Accredited Standards Committee* Doc No: X3J16/91-0121
X3, INFORMATION PROCESSING SYSTEMS WG21/N0054
Date: September 21, 1991
Projectt Programming Language C+
Reply to: Andrew Koenig
AT&T Bell Laboratories
184 Liberty Corner Road
Warren NJ 07059 USA
ark@europa.att.com

Analysis of overloaded operator. ()

Andrew Koenig
Bjarne Stroustrup

Background

Several years ago, C++ gained the possibility of implementing “‘smart pointers” by overloading
operator-> () for aclass:

class T {

public:
void foo();
!/

b

class Pointer {
public:
T* operator->(};
//
b

The idea was that a Pointer object could then be used as if it were a T*:

void f(Pointer p) {
p->foo () ;
)]

Here, the expression p->foo() behaves like p.operator->()->foo() with the type
constraintson Pointer : :operator - > implied by that behavior.

Analogously, several people have suggested that it should be possible to overload operator. ()
to allow the creation of objects that behave like “smart references.”

* Operating under the procedures of the American National Standards Institute (ANSI)
Standards Secretariat: CBEMA, 311 First Street NW, Suite 500, Washington DC 20001

On the surface, that idea is very appealing. Closer examination, however, reveals some
problems. Once an ordinary reference is bound, no further operations are possible on it: any use
of the name of the reference is immediately translated into a corresponding use of the object to
which the reference is bound. This is likely to be unacceptable for a “smart reference,” because
what would be the point of having such a thing if its behavior were always identical to an
ordinary reference?

This is not a problem for “smart pointers” because a pointer is an object distinct from the one to
which it points. There is therefore no ambiguity between operations on the pointer itself and
operations on its object. The lack of such a distinction for ordinary references makes it essential
to create such a distinction for “smart references.”’

Proposal 1: distinguish by usage syntax

One possible solution to this problem was discussed in committee at the March 1991 X3J16
meeting: if an object x has operator. defined, then it will be used only for things of the form
x.y. For example:

class T |

public:
void foo();
//

}i

class Reference {
public:
T& operator. ();
void foo();
//
b

void f (Reference r, Reference* rp)
{

r.foo(); // T .operator. () .foo()

rp->foo(); // 1p->foo(); no call of operator. ()
}

The call to rp->£foo in £ would call member foo of the Reference class, not of class T, because
of the use of -> instead of . in that statement. The idea is that operator. () would be used
only whena . was explicitly used in an expression.

We discovered several problems with this approach. For example, sometimes member functions
are called without using either form:

void g(Reference 1, Referencer rp)
{

T++;

r.operator++();

(*Ip) ++;

Ip->operator++();
}

Under Proposal 1, r.operator++ () can only mean r.operator. () .operator++ (). What
about t++? People expect these forms to be equivalent, so making it call
Reference: :operator ++ would surprise them.

But that is one case where operator . must be used without an explicit . appearing. Once we
admit one case, it becomes much harder to argue against the others.

Proposal 2: distinguish through inheritance

Let’s see what happens if we say that operator. () is called for every attempt to refer to a
member of a “smart reference’”” class. There is now no trouble with our previous examples:

void f(Reference r, Reference* rp)
{
r.foo(); // T.operator. ().fool()
rp->foo(); // rp->operator.().foo();
}

void g(Reference r, Reference* rp)

{

T++; // Y.operator. () .operator++();
r.operator++(); // r.operator.().operatox++();
(*Tp) ++; // Ip->operator. () .operator++();
rp->operator++ () ; // rp->operator. () .operator++();

}

However, this raises a new problem. Suppose we want to define “smart references” that
implement object semantics through use counts. In other words, we want Reference
assignment to result in multiple Reference objects that refer to the same thing. To do this, we
need to define Reference: :operator= and Reference: :Reference
(const Reference&) that deal with the appropriate members of the Reference objects
themselves.

Unfortunately, every attempt to use a member of the Reference class will immediately be
forwarded via operator. ()! In other words, under this proposal, a class with operator. ()
can have no other members because there’s no way to get at them!

It doesn’t seem that such classes would be much use. However, there is a trick that makes them
useful:

class Refbase {
void foo();
//

b

class Reference: private Refbase {
public:

T& operator. ();

//
bi

The idea is to take all the stuff that a Ref erence needs to implement its particular semantics and
put it into a base class. We then use private inheritance and derive Reference from that base
class. When we want to get at a member of Refbase, we say something like this:

((Refbase*) (this)) .foo() ;

In other words, we convert this into a base class pointer and get at the base class members that
way.

Proposal 3: a simplification of Proposal 2

We believe that Proposal 2 is workable, but requiring users to define classes in pairs this way is
clearly too complicated and error-prone. One possible simplification comes to mind: if a class

with operator. () has additional members, allow those members to be used directly instead of
forwarding their use through operator. (). For example:

class Reference {
public:
T& operator. () ;
void foo () ;
//
};

void h(Reference 1)
{

r.fool(); // t.foo();

r.bar(); // T.operator-> () .bar();
}

This would surely avoid many possible errors. Unfortunately, it does conceal a pitfall: if class T
has its own bar member, users of the Reference class will unwittingly pick up
Reference: :bar when they meant T: :bar. One might argue that it is the responsibility of the
author of the Reference class to avoid such name clashes, but that fails to account for the
possibility that class T might change later and the author of class T might not know of the
existence of the Reference class.

A Broken Parallel
By applying operator. () even in cases where . isn't explicitly mentioned, we break the
parallel with operator-> (). Consider:
class X {
/!

Y* operator->{();
b

void f (X p)
{
p->foo(); // p.operator()->fool()
(*p) .foo(); // no call of operator->()
}

Naturally, the parallel might be re-introduced by changing the semantics of operator-> () so
that operator-> () is applied in both cases above. If that change were made, functions defined
in the smart pointer class would be called in preference to functions defined in the referred class
in the same way as functions defined in a smart reference class would be called in preference to
functions defined in the referred class.

It isn’t really useful to make that change, though, for smart pointer classes because the author of
class X has the possibility of defining X: : operator=*() to provide appropriate behavior. This
possibility does not exist for smart reference objects, though, because the reference somehow has
to support all the operations defined for the object to which it refers.

Indeed, that is where the parallel really breaks down. The sharp distinction between pointer and
object is blurred in the case of references, and that blurring is the cause of the trouble.

Broken Rules

Users can define operators for user defined types only. For example, a user cannot define a new
meaning for operator+ () of two ints. Furthermore, C++ does not define new composite
operators based on user defined operators. For example, having operator+() and
operator= () defined for a class X doesn’t legalize

void f(X a, X b)
{

}

Proposal 3 for operator. () and its implication for operator-> () violates both rules. This
‘violation’ can be explained by observing that the p->m to (*p) . m transformation is somehow
more fundamental than transformations such as a+=b to a=a+b. Note in particular that the first
transformation is defined without weasel wording whereas the second has to take possible side
efects of the evaluation of a into account.

Conclusion

At this point, we are convinced that more study is needed before a coherent proposal can be

made for operator. (). We are writing down our thoughts so far in order to encourage others
to contribute to that study. In particular, we need to look further for examples where a user-
defined operator. () would be useful and consider the possible implications on the definition

of operator-> ().

