A proposal to add an exponentiation operator to the C++
language
X3J16/92-0099, WG21/N0176

Matthew H. Austern
Lawrence Berkeley Laboratory; Berkeley, CA 94720
(mattCphysics.berkeley.edu)

September 18, 1992

Abstract

This paper is a description of a proposal to extend C++ by adding an exponentiation
operator. The proposal itself is given in Section 3.1; the remainder of this paper is
an argument for the desirability of this extension, and an analysis of it.

1 Introduction

On several occasions, I have happened to remark to a friend who does not know either
C or C++ that I am working on a proposal to add an exponentiation operator to C++.
On all such occasions, the response has been incredulity: they are unwilling to believe
that the language does not already have such an operator. We who have used C and C++
for many years have had time to get used to the exponentiation operator’s absence, but
novice users still find its absence surprising.

I suggest that their naive expectation is correct: C++ should have such an operator,
particularly as it is possible to add one to the language with minimal effort and with no
effect on existing code. This paper is a proposal to extend the C++ language by adding
this operator.

Section 2 explains the reasons why an exponentiation operator is desirable; this section
includes a discussion of possible alternatives to this operator, and the reasons why they
are inadequate. Section 3 describes the proposal in detail, and Section 4 explains the
rationale behind the design choices presented there. Finally, Section 5 addresses various
questioﬂs" about this extension and Section 6 addresses possible objections to it. I conclude
in Section 7.

Note that much of the material in this document is not original with me; to a large
extent, I am simply transcribing the consensus about this issue that has formed on the
Usenet newsgroup comp.lang.c++. In particular, I acknowledge the work of Joe Buck.
This proposal differs from his only in small details, and in the extent of the discussion. I

432

X3J16/92-0099 WG21/N0176

also wish to thank John Skaller for help with writing this document, and Bjarne Stroustrup
for pointing out an area where my analysis was incomplete.

2 Why is this proposal important?
2.1 The importance of exponentiation

Examining a moderate-sized (30,000 line) FORTRAN program!, I found that the exponen-
tiation operator was used quite commonly: about half as often as the division operator.
Or, to put it differently, there was an average of about one use every six lines. In my
field, at least (high-energy physics), this program is rather typical: exponentiation is a
common operation in mathematical expressions. It is certainly much more common, in
the kinds of programs that I write and work with, than are any of the bitwise operators!

The primary justification for an exponentiation operator, then, is simple: it is one of
the basic binary operators of mathematics. Just as it would be excessively clumsy to use
the syntax add(x, y) for addition, or div(x, y) for division, so it is excessively clumsy
to use the syntax pow(x, y) for exponentiation. A function call looks very different from
the way that exponentiation is denoted in ordinary mathematical expressions written
down on paper, and in complicated mathematical expressions this syntactic clumsiness
can have a very serious deleterious effect on clarity.

(It is unnecessary to explain the importance of clarity; there is, however, a specific
reason, in addition to the usual ones, why it is important for mathematical expressions
in particular. It is often necessary to verify that a formula in the code is the same as a
formula on paper, or in another program. The clearer the notation, the more likely it is
that this can be done without error.)

It should be noted that the most common use of exponentiation, by far, is raising a
floating-point number to a small integral power which is known at compile time; that is,
in FORTRAN programs, an expression like x ** 4 is much more common than one like x
** 0.007297, or one like x ** y. The problem, then, is particularly acute: not only does
C++ not provide an operator for exponentiation, but it provides no means whatsoever
for raising a number to an integral power. The function call pow(x, 3), for example,
is equivalent to the function call pow(x, 3.0). On most systems, this is a serious loss
of efficiency, and possibly precision as well, since cubing a number is much simpler than
raising that number to some arbitrary non-integral power, a task which requires computing
transcendental functions.

I believe that an exponentiation operator is important primarily for scientific program-
mers, and for others who write numerical code. Almost all scientific programmers find
C++’s lack of an exponentiation operator to be at least an inconvenience, and some find
it almost intolerable. (Consider, for example, the very strong language used in Chapter 1
of Numerical Recipes in C.%) Some scientific programmers have chosen not to use C or
C++ partly for this reason.

1PAPAGENO, written by I. Hinchliffe.
2W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cam-

2

433

X3J16/92-0099 WG21/N0176

People who do not write m\lmerica.l programs will probably find a C++ exponentiation
operator neither beneficial nor detrimental.

2.2 Possible alternatives
2.2.1 Programming techniques

In the C++ language as it currently stands, there are no satisfactory methods for perform-
ing exponentiation. As described above, there are two distinct problems:

1. Using function calls is syntactically clumsy.
2. The language provides no way to raise a number to an integral power.

There is no way to resolve the first difficulty without changing the language; it cannot
be solved by operator overloading. There are two reasons for this, either of which, on its
own, is sufficient to preclude such a solution. First, operator overloading applies only to
user-defined types; a useful exponentiation operator, however, must be defined for argu-
ments of type double; float, and int. Second, there is no operator with a precedence
suitable for this overloading. All of the binary operators that might be chosen (such as ~)
have a lower precedence than multiplication and addition. In ordinary mathematical
notation, and in all other computer languages that have exponentiation operators, expo-
nentiation binds more tightly than multiplication; an exponentiation operator that bound
less tightly than addition would be extremely confusing, and would be an invitation to
errors. Combined, these two objections are so formidable a barrier that I have never seen
even an attempt to implement exponentiation by overloading some existing operator.

The second difficulty—the inability to specify that the exponent is some small inte-
gral constant—can be circumvented by the programmer, but only at the cost of some
inconvenience. One possibility is to write a user-defined function, pow(double, int).
For many of today’s compilers, unfortunately, there is no way, no matter what is declared
inline, to define pow() in such a way so that pow(x, 2) can expand to something as
efficient as x*x. Furthermore, a proper implementation of this function is likely to depend
on the architecture of the target machine; such*functions properly belong to the realm of
the library author or the compiler writer, not the individual programmer. Still, with a
moderate amount of effort, it is possible to write a version of pow(double, int) that is
preferable to the pow(double, double) in the standard library. -

This effort is sufficiently great, however, that a more commonly used technique is to de-
fine a series of small inline functions: square(double), cube(double) , fourth(double),
fifth(double), and so on, and then to use the standard library function pow(double,
double), or a user-defined function pow(double, int), for those cases where the expo-
nent is not small or is not known at compile time. This solution is ugly, and requires a
fair amount of programmer effort, but it does at least allow the programmer to raise a
number to a small integral power.

bridge: Cambridge University Press), 1988.

434

X3J16/92-0099 WG21/N0176

Some programmers use even more cumbersome workarounds—a lookup table of pow-
ers, for example.

2.2.2 Changes to the standard library

If the functions pow(double, int) and pow(float, int) were added to the standard
library, this would alleviate at least part of the difficulty. (This was not a possible solution
for C, which does not allow function overloading.) This would be a satisfactory means of
raising numbers to small integral powers, and would be a distinct improvement over the
present situation.

This solution is really only useful if it is done by all compiler vendors, i.e., if it is
mandated in the Standard. Nobody is going to write pow(x, 2) to square a quantity
if most compilers are just going to pass it to pow(double, double) and compute it by
means of transcendental functions.

One admittedly small difficulty with this solution is that it would change the meaning
of existing code: pow(x, 2) and pow(x, 2.), for example, would now represent calls to
two different functions. Whenever the meaning of existing code is changed, even in a
seemingly innocuous way, there is some risk of breaking a currently working program.
This can, of course, be averted by using a different name, such as npow() or ipow(), but
at the cost of adding one more function to the global namespace.

Again, note that this only solves one of the two problems that was discussed above.
The more important problem, the clumsy syntax, still remains. Library solutions, by
their nature, cannot address the syntactic problem.

2.2.3 Use of an existing operator

Several operators, such as ~, are not defined for floating-point operands; one could imag-
ine changing the language so that, if at least one argument is of a floating-point type, it
denotes exponentiation. This is a poor idea, however, because all of these operators have
precedence lower than addition; as discussed above, such a precedence for an exponenti-
ation operator would be grossly counter-intuitive. ..

3 The proposal

3.1 Changes to the language

Two new tokens, *“and *~=, will be added to the C++ language. *~ will be a binary
operator, and will denote exponentiation. It will group right to left, and will have a
precedence higher than multiplication and division but lower than the pointer-to-member
operators. (Note that this is a new precedence level.) Both arguments of this operator
must be of a numeric type.

If the first operand of *~ is a floating-point type and the second is an integral type,
then the type of the expression is that of the first operand; the expression is evaluated

435

X3J16/92-0099 WG21/N0176

without converting the second operand to the same type as the first. Except for this special
case, the usual arithmetic conversions are performed on the operands, and determine the
return type.

The following conditions on the operands constitute a domain error:

1. The first operand is zero, and the second is negative.

2. The first operand is negative, and the second is not an integer. (An implementation
is allowed, but not required, to interpret “not an integer” as “not a number of an

integral type.”)

The value of the expression 0 *~ 0 is implementation dependent, regardless of whether
the types of the operands are integral or floating-point. An implementation is allowed to
treat this as a domain error.

*~= will be defined in the same way as all of the other op= operators.

As with other operators, *~ and *“= may be overloaded by the user if at least one
operand is an object of a class type.

3.2 Changes to the C++ reference manual

A new section describing the exponentiation operator will have to be added to §5 of the
reference manual, which describes expressions; it would logically fit between §5.5 and
§5.6 of the Annotated Reference Manual® (ARM), but will probably have to be placed
elsewhere instead, to avoid renumbering most of the chapter. It will include the following
description of the grammar:
power-ezpression:
pm-ezpression
pm-ezpression ** power-expression.
In §5.6, which describes multiplicative expressions, the references to pm-ezpression
will have to be changed to power-ezpression.
The operator *~= will have to be included in the list of op= operators at the beginning
of §5.17.

4 Rationale behind details of the proposal

4.1 General discussion

The primary goal behind this proposal is to make the behavior of the exponentiation
operator as unsurprising as possible. Specifically, this means that its behavior should, to
the extent possible, be consistent with

1. The meaning of exponentiation in ordinary mathematical notation;

M. A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual (Reading: Addison-Wesley),
1990.

436

X3J16/92~-0099 WG21/N0176

2. The behavior of exponentiation operators in other languages (particularly FOR-
TRAN); and

3. The behavior of other C++ operators.

Once these design goals are accepted, there is very little freedom remaining in choosing
how the exponentiation operator should behave; in almost all cases, only one choice is
reasonable.

4.2 The name of the operator
4.2.1 Names from other languages

Most other languages use = or ** as exponentiation operators. Using either of these names
would be difficult, since both are already in use in C++.

As discussed in Section 2.2.3, the operator -, which is currently defined only for
integral operands, has too low a precedence to be useful for an exponentiation operator.
One might imagine letting the precedence depend on the types of the operands (i.e., giving
it jts current low precedence for integral types and a new high precedence for floating-
point types), but any scheme of this type quickly becomes unworkable. It would make
parsing C++ much more difficult, and whatever rules are used to distinguish between the
high-precedence floating-point ~ and the low-precedence integral ~ would almost certainly
be complicated and error-prone. This would especially be true when dealing with user-
defined types.

Using #* is somewhat more practical. This character sequence has two meanings in
C++: either unary * followed by unary *, meaning double pointer dereference, or binary *
followed by unary *, meaning pointer dereference and multiplication. Note that in either
case the expression following ** must be a pointer, whereas exponentiation is defined only
for numeric operands. It might, then, be possible to use type information to distinguish
between ** as an exponentiation operator and ** as an operator on pointers, and to
define ** for pointers in such a way that the current meaning of that character sequence
would be preserved.

Specifically, if the first operand to ** is of a numerie type, and the second is a pointer
to a number, then ** could be defined to mean the product of the first operand with the
contents of the second. It would also be necessary to add a unary operator **, which
would mean double pointer dereferencing. (C++ parsing works by tokens, so this is the
only way to ensure that ** could still be used in the context of unary * followed by unary
*.)

Unfortunately, there are several difficulties with this proposal. First, precedence is
still a problem, albeit not as severe a problem as with ~. Using the current language
definition, ** refers to a sequence of two operators, which, if the first * is a binary
operator, do not have the same precedence. This is no longer true if ** becomes a single
token. In particular, suppose that ** is given a precedence higher than multiplication
and division (this is necessary if *#* is to have the ordinary mathematical meaning of an
exponentiation operator), and consider the expression

437

X3J16/92-0099 WG21/N0176

x/y**p.
It is currently equivalent to
(x/y) * (*p),
but, with this new proposal, would instead mean
x / (y * (%p)),

which, of course, is numerically very different. This proposal, then, changes the meaning of
existing code. Expressions like this are probably rare, but also probably not nonexistent,
and if any working code is broken, programmers will be forced to examine their code to
make sure that it still means what it used to. An exponentiation operator that doesn’t
break any working code at all would be far preferable.

The other difficulty is that the disambiguation rule given above applies only to built-in
types, not to class types. Users who define “smart pointers” will want the dereference
operator to work the same way for their smart pointers as it does for ordinary C pointers,
so, if they overload unary * to mean smart pointer dereference, they will similarly be
forced to overload unary and binary **. This imposes an additional burden on people
who use a rather common programming technique.

4.2.2 A new name

The names @, !, ==, =, and *~ have been suggested for an exponentiation operator. Most
of these are unsuitable. @ cannot be used, because it is not present in many countries’
character sets. ! and =~ would be possible choices, but poor ones, because they could
cause confusion. In particular, ! would be a confusing choice because the corresponding
op= operator would be !=, which, of course, already has a quite different meaning. (The
confusion would remain even if it was decided not to define an op= operator for exponen-
tiation.) Similarly, =~ would be a confusing choice because programmers might, reasoning
by analogy from && and ||, expect it to behave as a logical exclusive or. This is not a very
serious objection: people familiar with C++ understand that there is no logical exclusive
or operator and understand the reason for its absence. Still, choosing a name that isn’t
evocative in this way would probably make the language less confusing for novices.

The remaining choices, then, are *~ and ~. Of the two, I prefer *~ because it is more
mnemonic: it is similar, even though not identical, to the exponentiation operators used
in other languages. It is also preferable because it is a character sequence that does not
occur in any legal C++ code; making this extension, then, cannot possibly change the
meaning of any existing program.

4.3 Types of the operands

As emphasized in Section 2.1, the most common situation, by far, is an expression like x
*~ 3, where a floating-point number is raised to an integral power. Even if the operator

438

X3316/92-0099 WG21/80176

*~ were only defined for the case where the first operand is floating-point and the second
is integral, it would still be useful; calling a library function for the remaining cases would
not be an undue burden.

The reason why I have proposed a more general operator than that is simply because
I believe that such a restriction would be confusing; exponentiation is a well-defined
operation for two floating-point operands and for two integral operands, and leaving it
undefined for these cases would be without precedent in either C++ or any other language.
Furthermore, I do not see any advantage in making this restriction; it wouldn’t make
implementation of *" significantly easier.

4.4 Return type

The first issue to discuss is the general rule, that the return type of an expression involv-
ing *~ is the same type as the operands. Specifically, one might question whether the
expression n*~m, where n and m are integers, really should return an integer.

There are two reasons why this expression should return an integer. First, this is
the ordinary rule in C++ (consider, for example, the expression 1/n), and programmers
have the right to expect some degree of consistency in the language. Second, this be-
havior is consistent with the behavior of the FORTRAN exponentiation operator; again,
programmers have the right to expect that a C++ exponentiation operator should behave
similarly to exponentiation operators in other langnages. In fact, FORTRAN programmers
do sometimes make use of this property; expressions like (-1)**n are not uncommon.

The proposal in Section 3.1 specifies an exception to the usual C++ rule for evaluation
of arithmetic operators: if the first operand of *~ is a floating-point type and the second is
an integral type, then the return type is that of the first operand, but the second operand
is not promoted to the same type as the first. This behavior is consistent with that of the
FORTRAN exponentiation operator, and it is an essential part of this proposal. The intent
is that if x is a variable of some floating-point type, a compiler may generate different
code for the expression x *~ 3 than for the expression x *~ 3.0.

As emphasized in Section 2, the primary use for an exponentiation operator is raising
a number to a small integral power that is known at-compile time. A good FORTRAN
compiler can be expected to optimize an expression like x ** 4 to two floating-point
multiplies, and the intent of this proposal is that a good C++ compiler should be able to
perform that same optimization for the expression x *= 4.

4.5 Domain errors

The conditions that are identified in Section 3.1 as domain errors are those for which,
mathematically, the result of an exponentiation is either a complex number or is undefined.

One might argue that an expression like (~1) *~ 0.5 should return a complex result
instead of being an error; this would, however, be a mistake. First, C++ has no complex
data type; it would be a very poor design decision if a feature of the language itself
depended on the inclusion of some class library. Second, C++ is a strongly typed language,

8

439

X3J16/92-0099 WG21/80176

and the type system cannot accommodate an operator that could return either a double
or a Complex depending on the values of the operands. Finally, even in FORTRAN, which
does have a complex data type, the expression (-1) ** 0.5is an error; users of FORTRAN
who want complex results must provide complex operands.

Note that this proposal does not specify the run-time behavior of a program upon
domain error. This is consistent with what the Standard currently says about the treat-
ment of domain errors (e.g., x/0) and overflows. In both cases, implementations should
be free to do whatever is reasonable for the specific hardware and operating environment.
Some reasonable choices might be returning a NaN, or raising an exception, or printing a
diagnostic and terminating program execution.

46 0=x*"0

Mathematically, the meaning of 0° depends on how this expression is interpreted; one
might sensibly imagine it to mean

lim 2%,

z-0

lim z°,

-0

lim 0%,

z—0+
or several other possibilities. These expressions do not all have the same value. A com-
puter language, then, might plausibly compute the value of this expression as 0, or as 1,
or treat it as a domain error. (In FORTRAN, this expression is an error.)

It is consistent with the spirit of C++ to leave this choice up to the compiler writer;
compare, for example, the sign of /, when one operand is negative. As with %, one motive
for specifying that this behavior is implementation dependent is to allow compiler writers
to make efficient use of whatever hardware features are present.

4.7 Associativity

Unparenthesized expressions involving two exponentiation operators are not very com-
mon, so this choice isn’t a matter of terribly great importance. For the sake of consistency
it is best to follow the precedent of FORTRAN, where the exponentiation operator binds
to the right. That is, in FORTRAN, the expression x ** y ** 2z means the same thing as
x ** (y ** z),

4.8 Precedence

4.8.1 Possibilities for the precedence

Mathematically, exponentiation binds more tightly than multiplication. This leaves four
possibilities, then, for the precedence of a C++ exponentiation operator:

e A new precedence level between the multiplicative operators and the unary opera-
tors.

440

X3J16/92-0099 WG21/K0176

¢ The same precedence level as the unary operators.
e A new precedence level above the unary operators but below the postfix operators.
¢ The same precedence level as the postfix operators.

I will consider these in turn, in order of decreasing precedence.

4.8.2 *~ as a postfix operator

Postfix expressions, as described in §5.2 of the ARM, group left to right. The proposal of
Section 3.1 specifies that the associativity of *~ is right to left, but changing this would
not be a terribly serious matter. As noted in Section 4.7, it is rare to encounter expressions
where the associativity of an exponentiation operator makes much difference.

A more serious problem, however, is in an expression like

X *~ p=>a.
This would be interpreted by the compiler as
(x*~p)->a,
which would be disastrous. Operators like ->, ., and [J have a high precedence for a
reason, which is to ensure that postfix expressions behave the same way in arithmetic
expressions as ordinary variables do. This property is valuable, and it should not be
broken by an exponentiation operator.
4.8.3 A new level above unary operators
The problem here is very similar to that described above: the expression
*p *~ x
would be interpreted as
*(p*x"x), ..

which is undesirable for exactly the same reason as tkat given in Section 4.8.2.

4.8.4 The same precedence as unary operators
Unary operators group right to left, so, again, the expression
*p *~ x

would be interpreted in an undesirable way. *~ must be given a precedence lower than
the unary operators.

The same reasoning about the operator -> also applies to the operators ->* and
-*, implying that the precedence of *~ must be below that of the pointer-to-member
operators.

10

441

X3J16/92-0099 WG21/N0176

4.8.5 A new level above multiplication

There are no disastrous problems associated with putting *~ above the multiplicative
operators and below unary operators, but there is a small annoyance: the expression
-x*~2 would be interpreted as (-x) *~ 2, which is unlikely to be what the programmer
intended. This is merely an annoyance, however; it is unlikely to be a serious source of
errors. Expressions of this sort are rare, and compilers could issue warnings when they
occur without parentheses.

It would perhaps be best if unary minus did not have such a high precedence, but
changing its precedence, at this point, is impractical.

4.9 Guarantees about the value returned by *-

Nothing in this proposal guarantees that (for example) x*~3 == x*x*x, or, for that mat-
ter, that x*“3 == x*~3.0. This is an intentional omission. Exact equality of floating-
point numbers is a very strong statement, and it would be grossly inappropriate to require
it here. Doing so would make this proposal much more complicated, and would also im-
pose undue constraints on the techniques that could be used for implementation.

Note that this is consistent with the way that the Standard treats existing operators;
there is nothing in the Standard to guarantee that x*3 == x+x+x.

4.10 A *"= operator

The operator *~= is not nearly as important as is *~. Expressions like x = x *~ 0.5 do
occur on occasion, but they are sufficiently rare that the syntactic convenience of an op=
operator is unimportant.

There are, however, several good reasons for including the operator *~=. First, the
intention of this proposal is to treat the exponentiation operator, *~, in a similar manner
to the other common binary arithmetic operators. Accordingly, it would be surprising
to omit an op= operator for exponentiation while including one for all of the others. As
always, it is important for the language to work in as unsurprising a manner as possible.
Second, and perhaps more important: *~= is nét really necessary if both operands are of
built-in types, but, if *~ is overloaded for some user-defined type, it could prove useful to
overload *~= as well. The absence of this operator, in such cases, would be an annoying
and gratuitous restriction. -

As discussed in Section 5.4, there are two distinct types of overloading to consider:
overloading *~ to provide exponentiation for some user-defined type, and overloading *-
for some purpose unrelated to exponentiation. In both cases, the operator *~= could easily
prove useful. For the first type, consider matrix exponentiation; if the matrices involved
are large, then, unless clever reference-counting techniques are used, the expression

Mx"=5

is likely to be much more efficient than the expression

11

442

X3J16/92-0099 WG21/N0176

M=Max*x"5

For the second type: if *~ is overloaded to mean something other than exponentiation,
then the semantics of that operation might make an op= operator useful. It would be
useful, for example, for substring extraction, or for Lorentz transformations.

Despite these reasons for including *~=, there are also good reasons for rejecting its
inclusion. First, it makes this proposal twice as complicated, by adding two new tokens
instead of one. Second, there is no prior art for it: to the best of my knowledge, no
language has an op= operator for exponentiation. I do not anticipate that adding *~= will
cause any problems, but no matter how carefully we think about a feature, there is no
substitute for experience; we know that an exponentiation operator causes no problems,
but we can only surmise that about an exponentiation op= operator.

To summarize: I believe that it would be better to include the operator *~= than
not to include it, but I do not regard *~= as an essential part of this proposal. If the
extensions committee chose to remove the *~= operator, I would regard that decision as
completely rational. It is more conservative to include only *-, instead of both *~ and
*“=, and in this case conservatism may be appropriate.

5 Implications of this proposal

5.1 Prior art

To the best of my knowledge, no existing C or C++ compiler includes an exponentiation
operator. However, this proposal is by no means without prior art! C and C++ are
highly unusual in not having this operator; I have never used any other language which
has operators at all, but which does not have an exponentiation operator. Examples of
languages with this operator include FORTRAN, BASIC, PL/I, Eiffel, and Ada.

This point can scarcely be stressed sufficiently: although designing algorithms for
efficient and accurate floating-point exponentiation is by no means trivial, we in the C++
community are not starting ab initio. These algorithms already exist, and these issues
were addressed decades ago when the very first FORTRAN compilers were written.

Arithmetic expressions in FORTRAN are sufficiently similar to those in C++ so that
the experience with a FORTRAN exponentiation operator should carry over to C++ with
little modification. It isn’t always obvious that experience with a feature in one language
carries over to a different language, but in this case, it is. Many languages, not just one,
have exponentiation operators, and with regard to arithmetic expressions, FORTRAN and
C++ are no more different than FORTRAN and Eiffel. If the FORTRAN experience carries
over to other languages with exponentiation operators, there is no reason to think that
C++ would be an exception.

5.2 Impact on existing code

Adding the new token *~ as an exponentiation operator will not affect any existing code:
this sequence of characters does not appear in C++ code in any context. The meaning of

12

443

X3J16/92-0099 WG21/N0176

code that does not use this operator will be unchanged. (Note, in particular, that I am
not proposing any change at all in the behavior of the standard library function pow().)

It should not be necessary to recompile or relink code that does not use the exponen-
tiation operator.

5.3 Efficiency and runtime support

An exponentiation operator should be at least as efficient as the techniques that are
currently used in its absence. (e.g., inline functions, pow(), and so on.) On most hard-
ware, it will probably require runtime support; this will be similar in magnitude to that
presently required by the standard math library function pow(). It is possible, in fact,
that operator*~(double, double) might use the same code as pow(double, double).

This runtime support is not a serious burden; programs which use exponentiation will
almost certainly use floating-point math functions defined in the standard math library,
and thus will not require any more runtime support than they otherwise would.

Finally, there is no reason why any program that does not use exponentiation should
be affected at all by this extension, either in speed or in size of executable. The technology
‘certainly exists for a compiler to recognize that exponentiation is not used, and to avoid
linking in any runtime code related to it.

5.4 Interaction with other features of the language

The obvious feature to consider is operator overloading. There are two cases to consider:
first, overloading *~ to mean exponentiation, but for some user-defined types, and second,
overloading *~ to have some completely different semantics unrelated to exponentiation.

In the first case, I anticipate that *~ will be overloaded for many user-defined types
which have an algebra similar to that of real numbers—complex numbers, for example, and
matrices. For these examples, it would be sensible to define (among other overloadings)

operator*~ (Complex, Complex)

and
operator*~ (Matrix, int).

The latter case, in particular, could be useful in some situations; computing operator*-
(Matrix, int) might well be preferable to executing operator* (Matrix, Matrix)
many times in succession.

I have nothing to say about the second type of overloading. I do not foresee any
particular non-exponentiation use for an operator of this precedence and associativity; on
the other hand, I don’t think that I would have foreseen the use of operator<< for stream
insertion.

13

444

X3J16/92-0099 WG21/N0176

5.5 Harmony with the “spirit” of C++

This, to be sure, is a subjective question. On the one hand, exponentiation is a common
binary mathematical operation, just like subtraction or multiplication or bitwise xor, and
so it is entirely consistent that it be represented by an operator in the same manner as
they are. On the other hand, it is certainly true that exponentiation usually requires more
computation than most other floating-point operations, and some people believe that it is
in the spirit of C++ that the language should be close to the hardware—that non-atomic
operations should be performed by calls to library functions.

I wish to suggest, however, that this distinction between atomic and non-atomic op-
erations is less clear-cut than it appears at first sight, is less important in C++ than in C,
and is, in any case, machine-dependent. I am currently writing this proposal on a ma-
chine which does not do floating-point addition in hardware; conversely, I have worked on
machines where floating-point exponentiation is done in hardware. On some machines,
both addition and exponentiation require runtime support; on other machines, neither
does.

In my opinion, then, an exponentiation operator is by no means out of place; it may
not have been one of the PDP-11 machine instructions, but in use, and in purpose, it is
similar in spirit to the other mathematical operators.

I believe, furthermore, that this change will make the C++ language easier to learn,
not harder; its presence will be less surprising to people familiar with other languages
than its absence currently is.

5.6 Why should C++ support numerical programming?

This question might be rephrased: “If you like FORTRAN, you know where to find it.”

The problem is that while FORTRAN is suitable for some tasks in scientific computing,
it is very poorly suited to others. Abstract data types, polymorphism, and inheritance are
just as useful for scientific programming as for other types of programming; many scientific
programs have grown so large that they are beginning to grow out of control, and an
increasing number of scientists are beginning to realize'that object-oriented programming
could help them solve their problems. C++ is a useful language for numerical programming;
the lack of an exponentiation operator is simply a small blemish.

Unfortunately, some scientists are asking themselves essentially the same question as
the one above, but turned around: “Why should I switch to a new language if I have to
give up a useful feature?” It would be a shame if a largely syntactic matter hindered the
acceptance of object-oriented programming by the scientific community.

6 Objections to this proposal

The general idea of an exponentiation operator has been discussed at some length on the
Usenet newsgroup comp.lang.c++, and several objections to it have been raised. I will

14

445

X3J16/92~0099 WG21/80176

now summarize these objections, and my responses to them. Many of them have already
been discussed earlier in this document, so most of the responses will be brief.

1.

It requires extensive runtime support.

My response: No run-time support is required for programs that do not use
*~. Programs that do use it will require no more extensive run-time support than
programs that do floating-point computation already require.

- A proper implementation of pow() would render this operator unnecessary.

My response: No matter how pow() is defined, the syntactic problem remains.

. The restrictions on the domain of the operands are excessively complicated, and are

without precedent in the C++ language.

My response: The restrictions on the domain of *~ are those dictated by ordinary
mathematics. This is no different in principle from the C++ division operator, which
may not be given operands for which division is mathematically undefined.

. It is too difficult-to implement algorithms which perform exponentiation in an ade-

quate manner.

My response: The techniques for exponentiation are known, and have been im-
plemented in many FORTRAN compilers.

. It is premature to add an exponentiation operator before resolving design decisions,

specifically,

(2) The return type for different operand types;
(b) The value of the expression 0 *~ 0:

(c) The associativity of the operator;

(d) The behavior upon domain error; and

(e) Whether (for example) x *~ 3 == x*x*x.

My response: All of these examples fall into two categories:

(a) Issues which are resolved by examining how the exponentiation operator works
in FORTRAN; and

(b) Issues which should be left unspecified in the Standard, because the analogous
issues with other arithmetic operators are left unspecified.

. This is really a C issue, not a C++ issue, so it should be referred to the C standard-

ization process instead.

My response: It is true that an exponentiation operator could be added to c,
but this is no reason why it should not be added to C++ first. Note that this same
objection could have been made to function prototypes (which existed in C++ before
they did in C), and to the use of the delimiter // to begin comments.

15

446

X3J16/92-0099 WG21/K0176

7. This is only one of many issues in numerical programming; we should wait until

7

the Numerical C Extensions Group (NCEG) is finished, and then consider their
proposal as a whole.

My response: The NCEG is working on a very elaborate proposal, which would
change the C language in very fundamental ways. These plans will only be included
in mainstream C++ compilers years from now, if ever. Exponentiation may well not
be the most important issue for numerical programmers, but it is by far the easiest
to implement, and has no major repercussions; I am not proposing a new C-like
language, but merely a small change which fixes an omission in C++.

. The code which is generated is not a simple machine instruction, so it is misleading

to use a syntax which suggests that it is.

My response: The distinction between atomic and non-atomic operations makes
less sense in C++, which has operator overloading, than it does in C. In any case, the
distinction is machine-dependent.

. Adding this operator makes the language more complicated by adding a new token

and a new precedence level.

My response: This objection is valid. A new token could be avoided by using the
operator ~ instead of *~, but a new precedence level is unavoidable. In my opinion,
the convenience of this operator outweighs the added complication in the table of
precedence levels.

Conclusion

An exponentiation operator is a desirable feature; I don’t think that anybody would
contest that. I have never, for example, heard anybody suggest that FORTRAN would be
a better language if the operator ** were removed from it. Not every desirable feature,
however, can be included in C++.

What I have shown in this paper is that an exponentiation operator is not merely a

desirable feature, but, more importantly, also one that can be added to C++ with very

little effort, with no loss in efficiency, and with no effect on existing code. I believe that
this justifies its inclusion.

447

16

