Sep 18 12:10 1992 trans_limits Page 1

ANSI DOC NO: X3J16/92-0101
ISO DOC NO: WG21/Noi178

————

DATE: Sept 10, 1992

C++ Translation Limits
Draft Proposal

Paul Stone
Perennial
paul@peren.com

Table of Contents

Introduction

Abstract

Legend and Rationale :
Table of Translation Limits
Glossary with Notations
Twofold Conformance
References

Straw Vote Ballot

Introduction

A proposal for C++ translation limits is presented,
following the mandate from the Dallas meeting, and
using ANSI/ISO C 2.2.4.1/5.2.4.1 as a starting point.
I hope that the definition is nearly complete, and
that we can proceed with debate on specific values.

Abstract

ANSI/ISO C specified translation limits for C implementations.
This C++ proposal expands on the C specification in three ways:
Individual (solo) limits specificatioen,
C++ specific parameters,
Twofold conformance definition.

The table below incorporates C and C++ limits.

455



Sep 18 12:10 1992 trans limits Page 2

Legend and Rationale

456

You may notice the temporary introduction of what

look like macro names, ie, NEST_COMPOUNDS, as abbreviations
for each item. This is only to aid in our discussion,
which may last quite a while. The names will not appear

in the Draft Document. 2 glossary is attached.

The numbers preceding (leftmost column) are also for the

ease of the reader, but are more subject to change than
the macro names.

The third column "C combo” holds the value defined for
ANSI/ISO C 2.2.4.1/5.2.4.1. These values are given
for historic reference, are not subject to debate,

and will not appear in the Draft Document. The
abbreviation "combo" stands for "combined limits" ---
the "rubber teeth" test program that contains an
instance of each of the limits within one strictly
conforming C program.

The fourth column "C++ combo" lists the proposed values

for the same kind of combined limits, rubber teeth test,

as defined  for ANSI C, but as applied to C++.

All of these values are subject to committee scrutiny ---

we propose that they appear in the Draft Document.

The "C++ combo" values, en masse, define a

"least common denominator"” of program portability.

For sake of discussion, the values shown currently mirror

the ANSI/ISO C standard, and are probably too low, especially
if individual testing is rejected by committee (see "C++ solo").



Sep 18 12:10 1992 trans_limits Page 3

Legend and Rationale, cont.

4. The fifth column "C++ solo" lists the proposed values
for separately tested translation limits.
This column is provided in order to fulfill
the second criterion of Andrew Koenig’s proposal.

The purpose of the "C++ solo" tests is twofold.

"Minima become maxima”, Bjarne has observed of the

ANSI C translation limits. For instance, corporate
policy may dictate that all C programs not exceed the
translation limits (be strictly conforming programs),
for fear of non-portability. We cannot not dismiss

such a policy as being totally misguided.

"We should pick unreasonably large values for the
individual tests [C++ solo] such that an implementation
may not impose arbitrary fixed limits."

The use of the words minimum and maximum has been avoided
because it is misleading. All values shown in all
three columns should be thought of as minima.

5. A C++ implementation that does not accept programs
within the specified limits is "non-conforming”, but the
deficiency is easily quantified. Aan implementation that is
otherwise conforming could still be regarded as excellent
for many applications. This difficulty is addressed by
a supplemental proposal called Twofold Conformance.

Note: The first three entries were treated as one limit by
ANSI C.

457



Sep 18 12:10 1992 trans_limits Page 4

Table of Translation Limits

Item Name C combo
01 NEST_COMPOUNDS 15
02 NEST_ITERATIONS 15
03 NEST SELECTIONS 15
04 NEST_CONDITIONAL_ INCLUSION 8.
05 DECL_PTR_ADR_FNC 12
06 NEST_PAREN DECL 31
07 NEST_PAREN_EXPR 32
08 SIGNIFICANT INTERNAL 31
09 SIGNIFICANT EXTERNAL 6
10 EXTERNAL IDENTIFIERS 511
11 BLOCK_IDENTIFIERS 127
12 MACRO_IDENTIFIERS 1024
13 FUNCTION_PARAMETERS 31
14 FUNCTION ARGUMENTS 31
15 MACRO_PARAMETERS 31
16 MACRO_ARGUMENTS 31
17 LINE_LENGTH " 509
18 LITERAL_LENGTH 509
19 OBJECT_SIZE 32767

20 NEST INCLUDES 8

21 CASE_LABELS 257
22 STRUCT_ MEMBERS 127
23 ENUM_CONSTANTS 127
24 NEST_STRUCTS 15
25 AT_EXIT FUNCTIONS 32
C++-specific limits:
N/A

Item Name C combo

26 ALL_BASES -
27 DIRECT_BASE_CLASSES -

28 NEST CLASSES -
29 CLASS MEMBERS -

30 ABSTRACT_ FUNCTIONS -
31 CONVERSION_FUNCTIONS -
32 OVERLOADED FUNCTIONS -
33 OVERLOADED_CONSTRUCTORS -
34 VIRTUAL_FUNCTIONS -
35 VIRTUAL BASE_SUBOBJECTS -
36 STATIC_MEMBERS -
37 FRIENDS -
38 ACCESS_DECLARATIONS -
39 MEM_INITIALIZERS -
40 SCOPE_QUALIFIERS -
41 NEST_EXTERNS -
42 TEMPLATE ARGUMENTS -
43 HANDLERS_PER_TRY_ BLOCK -
44 EXCEPTION_SPECS -

458

C++ combo

32767

257
127
127
15
32

C++ combo

C++ solo

511
1024
255
255
255
255
65532
65532
1048575
64
257
4095
4095
15

32

C++ solo



Sep 18 12:10 1992 trans_limits Page 5

Glossary with Notations (order of previous appearance)

NEST_COMPOUNDS
Nesting levels of compound statements.
Note: NEST COMPOUNDS, NEST_ITERATIONS & NEST_SELECTIONS
entries were treated as one limit by ANSI C.
NEST ITERATIONS
- Nesting levels of iteration control structures.
NEST SELECTIONS
- Nesting levels of selection control structures.
NEST_CONDITIONAL_INCLUSION
Nesting levels of conditional inclusion.
DECL PTR ADR FNC
~  Pointer, array, and function declarators
(in any combinations) modifying an arithmetic,
a structure, a union, or an incomplete type
in a declaration.
NEST_PAREN_DECL
Nesting levels of parenthesised declarators within
a full declarator. '
NEST_PAREN EXPR
Nesting levels of parenthesised expressions within
a full expression.
SIGNIFICANT_INTERNAL
Significant initial characters in an internal identifier
Or macro name.
SIGNIFICANT EXTERNAL
Significant initial characters in an external identifier.
EXTERNAL IDENTIFIERS
External identifiers in one translation unit.
BLOCK_IDENTIFIERS

Identifiers with block scope declared in one block.
MACRO_IDENTIFIERS
Macro identifiers simultaneously defined in one
translation unit.
FUNCTION_PARAMETERS
Parameters in one function definition.
FUNCTION_ARGUMENTS <
Arguments in one function call.
MACRO_PARAMETERS
Parameters in one macro definition.
MACRO_ARGUMENTS
Arguments in one macro invocation.
LINE LENGTH
Characters in a logical source line.
LITERAL_LENGTH
Characters in a character string literal or wide string
literal (after concatenation).

459



Sep 18 12:10 1992 trans_limits Page 6

OBJECT_SIZE
Bytes in an object (in a hosted environment only).
NEST_INCLUDES
Nesting levels for #included files.
CASE_LABELS
Case labels for a switch statement (excluding those
for any nested switch statements).
STRUCT_ MEMBERS
Members in a single structure or union.
ENUM_CONSTANTS
Enumeration constants in a single enumeration.
NEST_STRUCTS
Levels of nested structure or union definitions in a
single struct-declaration-list.
AT_EXIT_FUNCTIONS
Functions registered by atexit ().
See ANSI C X3.159~-1989, 4.10.4.4.
Note: This is a runtime, rather than translation, limit.

C++-specific limits:

ALL BASES -

Direct and indirect base classes

(count of edges in the inheritance graph).
DIRECT_BASE_CLASSES

Direct bases classes per class.
NEST_CLASSES

Depth of nested class definitions, ie,

class S1 { class $S2 { class S3 { int i; }; }; };

Note: NEST_CLASSES may be redundant with NEST_STRUCTS.
CLASS_MEMBERS

Class members in a single class object.

Note: May be redundant with STRUCT_MEMBERS.
ABSTRACT FUNCTIONS

Abstract functions in one class.
CONVERSION_FUNCTIONS N

Type conversions ‘operator T()’ in one class.
OVERLOADED_FUNCTIONS "

Overloaded functions for a given name.
OVERLOADED CONSTRUCTORS

Overloaded constructors in one class.
VIRTUAL FUNCTIONS

Virtual functions per class.
VIRTUAL BASE SUBOBJECTS

Virtual base subobjects per class object.
STATIC_MEMBERS

Static members of one class.
FRIENDS

Friend declarations in one class.
ACCESS DECLARATIONS

" Access control declarations in one class.

460



Sep 18 12:10 1992 trans_limits Page 7

MEM INITIALIZERS
- mem-initializers. Initializations of base Classes
or members in a constructor definition, e.qg.,
T::T( : a(l), b(2), ... {}
SCOPE_QUALIFIERS
Scope qualifications of one identifier, e.q.,
BASEl::BASE2::BASE3::id
NEST_EXTERNS
‘‘extern "lang" { }’’ nesting levels.
TEMPLATE_ARGUMENTS
Template arguments in a template declaration.
HANDLERS_PER_TRY BLOCK
Handlers per try block.
EXCEPTION SPECS
Throw specifications on a single function declaration;
that is, the number of type-id’s in the type-id-list
of an exception-specification.

461



Sep 18 12:10 1992 trans limits Page 8

Twofold Conformance

The following is a twofold conformance definition
of Translation Limits for C++ as applied to

the ANSI/ISO C (X3.159-1989), since this area

has not yet been addressed by the ISO C++ Draft.
Twofold conformance is a subproposal, to be
considered on its own merits.

1.7 Compliance

The definition of "strictly conforming program"
is unchanged.

Add to the second paragraph in 1.7 Compliance:
Additionally, both hosted and freestanding
conforming implementations are categorized as
"language conforming” and "environment conforming”,
where
a "language conforming implementation” is
specified exclusive of an "environment
conforming implementation®;

and
an "environment conforming implementation” shall
be able to translate and execute the program(s)
of section 2.2.4.1 Translation Limits that
contain instances of the specified limits.

Rationale for Twofold Conformance

There are several motivations for isolating

conformance specification of translation limits.

The primary intent is to use a more detailed specification
of compliance so as to promote understanding and acceptance
of C++ implementations with limited resources ---

implementations that would otherwise be blindly labeled
non-conformant. )

The C++ user community needs to know the bounds of
a portable C++ program. This is the "strictly -
conforming program"” as defined for C in 1.7 Compliance.
The proposed C++ Translation Limits definition extends
the C limits boundary in efforts to
1) define realistic bounds for C++ program portability, and
2) prevent implementations from imposing arbitrary limits.

An undesirable side effect of translation limits specification
is that some implementations could be deemed "non~conforming"”
merely due to skimpy underlying resources, such as a shortage
of memory, or segmented memory architecture. Yet for specific
applications the same resources may known to be adequate,

so it is somewhat unfair and misleading to classify them solely
as non-conforming.

462



Sep 18 12:10 1992 trans_limits Page 9

By separating "environment conforming" from "language conforming"
it becomes possible to address these issues.

Of course, implementations that are conforming in both criteria
will have a marketing edge over those that are conforming in just
one or none. Yet for some platforms, environment conformance
may not be achievable by anyone. In such cases, each limits
parameter should be individually reported and evaluated.

I believe that procurement specialists may sometimes have

to specify more about their C++ needs than that it be
"conforming”. The "one size fits all” criterion

is appropriate for the language specification, and for
defining a maximally portable program, but is too restrictive
to be applied to all aspects of the environment.

463



Sep 18 12:10 1992 trans_limits Page 10

References

Minutes of X3J16 Dallas meeting, X3J16/91-0136, Pg 16-18.
Sets mandate for inclusion of translation limits.

ANSI C Definition, X3.159-1989 2.2.4.1. (ISO 9899, 5.2.4.1.)

NIST/FIPS-160 ANSI C Validation Suite, ACVS, especially
test P20031.c (aka rubber teeth).

Email traffic on env reflector, beginning with x3j16-env-289.

Straw Vote Ballot

Recommended by author

A.

B.

C++ Translation Limits, combo and solo.
Exact values to be determined.

Twofold conformance definition.

Separates language from environment.
Implies A.

Not recommended by author

C.

D.

464

Mere upgrade of C limits (combo limits only)
Exclusive of A and D.

No specification of translation limits.
Exclusive of A, B, C.



