f().mf() // OK calls non-const function (current behavior - all)

g().mf() // OK calls to const function (Cfront behavior)

f().mf2() // OK (current behavior)

g().mf2() // ERROR non-const member function T::mf2() called for const object

Now g() behaves like ADT wants it to, and f() behaves like LLV wants it to

6. Overloading

f() // would match equivalent to "C &" type (currently does but

// with error message)

g() // would match "const C &" type only

Once again g() would behave like ADT wants, and f() behaves like LLV wants.

7. Binding to a reference allowed.

C &cref = f(); // OK f() is a non-const value

const C &cref = f(); // OK

C &cref = g(); // ERROR g() is const

const C &cref = g(); // OK

Same as 6.

Proposed Solution
Adopt the strategy described in the above examples

First, declare that CV qualifiers on return types are meaningful. The CV qualifier takes effect
after the
value has been created (from the functions return expression). This is similar to the effect of
CV
qualifiers for function arguments. They affect the value after it has been copied or
constructed.

Fix overloading for member functions. Define the bahavior to work similar to how Cfront does
now.
That is: A temporary of class type const T binds only to const member functions. A
termporary of type T
binds to either const or non-const member functions but prefers non-const.

For function argument overloading, use the same selection mechanism. Non-qualified
returns of class
type would prefer binding to non const references. Const qualified returns would only bind to
const
references. Note that matching for value type arguments are dependent only on the
constructors
accessible (see section below).

The effect of these changes are that the objects returned by functions returning class objects
and
constructor expressions, are in all ways lvalues except fot the explicit taking of address (built
in &).
Examples have shown this is already the case, since any function that binds to a class type
object can
take an address.

Note on compiler generated temporaries.

class T { ... };

class S { ... S(const T &); };

T f();

g(T &);

h(S &):

g(f()); // ok

h(f()); // error compiler generated temp is always const

h(S(f())); // ok

The solution proposed above would allow the g(f()) call without any diagnostics, since the
value returned
is non-const. In the case of h(f()), the compiler (as opposed to the programmer) inserted
the temporary.
This is almost always an error and should be given a error message. The explict convresion is
legal.

THE BEAUTY of this proposal is how it simplifies the overloading system.

C f();

const C g();

C & fr();

const C & gr();

In all cases, f() and fr() would overload to the same function, g() and gr() would likewise
overload to the
same function. This would happen for member selection and for other argument selection.
This should
be easy to teach and understand.

This solution also breaks NO code. Only people who declared the return types for their functions to be
const , are not using Cfront, and are binding these to non-const functions. It seems they will
get a
belated warning.

Const (value only) Classes

Another solution suggested is to delcare all non-lvalue objects as inherently const and apply
the above
rules. Unfortunately, this has two negatives, it would break lots of existing code. Dag Bruck
has
mentioned that that is the case at his site. It is also the case at mine.

And second it loses information. Consider the following code, mentioned explicitly by Keith
Gorlen’s,
Sanford Orlow"s and Perry Plexico’s book "Data Abstraction and Object_Oriend Programming
in C++" on
page 68:

SubString String::operator() (unsigned pos, unsigned lgt);

const SubString String::operator() (unsigned pos, unsigned lgt) const;

The idea here is that the constness of the String reflects in the constness of the SubString.
This allows the compiler to keep track of this information in a simple way. If all such
SubStrings are
"const" (or non-const for that matter). The class designer must either design two classes, or
keep track

internally. All at higher programming cost.

If you reject that all returns of class type are const , the ADT people would like to have a way
to declare
that all temporaries of a class have a constant type.

class C const { // all returns of type C are const C

};

class D { // returns are const or not as indicated in declaration

};

It has been argued that knowing all values of a class are const could lead to compiler
optimizations. This
extension would tell the compiler (and the reader) that this is the case. It prevents someone
externally
subverting the issue by creating a function.

C copy (const C & x) { return x; };

with the above definition. copy() will still return a const.

I don’t believe this extension is absolutely necessary, BUT it is simple and doesn’t break existing code.
Considering the passion that the supporters of ADT have put into making ALL temporaries const, it
seems easily justified.

PS. We could explain builtin types behave as "const" classes.
PPS. If you hate overloading const - lets pick another word :-)

Constructors, Returns and Function
Arguments

I mentioned these other issues. They are not as major, but they came up in the discussions.

class X {

public: X(int);

private: X(const X &);

};

X x1(1); // ARM - call X(int) - NEW - same

X x2 = 2; // ARM call X(int) then use copy constructor - NEW - call X(int)

X x3 = X(1); // ARM call X(int) then use copy constructor - NEW - call X(int)

Note that in the above cases, making the copy constructor private is not effective. Someone
getting the
odd error message will simply switch to the first form. Almost every compiler gets rid of the
copy anyway,
so lets declare that these are all the same thind

C c = f(); // copy constructor must be accessible , can be optimized away

Now hiding the copy constructor could be useful, the class designer must not want a copy
made and
kept. If he hid all the constuctors, he certainly doesn’t . Allowing the compiler to perfom the
build
without an accessible copy constructor subverts the intent of the designer.
A good compiler, however, could optimize it away.

Consider return expressions

C f() {return C(); }; // default constructor used.

X fx() { return 1; }; // X(int)

{ C c; return c; } // copy constructor must be accessible, can be optimized away

I recommend that for functions returning class objects, the argument of the return expression
be
considered a constuctor expression. This means that the copy constructor is only required it
the return
expression is of that class type (and not an explicitly called constructor). The constructor
called must be
accessible.

X f1() {return X(1); }; // OK X(int)

X f2() { return 1; }; // OK X(int)

X f3() { X x(1); return x; }; // error - copy constructor must be accessible

Note This makes the rules for creating class type return the same as the rules for class type argument
generation and explicit initialization . In all three cases:

1) Only a constructor can build an object of class type. Each of these expressions much
search for a
constructor that matches their arguments. If the constuctor matching is a copy constructor,
and the
source object is no longer needed, the compiler can optimize away the copy.

2) The constructor used must be accessible in the context it is used. For function arguments
and return
types, this is the function context. For explicit initialization, it is the context the statment
appears in.

3) Cv-qualifiers take effect after the constructor has completed. Cv-qualifiers on the final type
have no
effect in selecting the constructor being called. Note that the constructors may affect the
allowable type
of the constructor argument, in particular, it is possible to define a copy constructor that takes
only
non-const references.

Loose Ends
CONSTRUTORS There is still no way to designate const returns from constructors
expressions. If the
"class X const" proposal is accepted, this would be included under the blanket of all class
temporaries. If
not, another suggestion was to allow designating const on individual constructors.

class S {

public: const S(int); // return value constand

S(const S &); // normal return value

};

 I don’t see this extension as anywhere near as useful and do not propose it.

VOLATILE types. I’m sorry but I don’t feel comfortable about volatile. In any event, the
recommendations present a very consistent framework for const, non-const. Perhaps it will
help when
fitting in volatile. In any event a consistent framework would seem better than an inconsistent
one.

CONCLUSION
I recommend the following resolutions of core issues, these are seperable proposals:

1) CV-Qualified return types: Allow them. Returns of class type handled symetrically with
reference
type returns for purpose of member selection, function overloading and explicit binding to
references.
Note that these are similar to lvalues, but not exactly see #1,#2, #4, and #5 in first section.
See
Proposed Solution.

2) We add the minor extension of "const" classes. All value type temps of "const" classes are
always
"const". See Const (value only) Classes.

3) Unify the handling of constructors, arguments, and return values. Constructors
expressions are
simplified to mean the same thing regardless of the syntax chosen. Copy constructors need
not be
accessible if the named constructor is. Return statements of functions returning class values
are
handled the same as constructor expressions. The copy constructor must be accessible if the
initializer
or return expression is of class type (or class reference). Such copy constructors can be
optimized away.
See Constructors, Returns and Function Arguments.

