X371/41-0p,,3
11-05-10

Pr-_

Type Identification in C++

Dmitry Lenkov
California Language Laboratory
~ Hewlett-Packard Company
19447 Pruneridge Avenue, MS: 47LE
Cupertino, CA 95014

E-Mail: dmitry%hpda@hplabs.hp.com

ABSTRACT

Many applications and class kibraries require a mechanism for run-time type
identification and access to type information. This proposal describes a general type
identification mechanism consisting of language extensions and library support. It is
based in the paper [9] presented at the USENIX C+ +'91 conference, feedback pro-
vided by many C+ + experts, and several ideas suggested by Bjarne Stroustrup.

o o

1. Introduction , . . _

There have been various attempts made in C++ to implement a method of type identification for
objects and a mechanism to access additional type information [3).14).15).{8),[9). There are several
reasons why such identification is needed.

PN

® Support for accessing derived class functionality
Many of the commonly available C++ class librarics (such as NIH[4], InterViews]6),
ET+ +[5], COOL{8)) consist of an inheritance hicrarchy with a root class (such as the Object
class in NIH). When dealing with pointers to this root class, a common operation in these
toolkits is to determine if a pointer points to an object of a derived class. If 50, the pointer is
cast down to the derived class so that a derived class member function may be invoked. Since
C+ + performs its type checking at compile time, type information is not available at runtime,
and each toolkit uses different mechanisms for determining the actual type of the object being
dereferenced. When the root class is a virtual base class (as in NIH), since the cast down 10 a

. ived class is not permitted by C+ +, the library must invent mechanisms to circumvent this

<. estriction.) :

® Support for Exception Handling,
The exception handling mechanism(1)[2] requires type identification at run time, in order to
match the thrown object with the correct eatch clause. Since a eateh clause can catch a type
which is a base class of the thrown object, it is necessary for the compiler to generate informa-
tion about inheritance hierarchies that is used to do eorrect matching. The exception handling
mechanism is an example of an implicit use of the type identification mechanism.

, ® Support for Accessing Type Information.
, : There are various class-specific actions that are difficult to achieve using the normal virtual
function mechanism. For example, consider the following task: count (or do some similar task)

for all nodes of a particular type in a tree of polymorphic objects.

@ Support for Libraries and Toolkits.
Once the type of an object has been determined at runtime, it may often be necessary to get
further information about the type. For example, as described in [3], applications may need to
know the names of classes and their inheritance hierarchy, if a customization mechanism uses
class and instance names. Our proposal describes library support for getting additional infor-
mation about a type.

This proposal presents language and library extensions that will support type identification and access
to type information at run-time. The goal of this proposal is to create a uniform mechanism for the
creation of and access to type information. The implementation strategy for the type identification
mechanisms descibed in this proposal is outlined in [9].

2. The ptr_cast Operator

Applications often require the ability to determine dynamically if a pointer points to an object which
is a subtype of a given type and cast the pointer down to the given type. The ptr_cast operator [7] is
a conditional cast operator that allows the programmer to perform these two operations at once. It

is a predefined operator that takes a type name as the first parameter and a pointer as the second
parameter. For example, ’

ptr_cast(A, p)

determines if the actual type of the object pointed to by "p" is a subtype of type A (note that a type
is a subtype of itself). If so, it converts “p" to a pointer to class A pointing to the class A instance
which is a subobject of the object originally pointed to by "p". Otherwise it returns a NULL pointer.

E

Consider three classes:

class List (...);

class Sortedlist: public List (
Key least_key();
p

class LenSortedList: public Sortediist {
fnt tength();
b

Here are some examples of how the ptr_cast operator an be used. It is assumed here that a
declaration of a variable is allowed in the expression of the conditional statement.

Example 1:
List* {_p = /7 initialize

t_p = // point to some other list

{£(SortedList® s_p = ptr_cest{ Sortediist, L _p)) (
Key k = s_p ~> least_key();

b

1£¢ LenSortediist® Ls_p = subtype(LenSortedList, L_p))
cout << (is_p -> length());

An important characteristic of two conditional statements above is that "s_p" and "ls_p" exist within
conditional statement scope only. It assures that these pointers can be used safely.

Another example is calling a function that requires an actual parameter which is a derived class.

Example 2:
void func(LenSortedList*);

1£¢ LtenSortedList* (s_p = ptr_cast(LenSortedList, t_p))
func(le p);

In this example "_p" is a pointer. ptr_cast can also take a reference as a parameter:

Example 3:
void func(LenSortedList*);

R

void foo(LenSortedListd L_r) (
11¢ LenSortedList* ls_p = ptr_cest(LenSortediist, L_r))
func(ls_p);

b

However ptr_cast cannot be used to assign value to a reference. If “func” takes a reference as a
parameter instead of a pointer, the above two examples cannot be restructured so that “func” could
be invoked with a guaranteed correct parameter. This is because ptr_cast is a conditional operator
and may return NULL pointer which cannot be converted to a legal refereace.

3. The rel_cast Operator | :

The ref_cast operator [7] is proposed to deal with the cases when a reference supposed to be
returned. The ref_cast operator is a predefined conditional cast operator that takes a type name as
the first parameter and a reference as the second parameter. For example,

ref_cast(A, 1)
determines if the actual type of the object referenced by 1" is 2 subtype of type A. If so, it converts

“" 10 a reference to class A referencing the class A instance which is a subobject of the object origi-
nally referenced by “r". Otherwise it raises an exception. Here is an example how ref_cast can be
used:

-

e e . o it e o

Example 4:
void func(LenSortedi istd);
void foo(LenSortediistd L_r) (
try €
func(ref_cast(LenSortedList, L_r));
; .
catch (bed_ref_cast) (

b}

4. The subclass operator

- In the previous examples two new cast operations were used to allow functionality defined in subc-
lasses to be used. However, there are applications that do not require cast operations to be per-
. formed while the subtype relationship between two classes still needs to be established. The sub-
. class operator [9] is proposed to handle these cases. It is a predefined operator that, like ptr_cast,
takes a type name as the first parameter and a pointer, or a reference, as the second parameter. It
returns a result of type int. The result is 1 if the dynamic type of the object being pointed to, or
referenced, is a subtype of the type provided as the first parameter. Otherwise 0 is returned. Con-
sider:
Example 5:

void sort(List*);

l..;st *L_p = // initialize

1f(tsubclass(SortedlList, (_p))

sort((_p);

Consider another example:

Example 6:
void other_func(OtherType *);
OtherType p = // initislize
1£(subclass(SortedList, L_p))
other_func(p);

In this example, the functionality associated with the SortedList subclass is invoked as in example 2.

However actual actions take parameters of types other than SortedList. Thus a cast operation is not
ded : .

3t is clear that in the above examples subclass can be replaced with ptr_cast. Thus it does not add
- any new functionality. However it is a more efficient operator since it does not require to compute
: the pointer conversion. 4 -

P

~

S. Polymorphic and non-polymorphic types

All examples above assume that participating classes are polymorphic, i.e. contain at least one vir-
tual function. The use of the operators introduced above for mon-polymorphic classes is limited
because only statically defined types can participate in the operation. If the three classes defined
above are non-polymorphic (no virtual functions are declared) then in all examples above results of

- the introduced operators are useless. It may be desirable to produce a warning if these operators
‘ musedwnhnon-polymorphcdasm,nneethcprogmmermynotbeawarethatthechssesare

non-polymorphic.

6. The typeid Type

Some of the applications described in the introduction would require a unique identifier to be associ-
ated with a type. The predefined type called typeid [9] is proposed to be used. Each unique type in
an application has a unique value of the typeid type associated with it. Below two operators which
return values of type typeid are defined.

The typeid type can be defined in two different ways. With the first approach [9] the typeld type is a
simple predefined type, similar to int or vold®, with a few operations defined on it. Expressions
evaluating to the typeid type can be compared for equality and inequality. Variables of the typeid
type can be assigned or initialized with an expression of the typeld type. No other operations are
allowed. Initialization of variables of this type can only be done ;hrough the use of the operators

- stype and dtype defined below.

With the second approach [7] the typeid type is a predefined class. It can be defined basically as the
Typelnfo class (see below). However its instances can still be initialized be the operators stype and
dtype only.

7. The stype and dtype operators

stype returns the type identifier (typeid value) for the static type of an expression. It can also be
applied to a type name and returns the type’s typeid value. The dtype operator can be applied to
any expression that evaluates to a pointer, or refereace, to a type. If the pointer points to a
polymorphic class, dtype returns the type identifier (typeld value) of the actual type of an object
pointed to by this pointer. Note that this type must be determined dynamically. If the pointer does
not point to a polymorphic class, dtype returns the typeid value of the static type pointed to by the
pointer definition.

Example 7:
List® L_p = new SortedList;
int rum_Sorted Lists = 0;
typeid t = dtype(l_p);
1f (t == gtype(Sortediist)) rum_Sorted Listses;

The reason that stype and dtype are not predefined member functions is the same reason that sizeof
is not a member function: both identify a fundamental property of types, as opposed (o an operation
on objects of those types. On the other hand, both can be applied to any types including types such
as (int* () 0).

8. The Typelnfo class

Given a typeid, programmers may wish 10 get information about the underlying type; programmers
may also wish to extend the type information automatically generated by the compiler (for example,
they may wish to store the name of type). The implementation of the language features described in
the previous sections will require an implementation to store some information about each class.

This information can be accessed using the Typelnfo class interface described below. The C++
library standardization effort will determine the minimum functionality to be provided by all imple-
meatations.

class Typeinfo ¢
void* fmpl_p; 1/ points to the implementation
7/ dependent data structures
17 generated by the compiler snd
1/ link time tools

public:
int sizecf(); f/size of type
const char* neme() const; //class name
© int get_num_base_clesses(); f/mmber of base classes
typeid get_bese_class(int pos); //typeid of specified base class

int is_virtusl_bese_class(int pos); //is specified base virtusl?
int visibility_of_bese_class(int pos); //public(==2), protected(ss1)
//0r private(s20) base class?

7/The routines sre used to extend the compiler generated type information
AuxTypelnfo* get_sux_typeinfo(typeid key);
fnt add_sux_typeinfo(AuxTypelnfo *info, typeid key);

b H

If the typeid type is defined as a class it can replace Typelnfo completely. All above functionality
will be defined in the typeld class in this case.

9. typeid as a Simple Type
A standard library function called get_type_info is proposed to convert a typeid into a pointer to the
Typelnfo object.

“ The type inquiry function is specified as follows:

Typelnfo* get_type_info(typeid)

The advantage we gain from separating the typeid type form the Typelnfo class is that we make a
clear distinction between the types recognized by the language and the classes recognized by the
standard class library. In addition, initialization through predefined operators is more natural for
simple types than for class instances.

10. Extensibility

Clearly, there needs to be a way of to define and access more than just the minimal type information
provided by Typelnfo. The information stored and the association of that information with the class
Typelnfo object needs to be examined in detail. This section describes mechanisms 9] whereby a
uscr may extend the type information associated with a class.. It is best to allow the class library
creators and users to specify what information nceds to be associated with each type.

The following mechanism is uscd 1o extend the type information associated with a type. .

® A member funclion called "add_aux_typcinfo™ is provided in the Typelnfo class. This member
function is used 1o attach additional type information to the minimal type information

TN

Y

detine ADD_TYPE_INFOC TYPENANE, INFONAME, INFO_PTR) \
get_typeinfo(stype(TYPENANE))->add_sux_typeinfol INFOPTR, stype(INFONAME));

define GET_TYPE_INFO(INFONAME, OBJECT_PTR) \
CINFONANE®) (get_typeinfo(dtype(OBJECT_PTR))->get_sux_typeinfo(stype(INFONANE)))

These macros can be used to rewrite the example described in the previous section.

b))
12
Bl
{4
5]
(6]

17
18]

1)

class NameInfo : AuxTypelnfo ¢

char *uidget_name;
public:

Namelnfo(char* n): widget_name(n)();
);

Namelnfo NamelnfoObject = »ClassWidget™;
// Attach additional type informetion for ®Widget®
ADD_YYPE_INFO(Widget, Namelnfo, ENameInfoObject)

7/ find out the name of a cless.
Widget* w = // initialized to something;
char* widget_name = GET_TYPE_INFO(Nemelnfo, w) -> widget_name;

References
Margaret A. Ellis, Bjarne Stroustrup, The Annotated C++ Reference Manual, Addison-
Wesley, 1990

Andrew Koenig and Bjarne Stroustrup, Exception Handling for C+ +, USENIX C+ + Confer-
ence Proceedings, 1990 :

John A. Interrante, Mark A. Linton, Runtime Access to Type Information in C+ +, USENIX
C+ + Conference Proceedings, 1990

Keith E. Gorlen, An Object-Oriented Class Library for C++ Programs, Proceedings of the
USENIX C+ + Workshop, 1987

Andre Weinand, Erich Gamma, and Rudolf Marty, ET++ - An Object-Oriented Application
Framework in C+ +, ACM OOPSLA’88 Conference Proceedings, 1988

Mark A. Linton, John M. Vlissides, and Paul R. Calder, Composing user interfaces with Inter-
Views, Computer, 22(2):8-22, February 1989

Bjamne Stroustrup, Personal communication

Mary Fontana, Martin Neath, Checked Out And Long Overdue: Experience in the Design of a
C++ Class Library, USENIX C+ + Conference Proceedings, April, 1991

Dmitry Lenkov, Michey Mehta, Shankar Unni, Type ldentification in C+ +, USENIX C++
Conlcrence Proceedings, April, 1991

-y - m - . ae me— . —
B e g i utt-ggaysn g gt - .

generated for a type.

® A member function called "get_aux_typeinfo™ is provided in the Typelnfo class. This member
function is used to retrieve any additional type information that a user may have attached to a
type.

® It is reasonable to expect that multiple users may wish to attach auxiliary type information to
the same type. Therefore, the notion of a “key” is required. A “key” is used to distinguish
between multiple auxiliary type information objects attached to the same type.

Consider an example:

7/ User wents to add & "rame™ field to the Typelnfo for class Widget

7/5¢e below for an explanstion of the AuxTypeinfo class
cless Nameinfo : Auxtypeinfo {
char *uidget_name;
public:
Nemeinfo(char* n): widget_name(n)();
);

NameInfo NamelnfoDbject = “ClassWidget®;
7/ Attach additional type information for ™Widget™
get_typeinfo(stype(Widget)) -> add_sux_typeinfo(&NsmeinfoObject, stype(Namelnfo));

17 Assuming the user has instelled name informstion in Widget, and

7/ all classes derived from §t, here is how 8 user could dynamicelly

/7 $ind out the name of a class.

Widget* w = /7 initialized to something;

cher® widget_name = (NameInfo*) (get_typeinfo(dtype(w)) ->
get_aux_typeinfo(stype(Nameinfo))) -> widget_name;

The exensibility scheme proposed is essentially a convenient method of adding a static member (in
fact, a virtual static member) to an existing type, without baving to modify the type in any way. Indi-
vidual users can certainly come up with various methods of accomplishing the same result, but the
goal here is to propose a uniforrm method for extending type information.

11. The AuxTypelnfo Class

Any additional type information should be defined as a class derived from AuxTypelnfo. Instances
of this are used to link the auxiliary type information objects. See section 4.5 on additional informa-
tion about the implementation of extensibility. The AnxTypelnfo class is defined as follows:

class Auxtypelnfo {
7/ rext ;sxiliary type info
AuxTypelnfo* next; A
/7 The type of the cless derived from this class
typeid key;
b H

Thc library header file can define macros so that the additional “key” parameter can be automatically
gencrated. For example:

-~

