Dec

An

8 16:05 1989 ambig Page 1

attempt at defining ambiguity resolution for C++.

First the general principles:

-Typing in C++ is bottom-up: the type of a subexpression is independent of its
context. Since the type of variables and litterals are explicit, specifying C++
type resolution reducess to defining how the type of a function or operator call

is

resolved, given the types of the arguments or operands.

-Mandatory conversions (type adjustments):

-Following ANSI C, expressions yielding a function or array type are ALWAYS
converted to pointer type except in the syntactic context of the & or sizeof
operators. Also, for the purposes of type~checking, argument type that are
function or array types are adjusted to be pointer types. This is done prior
to the value to reference adjustments defined below. (References to arrays or
functions must be barred to make this consistent.)

-In C++ value (non-reference) formal arguments of type T can match any T&
actual argument, regardless of the qualifiers applied to T in either case.
Conversely, C++ allows one to bind a const T& or const volatile T& to the
result of a function returning a T value regardless of any qualification
of that value. To express this, we will assume that

-For the purposes of matching a prototype to a function call, any return
type (qualified) T, where T is a non-reference, is adjusted to const Ts&.
-For the purposes of matching a prototype to a function call, any formal
argument type (qualified) T, where T is a non-reference, is adjusted to
const volatile T&.
-These adjustments are NOT done inside function types, which retain their
original form.
-For the purposes of type checking, any variable or data member
(qualified) T, where T is a non-reference, is adjusted (qualified) T&.
This also applies to formal arguments when type-checking the
corresponding function body.
-For the purposes of type checking, any constant of type T is considered
to have type const T&.
To avoid cluttering the rest of this description, although we will assume
that these adjustments are always done, we will continue to describe
functions (including conversions) in their unadjusted form (so when we
talk about the int (float) conversion, we actually mean the
const int& (const volatile floatg) conversion) .

-Now on to overloading resolution. To resolve a function or operator call

we
or

consider all the functions or operators that match the name of that function

operator, within the following domains:

-In a global function call, we consider. only global functions, except if the
function name is hidden by a class member (in a class context). This also
applies for explicit operator calls (e.g., operator+(x,y)), with the same
exception for class contexts.

-In a ‘.’ member call (object .member (args)), the type of object must be
a class X, possibly qualified, and posssibly referenced. Only those members
found in class X by the class lookup rules are considered. The call is
ambiguous if the lookup is ambiguous. This rule also applies if the member
is an operator (as in X.operator+(y)), and for direct members in a class
context (e.g., £() in void X::f() { £(0); }).

—-In an infix call to new we consider either the the class operator new if
any is defined, or the global one by default. On the other hand, all the
operator delete are considered in an infix delete call.

Dec 8 16:05 1989 ambig Page 2

-In a ‘->'’ member call (p->member(args)), the type of ‘p’ must be either a
{(qualified) pointer to (qualified) class X, or a (a reference to) a
(qualified) class Y with operator ‘->’. In the latter case, applying
repeatedly operator -> must yield a (qualified) pointer to some class X.

In both cases, only the members obtained by class lookup in X are considered.

-In an infix operator call (e.g, x+y, x-=y, x[yl]), if the leftmost argument
is of type (reference to) (qualified) class X, only global operator op and
operator op obtained by lcokup in class X are considered. This does not apply
to explicit call (operator+(x,y)) where only the global operator is
considered. I am not sure of what should become of unary operator& and
operator, (are the predefined meanings erased?).

-Functions or members with ellipses are considered only if there are no
matchings with any other functions, and a function matching n arguments
against the ellipsis is considered cnly if there are no matchings.

The argument lists of the call and/or members functions considered are modified as
follows, for the purpose of type checking:

-A function with n default arguments is considered to be n+l different
functions.

-Class X non-static members are considered to take an X& from which the
‘this’ pointer is derived; the derivation of the ‘this’ pointer is
independant of any operator& definition for class X (indeed it is the only
way of taking the address of an X object whose & operator has been
redefined) . This extra argument will take on any member qualifiers (e.g.,
it will be a const X& for a const member. For the purposes of type checking,
the call is assumed to provide the extra argument, as either

-'x’ in x.member(args), op %X, X Op, X Op Y, x(args), xlyl, x.*y, or x->*y,

- Y*x’, ‘*x, operator->()’, ‘*x.operator->() .operator->()’, ..., whichever
is appropriate, x->member(args),

-‘*this’ in a direct member call.

-In calls to new or delete the size_t argument does not affect
type-checking, and can be safely ignored.

-A class A::operator delete definitions behave as if it declared a global
operator delete (const class A*const&); the global delete is checked as if
it were delete (const void*consté&).

-Given the set of considered functions and the tuple of call argument types,
we can define the set of MATCHINGS for that call:

-A matching is considered function together with a tuple of admissible sequences
of conversions that convert each call argument type to the function argument
type. Conversions are listed below. Admissible sequences have at most one
user-defined conversion, see below for a precise definition.

—~If there are no matchings the call is a MISMATCH. If there is only one matching
then the call is unambiguous. Otherwise we need to use the ambiguity resolution
rules described below.

-To help resolve ambiguities, conversions are classified in a partial order.
There are two grades of ordering, used as follows:

-when a conversion C is locally better than a conversion C’ (denoted c>Ccr),

we will prefer to perform C rather than C’ for a given argument.

~when a conversion of C is globally better than a conversion C’

(denoted C>>C’), we will prefer to perform C on one argument if this

avoids doing C’ on any other argument .
Of course globally better implies locally better.
-We define a preference precrder on matching as follows:

-given two matchings M and M’, we define the two distinguishing tuples

D and D’ as follows:

for all i, D_i is a maximal (for <) element of

Dec 8 16:05 1989 ambig Page 3

{Cin M i | C not in M’'_i}
or Sexact if this set is empty (Sexact is the exact matching) .
For this definition, we consider that C is in M’_i when:

-C appears as is in the M’_i sequence

-C is a qualifier conversion and is included in another qualifier
conversion in the M’ i sequence (e.g., char*&->char*consté& is
included in char*&->const char*const&) when volatile qualifiers
are ignored.

-C is a user conversion to a type T, M’ i contains a user conversion
to a type T’, and T’ can be converted to T without user conversions
or T can be converted to T’ without user conversions.

-we say we prefer M to M’ if some conversion in D that is locally better
than the corresponding conversion C in D’ and C is not globally better
than any conversion in D. Mathematically,

exists i, D_i > D’_i and not exists j, D’_i >> D J
-If there is a maximum matching for the preference preorder (i.e., a matching
that is preferred to all others and to which no other is preferred), then that
matching is chosen. If the matching contains an ambiguous user conversion,
then the call is also ambiguous; if the matching requires a non-existent
Copy constructor (e.g., only T::T(T&) exists), the the call is a mismatch.
Otherwise the call is unambiguous.

-Now the list of conversions; here a naked ‘better’ will mean globally better,
—The best conversion is no conversion at all, that is the exact match Sexact.
-Qualifier conversions: The most elementary conversions are adding const or

volatile qualifiers to a referenced or pointed~to type; these can be added
simultaneously at any level of indirection. Qualifier conversions are better
than any of the other conversions, but exact match and volatile qualifier
conversions are better than const qualifier conversions. The exact match is
not better than the volatile qualifier conversions, so the volatile qualifier
does not help to lift ambiguities.

-Standard conversions: There are two categories of standard conversions,
conversions between arithmetic types and conversions between pointer or
reference types. In arithmetic conversions, integral promotions and float to
double conversions are globally better than any other standard conversion;
also, conversions that are arithmetic promotions (e.g., int to float or short
to unsigned short) are globally better than those that are not (e.g., long
double to char). Within pointer conversions, those from a class A* to a
class B* are locally better than those from a class A* to a C* 1f C is a
base class of B or void. Similarly for reference, and pointer to member
conversions (all these cnversions preserve qualifiers). The other kinds of
standard conversions are 0 to null pointer and pointer to function to void*.

-Conversions to references: for now, C++ still allows to convert a consté to
a & by introducing a temporary variable. However, this is not allowed
for the this argument of members, except in infix operator calls. Also,
this does not allow one to convert a volatileg to a &.

-User conversions: Both standard conversions and conversions to references
are better than user-defined conversions. User conversions include not only
those conversions actually defined by the user, but all those that can be
performed by using standard, or const, or value conversions followed by a user
conversions. The resolution of such composite conversions is done recursively
according to the macthing rules above. Some user conversions may be ambiguous;
this does not affect the call matching resolution, except that the whole call
becomes ambiguous if an ambiguous conversion is selected.

~Ellipsis conversions: Finally, any value can be converted to match the
ellipsis, but any conversion is better than that (this principle is already

Dec 8 16:05 1989 ambig Page 4

embodied in the function selection rules given above).

-Admissible sequences: They are restricted by the following rules
-at most one user conversion (but it includes any sequence of standard,
qualifier, or reference required to apply the user-defined conversion)
-at most one standard conversion.
-no qualifier conversion after a qualifier conversion (they can be bundled
together), or after a pointer standard conversion (they cna be perfomed
beforehand) .

Examples:

Bottom-up typing:
class FLOAT ({};
FLOAT f (float):;
int £ (int);
float x; // could be resolved as f(int(x)), but is rejected
int y = £(x); // because of bottom-up resolution

Mandatory conversions: function types
int 4 () ;
int (*p d) = **kkkkkkkkkkhxkkkkkdg;
Adjustment within argument types:
typedef int A[10];
int h (A a);
int g (int (*f) (int¥*));
int g £ = g(£f); // ok, h matches the f prototype

Mandatory conversions: value-to-reference adjustments
int £ (int);
int £ (inté&);

int x;

int £ 1 = £(1); // ok, f(int), adjusted to f(const volatile intg)
int £ x = £(x); // ok, f(intg)

int £ £ x = £(£(x)); // ok, f((const volatile inté&)f((int&)x))

Global functions vs class context:
void f (int);
class X { void £(); }:
void X::£() {
£(); // uses X::f
£(0); // mismatch
extern void £ (int);
£(); // mismatch
£(0); // calls ::f(int)
}

Direct member lookup:
struct X {
int £ ();
}s
int g (X&,int);
struct Y : X {
int £ (int);
} oy
int g (Y&):

Dec 8 16:05 1989 ambig Page 5

int y £ = y.£(); // fails because class lookup does not get X::f
int g vy g (y); // succeeds because standard conversion is allowed

Domain for new and delete:
struct X {
void* operator new (size_t,int);
void operator delete (void*);
}
X* p x = new X; // fails, ::new not considered
struct Y {
operator X* ();
}i
main() {
const X* p x;
delete p_x; // ok for X::delete;
const int* p i;
delete p i; // calls global delete, 2.1 gets this one wrong!
Y y;
delete y; // ok, calls X::delete ((void*) (X*)Y);
}

Indirect member call: using operator=->
struct X { int m(); };

struct Y {
X* operator->();
by
int y m = y->m(); // calls x->m();

Operator resolution: members vs globals
struct X {
X (int);
int operator+ (int);
}:
struct ¥ : X {
Y():
int operator+ (Y);
}oy:
int operator+ (X&,X):;
int y_plus_0 = y+0; // resolved to operator+((X&)Y,X(0))
// y.X::operator+(0) not considered

Ellipses:
int £ (int);
int £ (int, int, ...)
int £ (int, ...);
int £ 0 = £(0); // ok, f(int) has no ellipsis so f(int,...) is not considered
int £ 0_0_ 0 = f (0,0,0); // ok, f(int,int,...) matches only one argument
// with the ellipsis, so f(int,...) is not considered

Argument modification: default arguments
struct X { X(int); };
int £ (int, complex = 0); // considered as both f(int) and f(int,complex)
int £ (double);
int £ 0 = £(0); // ok, £(0,complex(0)), user conversion in default argument
// does not interfere with choice of function

Dec 8 16:05 1989 ambig Page 6

Argument modification: the this argument
struct X {
int m () const;
inté m();
}o*x;
const X *y;
int& x m = x->m(); // ok, ‘this’ argument selects int& m();
inté ym = y->m(); // warning, ‘this’ argument selects int m();
h // needs reference conversion.

Example of Matchings:
struct X {

X (int);
}s
int £ (X&, X, double, int); // function f1
int £ (X&, X, int, double) ; // function f£2
int £ (X&, int, double, double):; // function £3
int £ le2 0.1 1 = £ (le2, 0, 1, 1); // call to match
matchings:

-To simplify things, we’ll use X, int, double for const X&, const int&, and
const double&. Also, we’ll omit the volatile qualifier conversions, since they
don’t affect the resolution here.

£l (double->X->X&, int->X, int->double, S$exact)
£2 (double->X->X&, int->X, Sexact, int->double)
£2 (double->X->X&, S$exact, int->double, int->double)
note that the first user conversion actually resolves to the sequence
double -> int -> X
preference preorder:
-Between f1 and £2 we have
£1’ = ($exact, Sexact, int->double, &exact)
f£f2r (Sexact, $exact, &exact, int->double)
thus we prefer fl1 over £2 because of the last argument ($exact is better
than int->double, a standard conversion, and int->double is not better
than any component of f1/). However, we also prefer f£2 over fl because
of the third argument. This there is an ambiguity between f1 and f£2.
-However if we consider fl1 and £3 we have
f1’ = (Sexact, int->X, &exact, &exact)
£3’ = (Sexact, S$exact, &exact, int->double)
Then we prefer £3 over fl1 because of the second argument, but we do prefer
£l over £3: the last argument is the only place where fl’ is locally better
than £3’, but then the int->double standard conversion is globally better
than the int->X conversion in f1’.

-Since the same holds between f2 and £3, £3 is the maximum for the preference
preorder and the call is unambiguous. Note that the fact that the first
argument requires a lot of conversions does not affect the ambiguity
resolution, since the required conversions are the same in all cases.

The membership rules: identifying user conversions:
struct X {
operator int ();
operator float();
}ox;
double d = x; // X::operator float () preferred, because the difference sets
// are (float->double) which is preferred to (int->double)
The reciprocal rule (T can be converted to T’) is needed to handle the odd case
where the conversions return a volatile& and a &, since a volatile& cannot be

Dec 8 16:05 1989 ambig Page 7

converted to a &.

Ambiguous user conversion:
struct X {
X (float):
X (short):;

}
int £ (X);
i £ 0 =1£(0); // selects int->X unambiguously, but int->X is ambiguous
B // by itself
Unavailable constructor: also includes

struct X {

X (const X&) ;

}s

int £(X);

volatile X x;

int £ x = £(x);

Motivations for the conversion ordering:

Volatile does not influence resolution:
int f(int); // adjusted to f(const volatile intg)
int f(const intg);
int £ 0 = £(0); // ambiguous, volatile conversion does not help lift ambiguity

See above for examples where const 1lifts ambiguity;

Integral promotions are better:

struct A {};

struct B : A (};

int £ (A*, char);

int £ (B*, int);

B* b;

int £ b B = £(b,'B’); // use £ (B*, int), simple integral promotion better

// than reverting to base class

But not other arithmetic conversions:

int £ (A¥,double);

int £ b 1le2 = f(b,le2); // ambiguous, B*->A* or double->int?
Integral promotions are better than standard conversions:

int £(B*, float);

int £ b C = £(b,'C"); // ok, char->int rather than char->double
I see no good reason this should not be "locally better".

Extensions are better than truncations:
int plus (int,int):
double plus (double, double) ;
double plus_le2 le3 = plus (le2,1e3);
// ok, int->double better than double->int

Local preferences among pointer conversions emulate inheritance:
struct C : B {};

int £(A%*);

int £(B*);

C* ¢;

int £ ¢ = f(c); // calls f((B*)c);

Dec 8 16:05 1989 ambig Page 8

int g(void*);
int g(A*);
int g_c = g(c); // calls f£((A%)c):

I see no specific examples for making user conversions and ellipses worse
than all others, except a general fear and distrust for these facilities.
(This may be justified by the fact that almost anything matches the ellipsis,
and that int can be converted by constructor to almost anything that needs a
size parameter.)

