Library Issues List

Doc. no. J16/99-0016R1
WG21 N1193
Date: 21 April 1999
Project: Programming Language C++

C++ Standard Library IssuesList (Revision 8)
Reference ISO/IEC IS 14882:1998(E)

Also seel

Table of Contents

Index by Section

Index by Status
How to prepare and submit an issue

The purpose of this document is to record the status of i ssues which have come before the Library Working Group (LWG) of th
ANSI (J16) and 1SO (WG21) C++ Standards Committee. | ssues represent potential defects in the ISO/IEC IS 14882:1998(E)
document. Issues are not to be used to request new features or other extensions.

Theissues on thislist are not hecessarily formal SO Defect Reports (DR's). While someissues will eventually be elevated to
Defect Report status, other issues will be disposed of in other ways. Seelssue Status.

This document is in an experimental format designed for both viewing via a world-wide web browser and hard-copy printing. It
isavailableas an HTML filefor browsing or PDF filefor printing.

Thisissues|list existsin two slightly different versions; the Committee Version and the Public Version. The Committee
Version is the master copy, while the Public Version is an extract with certain names, email addresses, action items, and
internal committee comments removed. A line of text reading "Committee Version" following the title above identifies the
Committee Version

For the most current public version of this document seehttp://www.dkuug.dk/jtcl/sc22/wg21 . Requests for further
information about this document should include the document number above, reference | SO/IEC 14882:1998(E), and be
submitted to Information Technology Industry Council (ITI), 1250 Eye Street NW, Washington, DC 20005.

Public information as to how to obtain a copy of the C++ Standard, join the standards committee, submit an issue, or comment
on an issue can be found in the C++ FAQ athttp://reality.sgi.com/austern_mti/std-c++/fag.html . Public discussion of C++
Standard rel ated issues occurs onnews:comp.std.c++.

For committee members, files available on the committee's private web site include the HTML version of the Standard itself.
HTML hyperlinks from this issues list to those files will only work for committee members who have downl oaded them into the
same disk directory astheissues list files.

Revision history

R8: post-Dublin mailing. Updated to reflect LWG and full committee actions in Dublin. (21 Apr 99)
R6: pre-Dublin mailing. Added issues 127, 128, and129. (22 Feb99)
R5: updateissues 103, 112; added issues 114 to 126. Formeat revisions to prepare for making list public. (30 Dec 98)

Page 1

Library Issues List

® R4 post-Santa Cruz Il updated: Issues110, 111, 112, 113 added, several issues corrected. (22 Oct 98)
®* RS3: post-Santa Cruz 11: 1ssues94 to 109 added, many issues updated to reflect LWG consensus (12 Oct 98)
®* R2: pre-Santa Cruz I1: Issues 73 to 93 added, issuel? updated. (29 Sep 98)
® RI1: Correction to issue 55 resolution, 60 code format, 64 title. (17 Sep 98)
I'ssue Status

New - Theissue has not yet been reviewed by the LWG. AnyProposed Resolutionis purdly a suggestion from the issue
submitter, and should not be construed as the view of LWG.

Open - The LWG has discussed theissue but is not yet ready to move theissue forward. There are several possible reasons for
open status:

Consensus may have not yet have been reached as to how to deal with theissue.

Informal consensus may have been reached, but the LWG awaits exactProposed Resolutionwording for review.
The LWG wishes to consult additional technical experts before proceeding.

Theissue may require further study.

A Proposed Resolutionfor an open issueis still not be construed as the view of LWG. Comments on the current state of
discussions are often given at the end of open issuesin an . Such comments are for information only and should not be given
undue importance. They do not appear in the public version.

Dup - The LWG has reached consensus that the issue is a duplicate of another issue, and will not be further dealt with. A
Rationale identities the duplicated issue's issue number.

NAD - The LWG has reached consensus that theissueis not a defect in the Standard, and the issueis ready to forward to the
full committee as a proposed record of response. ARationale discusses the LWG's reasoning.

Review - Exact wording of aProposed Resolutionis now availablefor review on an issue for which the LWG previously
reached informal consensus.

Ready - The LWG has reached consensus that the issue is a defect in the Standard, thePr oposed Resolutionis correct, and the
issueis ready to forward to the full committee for further action as a Defect Report (DR).

DR - (Defect Report) - Thefull J16 committee has voted to forward the issue to the Project Editor to be processed as a
Potential Defect Report. The Project Editor reviews theissue, and then forwards it to the WG21 Convenor, who returnsiit to the
full committee for final disposition. Thisissueslist accords the status of DR to all these Defect Reports regardl ess of where
they arein that process.

TC - (Technical Corrigenda) - The full WG21 committee has voted to accept the Defect Report's Proposed Resolution as a
Technical Corrigenda. Action on thisissueis thus complete and no further action is possible under 1SO rules.

RR - (Record of Response) - The full WG21 committee has determined that thisissueis not a defect in the Standard. Action on
thisissueis thus complete and no further action is possible under 1SO rules.

Future- In addition to the regular status, the LWG believes that this issue should be revisited at the next revision of the
standard. It isusually paired with NAD.

I ssues are always given the status of New when they first appear on theissueslist. They may progress toOpen or Review
whilethe LWG is actively working on them. When the LWG has reached consensus on the disposition of an issue, the status
will then changeto Dup, NAD, or Ready as appropriate. Once the full J16 committee votes to forward Ready issuesto the
Project Editor, they are given the status of Defect Report (DR). Thesein turn may become the basis for Technical Corrigenda

Page 2

Library Issues List

(TC), or are closed without action other than a Record of Response RR). Theintent of this LWG processis that only issues
which are truly defects in the Standard move to the formal 1SO DR status.

1. Clibrary linkage editing over sight
Section: 17.4.2.2 lib.using.linkage Status DR Submitter: Beman Dawes Date: 16 Nov 97

The change specified in the proposed resol ution below did not make it into the Standard. This change was accepted in
principle at the London meeting, and the exact wording bel ow was accepted at the Morristown meeting.

Proposed Resolution:

Changelib.using.linkage paragraph 2 from:

It is unspecified whether a name from the Standard C library declared with external linkage has either extern
"C" or extern "C++" linkage.

to:

Whether a name from the Standard C library declared with external linkage has extern "C" or extern "C++"
linkage is implementation defined. It is recommended that an implementation use extern "C++" linkage for this
purpose.

2. Auto_ptr conversions effects incorrect
Section: 20.4.5.3 lib.auto.ptr.conv Status DR Submitter: Nathan Myers Date: 4 Dec 97

Paragraph 1 in "Effects", says "Calls p->release()" whereit clearly must be"Calls p.rdease()". (Asit s, it seemsto require
using auto_ptr<>::operator->to refer to X::release, assuming that exists.)

Proposed Resolution:

Changelib.auto.ptr.conv paragraph 1 Effects from"Calls p->release()" to "Calls p.release()".

3. Atexit registration during atexit() call isnot described

Section: 18.3 lib.support.start.term Status Open Submitter: Steve Clamage Date: 12 Dec 97 M sg: lib-6500

We appear not to have covered al the possibilities of exit processing with respect to atexit registration.
Example 1: (C and C++)

#i ncl ude <stdlib. h>

Page 3

Library Issues List

void f1()
void f2() { atexit(f1); }

int main()
atexit(f2); // the only use of f2

return 0; // for C conpatibility
}

At program exit, f2 gets called dueto its registration in main. Running f2 causes f1 to be newly registered during the exit
processing. Isthisavalid program? If so, what are its semantics?

Interestingly, neither the C standard, nor the C++ draft standard nor the forthcoming C9X Committee Draft says directly
whether you can register a function with atexit during exit processing.

All 3 standards say that functions arerun in reverse order of their registration. Sincefl isregistered last, it ought to berun first,
but by thetimeit isregistered, it istoo lateto befirst.

If the programis valid, the standards are self-contradictory about its semantics.
Example 2: (C++ only)
void F() { static T t; } // type T has a destructor

int main()

atexit(F); // the only use of F
}

Function F registered with atexit has alocal static variablet, and Fis called for thefirst time during exit processing. A local
static object isinitialized thefirst time control flow passes through its definition, and all static objects are destroyed during
exit processing. Isthe code valid? If so, what are its semantics?

Section 18.3 "Start and termination” saysthat if afunction F is registered with atexit before a static object t isinitialized, F
will not be called until after t's destructor completes.

In example 2, function F is registered with atexit beforeits local static object O could possibly beinitialized. On that basis, it
must not be called by exit processing until after O's destructor completes. But the destructor cannot be run until after Fis
called, since otherwise the object could not be constructed in thefirst place.

If the programis valid, the standard is self-contradictory about its semantics.

| plan to submit Example 1 as a public comment on the C9X CD, with a recommendation that the results be undefined.
(Alternative: make it unspecified. | don't think it is worthwhile to specify the case where f1 itsef registers additional functions,
each of which registers still more functions.)

I think we should resolve the situation in the whatever way the C committee decides.
For Example 2, | recommend we declare the results undefined.

Proposed Resolution:

Page4

Library Issues List

4. Basic_string size_type and difference_type should be implementation defined
Section: 21.3 lib.basic.string Status DR Submitter: Beman Dawes Date: 16 Nov 97

In Morristown we changed the size_type and difference _type typedefs for all the other containers to implementation defined
with areferenceto lib.container.requirements. This should probably a so have been donefor strings.

Proposed Resolution:
Changelib.basic.string from:

typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;

to:
typedef inplenentation defined size_ type; // See lib.container.requirenents
typedef inplenmentation defined difference_type; // See lib.container.requirenments

5. String::compar e specification questionable

Section: 21.3.6.8 lib.string::compare Status Ready Submitter: Jack Reeves Date: 11 Dec 97

At the very end of the basic_string class definition is the signature: int compare(size_type posl, size typenl, const charT* s,
size typen2 = npos) const; In the following text thisis defined as: returns
basic_string<charT,traits,Allocator>(*this,posl,nl).compare(basic_string<charT,traits,Allocator>(s,n2);

Since the constructor basic_string(const charT* s, size typen, const Allocator& a= Allocator()) clearly requiresthat s!=
NULL and n < npos and further states that it throws length_error if n == npos, it appears the compare() signature above should
aways throw length error if invoked like so: str.compare(l, str.size()-1, s); where's' is some null terminated character array.

This appears to be atypo since the obvious intent isto allow either the call above or something like: str.compare(1,
str.size()-1, s, strien(s)-1);

Thiswould imply that what was really intended was two signatures int compare(size _type posl, size typenl, const charT* s)
const int compare(size _type posl, size typenl, const charT* s, size_type n2) const; each defined in terms of the
corresponding constructor.

Proposed Resolution:
Replace the compare signaturein 21.3 lib.basic.string (at the very end of the basic_string synopsis) which reads:

int conpare(size_type posl, size_type nl,
const charT* s, size_type n2 = npos) const;

with:

int conpare(size_type posl, size_type nl,

Page 5

Library Issues List
const charT* s) const;

int conpare(size_type posl, size_type nl,
const charT* s, size_type n2) const;

Replace the portion of 21.3.6.8 lib.string::compare paragraphs 5 and 6 which read:

int conpare(size_type pos, size_type nl,
charT * s, size_type n2 = npos) const;
Returns:
basi c_string<charT,traits, All ocator>(*this, pos, nl).conpare(
basi c_string<charT,traits, All ocator>(s, n2))

with:

int conpare(size_type pos, size_type nl,
const charT * s) const;

Returns:

basi c_string<charT,traits, All ocator>(*this, pos, nl).conpare(
basi c_string<charT,traits, All ocator>(s))

i nt conpare(size_type pos, size_type nl,
const charT * s, size_type n2) const;

Returns:

basi c_string<charT,traits, All ocator>(*this, pos, nl).conpare(
basi c_string<charT,traits, All ocator>(s, n2))

Editors please note that in addition to splitting the signature, the third argument becomes const, matching the existing synopsis.
Rationale:

Whilethe LWG dislikes adding signatures, thisis a clear defect in the Standard which must be fixed. The same problem was
also identified in issues 7.5 and 87.

6. File position not an offset unimplementable

Section: 27.4.3 lib.fpos Status NAD Submitter: Matt Austern Date: 15 Dec 97

Table 88, in /0, istoo strict; it's unimplementable on systems where afile position isn't just an offset. It also never says just
what fpos<> is really supposed to be. [Here's my summary. "I think I now know what the class really is, at this point: it'sa
magi ¢ cookie that encapsul ates an mbstate t and afile position (possibly represented as an fpos t), it has syntactic support for
pointer-like arithmetic, and implementors are required to have real, not just syntactic, support for arithmetic." Thisisn't
standardese, of course.]

Rationale:

Not adefect. The LWG believes that the Standard is already clear, and that the above summary is what the Standard in effect
Says.

Page 6

Library Issues List
7. String clause minor problems
Section: 21 lib.strings Status Ready Submitter: Matt Austern Date: 15 Dec 97

(1) In21.3.5.4lib.string::insert , the description of template <class Inputlterator> insert(iterator, Inputlterator, Inputlterator)
makes no sense. It refers to amember function that doesn't exist. It also talks about the return value of avoid function.

(2) Severd versions of basic_string::replace don't appear in the class synopsis.

(3) basic_string::push_back appears in the synopsis, but is never described €l sewhere. In the synopsis its agument is const
charT, which doesn't makes much sense; it should probably be charT, or possible const charT&.

(4) basic_string::pop_back is missing.

(5) int compare(size _type pos, size typenl, charT* s, size_type n2 = npos) make no sense. First, it's const charT* in the
synopsis and charT* in the description. Second, given what it saysin RETURNS, leaving out the final argument will always
result in an exception getting thrown. Thisis paragraphs 5 and 6 of 21.3.6.8lib.string::compare.

(6) Intable 37, in section 21.1.1 lib.char.traits.require, there's a note for X::move(s, p, n). It says "Copies correctly even where
pisin|[s, stn)". Thisiscorrect asfar asit goes, but it doesn't go far enough; it should also guarantee that the copy is correct
evenwheresinin[p, p+n). These are two orthogonal guarantees, and neither one follows from the other. Both guarantees are
necessary if X::moveis supposed to have the same sort of semantics as memmove (which was clearly theintent), and both
guarantees are necessary if X::moveis actually supposed to be useful.

Proposed Resolution:
ITEM 1: In 21.3.5.4 [lib.string::insert], change paragraph 16 to
EFFECTS:. Equivaent to insert(p - begin(), basic_string(first, last)).

ITEM 2. Not adefect; the Standard is clear.. There are ten versions of replace() in the synopsis, and ten versionsin 21.3.5.6
[lib.string::replace].

ITEM 3: Change the declaration of push_back in the string synopsis (21.3, [lib.basic.string]) from:
void push_back(const charT)

to
void push_back(charT)

Add the following text immediately after 21.3.5.2 [lib.string::append], paragraph 10.

void basic_string::push_back(charT c);
EFFECTS: Equivalent to append(static_cast<size type>(1), C);

ITEM 4. Not adefect. The omission appears to have been deliberate.
ITEM 5: Duplicate; seeissue5 (and 87).

ITEM 6: Intable 37, Replace:

Page 7

Library Issues List

"Copies correctly even wherep isin[s, s+n)."
with:

"Copies correctly even where the ranges [p, p+n) and [s, s+n) overlap.”

8. Locale::global lacks guarantee
Section: 22.1.1.5 lib.locale.statics Status Open Submitter: Matt Austern Date: 24 Dec 97

It appears there's an important guarantee missing from clause 22. Weretold that invoking locale::global (L) setsthe C localeif
L has a name. However, we're not told whether or not invoking setlocal&(s) sets the global C++ locale.

Theintent, | think, isthat it should not, but I can't find any such words anywhere.
Proposed Resolution:

Add notein 22.1.1.5lib.localestatics : "thelibrary shall behave as if no other library function calls locale::global ()."

9. Operator new(0) calls should not yield the same pointer
Section: 18.4.1 lib.new.delete Status Open Submitter: Steve Clamage Date: 4 Jan 98

comp.std.c++ posting: | just noticed that section 3.7.3.1 of CD2 seemsto allow for the possibility that all calls to operator
new(0) yield the same pointer, an implementation technique specifically prohibited by ARM 5.3.3.Was this prohibition really
lifted? Does the FDIS agree with CD2 inthe regard? [1ssues list maintainer's note: the ISis the same.]

Proposed Resolution:

10. Codecvt<>::do unclear

Section: 22.2.1.5.2 lib.locale.codecvt.virtuals Status Dup Submitter: Matt Austern Date: 14 Jan 98

Section 22.2.1.5.2 says that codecvt<>::do_in and do_out should return the value noconv if "no conversion was needed”.
However, | don't see anything anywhere that defines what it means for a conversion to be needed or not needed. | can think of
several circumstances where one might plausibly think that a conversion is not "needed”, but I don't know which oneis intended
here.

Rationale:

Duplicate. Seeissue 19.

Page 8

Library Issues List

11. Bitset minor problems

Section: 23.3.5 lib.template.bitset Status Ready Submitter: Matt Austern Date: 22 Jan 98

(1) bitset<>::operator[] is mentioned in the class synopsis (23.3.5), but it is not documented in 23.3.5.2.

(2) The class synopsis only gives a single signature for bitset<>::operator[]m reference operator[](size t pos). This doesn't
make much sense. It ought to be overloaded on const. reference operator|[](size_t pos) bool operator[](size_t pos) const.

(3) Bitset's stream input function (23.3.5.3) ought to skip all whitespace before trying to extract Os and 1s. The standard doesn't
explicitly say that, though. This should go in the Effects clause.

Rationale:

The LWG believes Item 3 is not adefect. "Formatted input” implies the desired semantics. See 27.6.1.2
lib.istream.formatted.

Proposed Resolution:
ITEMS1 AND 2:

In the bitset synopsis (23.3.5, [lib.template.bitset 1), replace the member function

reference operator[](size_t pos);
with the two member functions

bool operator[](size_t pos) const;
reference operator[](size_t pos);

Add thefollowing text at the end of 23.3.5.2 [lib.bitset. members], immediately after paragraph 45:

bool operator[](size_t pos) const;
Requires: posisvalid

Throws:. nothing

Returns; t est (pos)

bi tset<N>::reference operator[](size_t pos);

Requires: posisvalid

Throws:. nothing

Returns: An object of typebi t set <N>: : ref erencesuchthat (*t hi s) [pos] ==

t hi s->t est (pos),andsuchthat(*t hi s) [pos] = val isequivalenttot hi s- >set (pos,
val) ;

12. Way objects hold allocator s unclear

Section: 20.1.5 lib.allocator.requirements Status NAD Submitter: AngdlikaLanger Date: 23 Feb 98

Page 9

Library Issues List

| couldn't find a statement in the standard saying whether the allocator object held by a container is held as a copy of the
constructor argument or whether a pointer of referenceis maintained internal. Thereis an according statement for compare
objects and how they are maintained by the associative containers, but | couldn't find anything regarding allocators.

Did | overlook it?Isit an openissue or known defect? Or isit deliberately |eft unspecified?
Rationale:

Not adefect. The LWG believes that the Standard is already clear. See 23.1 paragraph 8 [lib.contai ner.requirements].

13. Eosrefusestodie

Section: 27.6.1.2.3 lib.istream::extractors Status DR Submitter: William M. Miller Date: 3 Mar 98

In 27.6.1.2.3, thereis areference to "eos", which is the only one in the whole draft (at least using Acrobat search), soit's
undefined.

Proposed Resolution:

In 27.6.1.2.3 lib.istream:.extractors, replace "eos"' with "charT()"

14. Locale :combine should be const

Section: 22.1.1.3 lib.locale members Status DR Submitter: Nathan Myers Date: 6 Aug 98

locale::combineis the only member function of local e (other than constructors and destructor) that is not const. Thereis no
reason for it not to be const, and good reasons why it should have been const. Furthermore, leaving it non-const conflicts with
22.1.1 paragraph 6: "Aninstance of alocaleisimmutable.”

History: this member function originally was a constructor. it happened that the interface it specified had no corresponding
language syntax, so it was changed to a member function. As constructors are never const, there was no "const” in theinterface
which was transformed into member "combine”. It should have been added at that time, but the omission was not noticed.

Proposed Resolution:

In22.1.1 [lib.locale] and also in 22.1.1.3 [lib.locale.members], add "const” to the declaration of member combine:

tenpl ate <cl ass Facet> | ocal e conmbi ne(const | ocal e& other) const;

15. L ocale::name requirement inconsistent

Section: 22.1.1.3 lib.localemembers Status DR Submitter: Nathan Myers Date: 6 Aug 98

Page 10

Library Issues List

locale::name() is described as returning a string that can be passed to alocal e constructor, but there is no matching constructor.
Proposed Resolution:

In22.1.1.3 [lib.locale. members], paragraph 5, replace”l ocal e(name())" with"l ocal e(name().c_str())".

16. Bad ctype byname<char> decl

Section: 22.2.1.4 lib.locale.ctype.byname.special Status DR Submitter: Nathan Myers Date: 6 Aug 98

The new virtual members ctype _byname<char>::do_widen and do_narrow did not get edited in properly. Instead, the member
do_widen appears four times, with wrong argument lists.

Proposed Resolution:

The correct declarations for the overloaded membersdo_nar r owanddo_wi den should be copied from 22.2.1.3,
[lib.facet.ctype.special].

17. Bad bool parsing

Section: 22.2.2.1.2 lib.facet.num.get.virtuals Status Review Submitter: Nathan Myers Date: 6 Aug 98

This section describes the process of parsing atext boolean value from theinput stream. It does not say it recognizes either of
the sequences "true" or "false" and returns the corresponding bool value; instead, it says it recognizes only one of those
sequences, and chooses which according to the received val ue of a reference argument intended for returning the result, and
reports an error if the other sequenceis found. (1) Furthermore, it claims to get the names from the ctype<> facet rather than the
numpunct<> facet, and it examines the "boolal pha" flag wrongly; it doesn't define the value "loc”; and finally, it computes
wrongly whether to use numeric or "alpha’ parsing.

| believethe correct agorithmis"asif":

// in, err, val, and str are arguments.

err = 0;
const nunpunct<charT>& np = use_facet <numpunct <charT> >(str.getloc());
const string _type t = np.truename(), f = np.fal senane();

bool tm = true, fm= true;
size_t pos = O;
while (tm && pos < t.size() || fm&& pos < f.size()) {
if (in ===end) { err = str.eofbit; }
bool matched = fal se;
if (tm && pos < t.size()) {
if (lerr & t[pos] == *in) matched = true;
else tm= fal se;

}

if (fm && pos < f.size()) {
if (lerr & f[pos] == *in) matched = true;
else fm= fal se;

if (matched) { ++in; ++pos; }

Page 11

Library Issues List

if (pos > t.size()) tm= false:

if (pos > f.size()) fm= fal se;
if (tm==1fm]|| pos == 0) { err |=str.failbit; }
el se { val =tm }

return in;

Notice this works reasonably when the candidate strings are both empty, or equal, or when oneis a substring of the other. The
proposed text bel ow captures the logic of the code above.

Proposed Resolution:

In22.2.2.1.2 [lib.facet.num.get.virtuals], in thefirst line of paragraph 14, change"&&" to "&".

Then, replace paragraphs 15 and 16 as follows:

Otherwise target sequences are determined "as if" by calling the members _falsename() _and _truename() _ of

the facet obtained by _use facet >(str.getloc()) . Successive charactersintherange [in,end)_ (see
[lib.sequence.regmts]) are obtained and matched against corresponding positions in the target sequences only
as necessary to identify a unique match. Theinput iterator _in_is compared to _end only when necessary to
obtain a character. If and only if atarget sequenceis uniquely matched, val_is set to the corresponding value.

The_in_iterator is aways |eft pointing one position beyond the last character successfully matched. If _val _
isset, then err is set to _str.goodbit_; or to _str.eofbit_ if, when seeking another character to match, it is found
that _(in==end)_. If _val_isnot s&t, then _err_isset to_str.failbit_; or to _(str.failbit|str.eofbit) if the reason
for thefailurewasthat _(in==end) . [Example: for targets _true :"a' and _false :"abb", theinput sequence "a
yidds_val==true_and _err==str.eofbit_; theinput sequence "abc" yields _err=str.failbit_, with _in_ending at
the'c' eement. For targets _true :"1" and _false :"0", theinput sequence"1" yields _val==true_and
err=str.goodbit. For empty targets ("), any input sequenceyields _err==str.failbit_. --end exampl €]

18. Get(...bool&) omitted

Section: 22.2.2.1.1 lib.facet.num.get. members Status DR Submitter: Nathan Myers Date: 6 Aug 98

Inthelist of num_get<> non-virtual members on page 22-23, the member that parses bool values was omitted fromthelist of
definitions of non-virtual members, though it islisted in the class definition and the corresponding virtual is listed everywhere

appropriate.

Proposed Resolution:

Add at the beginning of 22.2.2.1.1 [lib.facet.num.get.members] another get member for bool &, copied from the entry in
22.2.2.1 [lib.locale.num.get].

19. "Noconv" definition too vague

Section: 22.2.1.5.2 lib.locale.codecvt.virtuals Status Open Submitter: Nathan Myers Date: 6 Aug 98

Page 12

Library Issues List

In the definitions of codecvt<>::do_out and do_in, they are specified to return noconv if "no conversion is needed". This
definition is too vague, and does not say normatively what is done with the buffers.

Proposed Resolution:

Change the entry for noconv in the table under paragraph 4 in section 22.2.1.5.2 [ib.local e.codecvt.virtuals] to read:

noconv: input sequenceis identical to converted sequence.
and change the Note in paragraph 2 to normative text as follows:

If returns _noconv_, the converted sequenceisidentical to the input sequence _[from,from_next) . to next_is
set equal to _to , and thevalue of _state is unchanged.

20. Thousands_sep returnswrong type

Section: 22.2.3.1.2 lib.facet.numpunct.virtuals Status DR Submitter: Nathan Myers Date: 6 Aug 98

The synopsis for numpunct<>::do_thousands_sep, and the definition of numpunct<>::thousands_sep which callsiit, specify that
it returns a val ue of type char_type. Hereit is erroneously described as returning a "string_type".

Proposed Resolution:

In 22.2.3.1.2 [lib.facet.numpunct.virtuals], above paragraph 2, change "string_type" to "char_type".

21. Codecvt_byname<> instantiations

Section: 22.1.1.1.1 lib.locale.category Status Review Submitter: Nathan Myers Date: 6 Aug 98

In the second table in the section, captioned "Required instantiations', the instantiations for codecvt_byname<> have been
omitted. These are necessary to allow users to construct alocale by name from facets.

Proposed Resolution:

Addin22.1.1.1.1 [lib.locale.category] to the table captioned "Required instantiations”, in the category "ctype" thelines

codecvt byname<char, char, nbstate_t >,
codecvt _byname<wchar _t, char, mbstate_t>

22. Member open vs. flags

Section: 27.8.1.7 lib.ifstream.members Status DR Submitter: Nathan Myers Date: 6 Aug 98

Page 13

Library Issues List

The description of basic_istream<>::0open |eaves unanswered questions about how it responds to or changes flags in the error
status for the stream. A strict reading indicates that it ignores the bits and does not change them, which confuses users who do
not expect eofbit and failbit to remain set after a successful open. There are three reasonabl e resolutions: 1) status quo 2) fail
if fail(), ignore eofbit 3) clear failbit and eofbit on call to open().

Proposed Resolution:

In 27.8.1.7 [lib.ifstream.members] paragraph 3, _and_in 27.8.1.10 [lib.ofstream.members] paragraph 3, under open() effects,
add a footnote:

A successful open does not change the error state.

23. Num_get overflow result

Section: 22.2.2.1.2 lib.facet.num.get.virtuals Status DR Submitter: Nathan Myers Date: 6 Aug 98

The current description of numeric input does not account for the possibility of overflow. Thisisan implicit result of changing
the description to rely on the definition of scanf() (which fails to report overflow), and conflicts with the documented behavior
of traditional and current i mplementations.

Users expect, when reading a character sequence that results in a value unrepresentabl e in the specified type, to have an error
reported. The standard as written does not permit this.

Proposed Resolution:

In22.2.2.1.2 [lib.facet.num.get.virtuals], paragraph 11, second bullet item, change

The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure.

to

The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure, or the val ue of
the sequence cannot be represented in thetype of _val .

24. "do_convert" doesn't exist

Section: 22.2.1.5.2 lib.locale.codecvt.virtuals Status DR Submitter: Nathan Myers Date: 6 Aug 98

The description of codecvt<>::do_out and do_in mentions a symbol "do_convert” which is not defined in the standard. Thisisa
|eftover from an edit, and should be "do_in and do_out".

Proposed Resolution:

In22.2.1.5 [lib.locale.codecvt], paragraph 3, change "do_convert” to "do_in or do_out". Also, In22.2.1.5.2
[lib.locale.codecvt.virtuals], change "do_convert()" to "do_in or do_out".

Page 14

Library Issues List

25. String operator << uses width() value wrong
Section: 21.3.7.9 lib.string.io Status DR Submitter: Nathan Myers Date: 6 Aug 98

In the description of operator<< applied to strings, the standard says that uses the smaller of os.width() and str.siz&(), to pad "as
described in stage 3" el sewhere; but thisis inconsistent, as this allows no possibility of space for padding.

Proposed Resolution:
Change 21.3.7.9 lib.string.io paragraph 4 from:

"...wheren isthesmaller of os. wi dt h() andstr. si ze();.."
to:

"...wheren isthelarger of 0s. wi dt h() andstr. si ze();.."

26. Bad sentry example

Section: 27.6.1.1.2 lib.istream::sentry Status Open Submitter: Nathan Myers Date: 6 Aug 98

In paragraph 6, the code in the example:

tenpl ate <class charT, class traits = char_traits<charT> >
basi c_i streanccharT,traits>::sentry(
basi c_istreankcharT,traits>& i s, bool noskipws = false) {

int_type c;
typedef ctype<charT> ctype_type;
const ctype_type& ctype = use_facet<ctype_type>(is.getloc());
while ((c = is.rdbuf()->snextc()) != traits::eof()) {
if (ctype.is(ctype.space,c)==0) {
i s.rdbuf()->sputbackc (c);
br eak;
}
}

}

fails to demonstrate correct use of the facilities described. In particular, it fails to usetraits operators, and specifies incorrect
semantics. (E.g. it specifies skipping over thefirst character in the sequence without examining it.)

Proposed Resolution:
Replace the example with better code, as follows:

tenpl ate <class charT, class traits>
basi c_istreanckcharT,traits>::sentry::sentry(

Page 15

Library Issues List
basi c_i streanckcharT,traits>& i s, bool noskipws

typedef ctype<charT> ctype_type;
const ctype_type& ct = use_facet<ctype_ type>(is.getloc());

for (int_type ¢ = is.rdbuf()->sgetc();
Itraits::eqg_int_type(c,traits::eof()) && ct.is(ct.space,c);
c = is.rdbuf()->snextc())
{}

27. String::erase(range) yieldswrong iterator
Section: 21.3.5.5 lib.string::erase Status DR Submitter: Nathan Myers Date: 6 Aug 98

The string::erase(iterator first, iterator last) is specified to return an e ement one place beyond the next element after the last
one erased. E.g. for the string "abcde”, erasing the range['b'..'d") would yield an iterator for element '€, while'd' has not been
erased.

Proposed Resolution:
In 21.3.5.5 [lib.string::erase], paragraph 10, change:

Returns: an iterator which points to the e ement immediately following _last_ prior to the element being
erased.

to read

Returns: an iterator which points to the element pointed to by _last_ prior to the other € ements being erased.

28. Ctype<char>isambiguous

Section: 22.2.1.3.2 [lib.facet.ctype.char.members] Status DR Submitter: Nathan Myers Date: 6 Aug 98

The description of the vector form of ctype<char>::is can be interpreted to mean something very different from what was
intended. Paragraph 4 says

Effects. The second form, for all *p in the range [low, high), assigns vec[p-low] to table()[(unsigned char)*p].
Thisisintended to copy the valueindexed from table()[] into the place identified in vec[].
Proposed Resolution:

Change 22.2.1.3.2 [lib.facet.ctype.char.members], paragraph 4, to read

Effects. The second form, for all *p in the range[low, high), assigns into vec[p-low] the val ue table()[(unsigned
char)*p].

Page 16

Library Issues List

29. los base::init doesn't exist

Section: 27.3.1 lib.narrow.stream.objects Status DR Submitter: Nathan Myers Date: 6 Aug 98

Sections 27.3.1 and 27.3.2 [lib.wide.stream.objects] mention afunction ios_base::init, which is not defined. Probably it means
basic_ios<>::init, defined in 27.4.4.1 [lib.basic.ios.cons], paragraph 3.

Proposed Resolution:

In 27.3.1 [lib.narrow.stream.objects] paragraph 2, change
ios_base:init

to
basic_ios<char>::init

Also, make asimilar changein 27.3.2 [lib.wide.stream.objects] except it should read

basic_ios<wchar_t>::init

30. Wrong header for LC_*

Section: 22.1.1.1.1 [lib.locale.category] Status DR Submitter: Nathan Myers Date: 6 Aug 98

Paragraph 2 implies that the C macros LC_CTY PE etc. are defined in <cctype>, where they are in fact defined e sewhereto
appear in <clocale>.

Proposed Resolution:

In22.1.1.1.1 [lib.locale.category], paragraph 2, change "<cctype>" to read "<clocale>".

31. Immutable locale values
Section: 22.1.1 [lib.locale] Status Ready Submitter: Nathan Myers Date: 6 Aug 98

Paragraph 6, says "Aninstance of _locale is*immutable*; once afacet referenceis obtained fromit, ...". This has caused
some confusion, because local e variables are manifestly assignable.

Proposed Resolution:

In22.1.1 [lib.local €] replace paragraph 6,

Page 17

Library Issues List

An instance of localeis immutable; once afacet referenceis obtained fromit, that reference remains usable as
long as the locale value itsef exists.

with

A locale value is immutable. This means that once a facet reference is obtained from alocal e object by calling
use facet<>, that reference remains usable, and the results from member functions of it may be cached and
re-used, until the locale object is assigned to or destroyed.

32. Pbackfail description inconsistent

Section: 27.5.2.4.4 lib.streambuf.virt.pback Status Review Submitter: Nathan Myers Date: 6 Aug 98

The description of the required state before calling virtual member basic_streambuf<>::pbackfail requirements is inconsistent
with the conditions described in 27.5.2.2.4 [lib.streambuf.pub.pback] where member sputbackc callsit. Specifically, the
latter saysit cals pbackfail if:

traits::eq(c,gptr()[-1]) isfalse
where pbackfail claimsto require:
traits::eq(*gptr(),traits::to_char_type(c)) returns false
It appears that the pbackfail description iswrong.

Proposed Resolution:

In 27.5.2.4.4 [lib.streambuf.virt.pback], paragraph 1, change:
"traits::eq(*gptr(),traits::to_char_type(c)) "

to
"traits::eq(traits::to_char_type(c),gptrQ[-1]) "

Rationale:

Note deliberate reordering of arguments for clarity in addition to the correction of the argument value.

33. Codecvt<> mentions from_type

Section: 22.2.1.5.2 [lib.locale.codecvt.virtuals] Status DR Submitter: Nathan Myers Date: 6 Aug 98

In the table defining the results from do_out and do_in, the specification for theresult _error_ says

Page 18

Library Issues List

encountered afrom_type character it could not convert
but from_typeis not defined. This clearly is intended to be an externT for do_in, or aninternT for do_ouit.
Proposed Resolution:

In22.2.1.5.2 [lib.locale.codecvt.virtuals], paragraph 4, replace the definition in the table for the case of _error_ with

encountered a character in[f r om f r om_end) that it could not convert.

34. True/falsename() not in ctype<>

Section: 22.2.2.2.2 [lib.facet.num.get.virtuals] Status DR Submitter: Nathan Myers Date: 6 Aug 98

In paragraph 19, Effects:, members truename() and fal sename are used from facet ctype<charT>, but it has no such members.
Notethat thisisaso aproblemin 22.2.2.1.2, addressed in (4).

Proposed Resolution:

In22.2.2.2.2 [lib.facet.num.get.virtuals], paragraph 19, in the Effects: clause for member put(...., bool), replace the
initialization of the string_type value s as follows:

const nunpunct& np = use_facet <nunpunct <charT> >(Il oc);
string_type s = val ? np.truenanme() : np.fal sename();

35. No manipulator unitbuf in synopsis
Section: 27.4 [lib.iostreams.base] Status DR Submitter: Nathan Myers Date: 6 Aug 98

In27.4.5.1, [lib.fmtflags.manip], we have a definition for a manipulator named "unitbuf”. Unlike other manipulators, it's not
listed in sysopsis. Similarly for "nounitbuf”.

Proposed Resolution:
Add to the synopsis for <ios> in 27.4 [ib.iostreams.base], after the entry for "nouppercase”, the prototypes:

i os_base& unitbuf (ios_base& str);
i 0s_base& nouni tbuf (i os_base& str);

36. lword & pword storage lifetime omitted

Section: 27.4.2.5 [lib.ios.base storage] Status DR Submitter: Nathan Myers Date: 6 Aug 98

Page 19

Library Issues List

In the definitions for ios_base::iword and pword, the lifetime of the storage is specified badly, so that an implementation which
only keeps the last value stored appears to conform. In particular, it says:

The reference returned may becomeinvalid after another call to the object's iword member with a different index ...
Thisisnot idle speculation; at |east one implementation was done this way.
Proposed Resolution:

Addin 27.4.2.5 [lib.ios.base.storage], in both paragraph 2 and also in paragraph 4, replace the sentence:

The reference returned may become invalid after another call to the object's iword [pword] member with a
different index, after a call to its copyfmt member, or when the object is destroyed.

with:

Thereference returned is invalid after any other operations on the object. However, the val ue of the storage
referred to is retained, so that until the next call to copyfmt, calling iword [pword] with the same index yields
another reference to the same value.

substituting "iword" or "pword" as appropriate.

37. Leftover " global" reference
Section: 22.1.1 [lib.locale] Status DR Submitter: Nathan Myers Date: 6 Aug 98
In the overview of |ocale semantics, paragraph 4, is the sentence

If Facet is not present in alocale (or, failing that, in the global locale), it throws the standard exception
bad cast.

Thisis not supported by the definition of use facet<>, and represents semantics from an old draft.
Proposed Resolution:
In22.1.1 [lib.locale], paragraph 4, delete the parenthesized expression

(or, failing that, in the global locale)

38. Facet definition incomplete

Section: 22.1.2 [lib.locale.global.templates | Status DR Submitter: Nathan Myers Date: 6 Aug 98

It has been noticed that the definition of "facet” isincomplete. In particular, a class derived from another facet, but which does
not defineamember _id_, cannot safely serve astheargument _F_ to use facet<F>(loc), because thereis no guarantee that a
reference to the facet instance stored in _|loc_is safely convertibleto F .

Page 20

Library Issues List

Proposed Resolution:

In the definition of std::use facet<>(), replace the text in paragraph 1 which reads:
Get areferenceto afacet of alocale.

with:

Requires: Facet isafacet class whose definition contains (not inherits) the public static member i d as
definedin (22.1.1.1.2, [lib.locale.facet]).

39. Sbufiter ++ definition garbled

Section: 24.5.3.4 [lib.istreambuf.iterator::op++] Status DR Submitter: Nathan Myers Date: 6 Aug 98

Following the definition of istreambuf_iterator<>::operator++(int) in paragraph 3, the standard contains three lines of garbage
text left over from a previous edit.

i streanbuf _iterator<charT,traits> tnp = *this;
sbuf _->sbunpc();
return(tnp);

Proposed Resolution:

In 24.5.3.4 [lib.istreambuf.iterator::op++], del ete the three lines of code at the end of paragraph 3.

40. M eaningless normative paragraph in examples
Section: 22.2.8 [lib.facets.examples] Status DR Submitter: Nathan Myers Date: 6 Aug 98

Paragraph 3 of the locale examplesis a description of part of an implementation technique that has lost its referent, and doesn't
mean anything.

Proposed Resolution:

Ddete 22.2.8 [lib.facets.examples] paragraph 3 which begins "This initialization/i dentification system depends...", or (at the
editor's option) replaceit with a place-holder to keep the paragraph numbering the same.

41. los base needs clear (), exceptions()

Section: 27.4.2 [lib.ios.base] Status Review Submitter: Nathan Myers Date: 6 Aug 98

Page 21

Library Issues List

The description of ios_base::iword() and pword() in 27.4.2.4 [ib.ios.members.static], say that if they fail, they "set badbit,
which may throw an exception”. However, ios_base offers no interface to set or to test badbit; those interfaces are defined in
basic_ios<>.

Proposed Resolution:

Changethe descriptionin 27.4.2.5 [lib.ios.members.storage] in paragraph 2, and also in paragraph 4, as follows. Replace
If the function fails it sets badbit, which may throw an exception.

with

If thefunction fails, and* t hi s is abase subobject of abasi c_i 0s<>object or subobject, the effect is
equivalent tocalling basi c_i os<>: : set st at e(fail bi t)onthederived object (which may throw
failure).

42. String ctors specify wrong default allocator
Section: 21.3 [lib.basic.string] Status Ready Submitter: Nathan Myers Date: 6 Aug 98
Thebasic_string<> copy constructor:

0

basic_string(const basic_string& str, size_type pos ,
Al l ocator());

size_type n = npos, const Allocatoré& a

specifies an Allocator argument default value that is counter-intuitive. The natural choice for athe allocator to copy fromis
str.get_allocator(). Though this cannot be expressed in defaul t-argument notation, overloading suffices.

Alternatively, the other containersin Clause 23 (deque, list, vector) do not have this form of constructor, so it isinconsistent,
and an evident source of confusion, for basic_string<> to haveit, so it might better be removed.

Proposed Resolution:

In 21.3 [lib.basic.string], replace the declaration of the copy constructor as follows:

basic_string(const basic_string& str, size_type pos = 0,
size_type n = npos);

basi c_string(const basic_string& str, size_type pos,
size_type n, const Allocatoré& a);

In 21.3.1 [lib.string.cons], replace the copy constructor declaration as above. Add to paragraph 5, Effects:

When noAl | ocat or argument is provided, the string is constructed using the value
str.get_al |l ocator ().

Rationale:

The LWG believes the constructor is actually broken, rather than just an unfortunate design choice.

Page 22

Library Issues List
The LWG considered two other possible resol utions:
B. In21.3 [lib.basic.string], and also in 21.3.1 [lib.string.cons], replace the declaration of the copy constructor as follows:

basic_string(const basic_string& str, size_type pos = 0,
size_type n = npos);

C. In21.3[lib.basic.string], replace the declaration of the copy constructor as follows:

basic_string(const basic_string& str);
basi c_string(const basic_string& str, size_type pos, size_type n = npos,
const Allocator& a = Allocator());

In 21.3.1 [lib.string.cons], replace the copy constructor declaration as above. Add to paragraph 5, Effects:
In thefirst form, the Allocator value used is copied fromst r . get _al | ocat or ().

The proposed resol ution reflects the original intent of the LWG. It was also noted that this fix "will cause a small amount of
existing code to now work correctly.”

43. Localetable correction

Section: 22.2.1.5.2 lib.locale.codecvt.virtuals Status Dup Submitter: Brendan Kehoe Date: 1 Jun 98

Rationale:

Duplicate. Seeissue 33.

44. |ostreams use operator==on int_type values
Section: 27 [lib.input.output] Status Open Submitter: Nathan Myers Date: 6 Aug 98

Many of the specifications for i ostreams specify that character values or their int_type equivalents are compared using
operators == or !=, though in other placestraits::eq() or traits.:eq_int_typeis specified to be used throughout. Thisisan
inconsi stency; we should change uses of == and != to use the traits members instead.

Proposed Resolution:

45. Stringstreamsread/write pointersinitial position unclear
Section: 27.7.3 lib.ostringstream Status NAD Submitter: Date: 27 May 98

In aacomp.lang.c++.moderated :

Page 23

Library Issues List

"We are not sure how to interpret the CD2 (see[lib.iostream.forward], [lib.ostringstream.cong], [lib.stringbuf.cons]) with
respect to the question as to what the correct initial positions of thewriteand read pointers of a stringstream should be."

"Isit the same to output two strings or to initialize the stringstream with the first and to output the second ?*
Rationale:

The LWG believes the Standard is correct as written. The behavior of stringstreams is consistent with fstreams, and thereisa
constructor which can be used to obtain the desired effect. This behavior is known to be different from strstreams.

46. Minor Annex D errors

Section: D.7 depr.strstreambuf, depr.strstream Status DR Submitter : Brendan Kehoe Date: 1 Jun 98

Seelib-6522, edit- 814.
Proposed Resolution:
Change D.7.1 depr.strstreambuf (since streambuf is a typedef of basic_streambuf<char>) from:
virtual streambuf<char>* setbuf(char* s, streansize n);
to:
virtual streambuf* setbuf(char* s, streansize n);
In D.7.4 depr.strstream insert the semicolon now missing after int_type:

namespace std {
class strstream
publ i c basic_iostreankchar> {

publ i c:
/'l Types
typedef char char _type;
typedef typename char _traits<char>::int_type int_type
typedef typenanme char _traits<char>::pos_type pos_type;

47. Imbue() and getloc() Retur ns clauses swapped

Section: 27.4.2.3 lib.ios.base.locales Status DR Submitter: Matt Austern Date: 21 Jun 98

Section 27.4.2.3 specifies how imbue() and getloc() work. That section has two RETURNS clauses, and they make no sense as
stated. They make perfect sense, though, if you swap them. Am 1 correct in thinking that paragraphs 2 and 4 just got mixed up
by accident?

Proposed Resolution:

Page 24

Library Issues List

In27.4.2.3lib.ios.base.locales swap paragraphs 2 and 4.

48. Use of non-existent exception constructor
Section: 27.4.2.1.1 lib.ios::faillure Status Ready Submitter: Matt Austern Date: 21 Jun 98

27.4.2.1.1, paragraph 2, says that class failureinitializes the base class, exception, with exception(msg). Class exception (see
18.6.1) has no such constructor.

Proposed Resolution:
Replace 27.4.2.1.1 [lib.ios::failure], paragraph 2, with

EFFECTS: Constructs an object of classf ai | ur e.

49. Under specification of ios_base::sync_with_stdio

Section: 27.4.2.4 lib.ios.members.static Status Open Submitter: Matt Austern Date: 21 Jun 98

Two problems.

(1) 27.4.2.4 doesn't say what ios_base::sync_with_stdio(f) returns. Does it return f, or does it return the previous
synchronization state? My guess is the | atter, but the standard doesn't say so.

(2) 27.4.2.4 doesn't say what it means for streams to be synchronized with stdio. Again, of course, | can make some guesses.
(And I'm unhappy about the performance implications of those guesses, but that's another matter.)

Proposed Resolution:

Change the following sentenance in 27.4.2.4 lib.ios.members.static returns clause from:

t r ue if the standard i ostream objects (27.3) are synchronized and otherwise returnd al se.
to:

t r ue if the previous state of the standard iostream objects (27.3) was synchronized and otherwise returns
fal se.

50. Copy constructor and assignment oper ator of ios_base

Section: 27.4.2 lib.ios.base Status Open Submitter: Matt Austern Date: 21 Jun 98

Page 25

Library Issues List

Aswritten, ios_base has a copy constructor and an assignment operator. (Nothing in the standard says it doesn't have one, and
all classes have copy constructors and assingment operators unless you take specific steps to avoid them.) However, nothin in
27.4.2 says what the copy constructor and assignment operator do.

My guessis that this was an oversight, that ios_baseis, like basic_ios, not supposed to have a copy constructor or an
assignment operator.

A LWG member comments: Yes, its an oversight, but in the opposite sense to what you're suggesting. At one point therewas a
definite intention that you could copy ios_base. It's an easy way to save the entire state of a stream for future use. As you note,
to carry out that intention would have required a explicit description of the semantics (e.g. what happens to theiarray and
parray stuff).

Proposed Resolution:

51. Requirement to not invalidate iterators missing

Section: 23.1 lib.container.requirements Status DR Submitter : David Vandevoorde Date: 23 Jun 98

The std::sort algorithm can in general only sort a given sequence by moving around values. The list<>::sort() member on the
other hand could move around values or just updateinternal pointers. Either method can leaveiterators into the list<>
dereferencable, but they would point to different things.

Does the FDIS mandate anywhere which method should be used for list<>::sort()?
A committee member comments:
I think you've found an omission in the standard.

Thelibrary working group discussed this point, and there was supposed to be a general requirement saying that list, set, map,
multiset, and multimap may not invalidate iterators, or change the val ues that iterators point to, except when an operation does
it explicitly. So, for example, insert() doesn't invalidate any iterators and erase() and remove() only invalidate iterators pointing
to the dements that are being erased.

| looked for that general requirement inthe FDIS, and, while | found alimited form of it for the sorted associative containers, |
didn't find it for list. It looks likeit just got omitted.

Theintention, though, is that list<>::sort does not invalidate any iterators and does not change the values that any iterator points
to. There would be no reason to have the member function otherwise.

Theissues list maintainer comments:

Thiswas USissue CD2-23-011; it was accepted in London . The wording in the proposed resol ution below is somewhat
updated from CD2-23-011, particularly the addition of the phrase "or change the val ues of"

Proposed Resolution:
Add anew paragraph at the end of 23.1:

Unless otherwise specified (either explicitly or by defining afunction in terms of other functions), invoking a

Page 26

Library Issues List

container member function or passing a container as an argument to alibrary function shall not invalidate
iterators to, or change the values of, objects within that container.

52. Small 1/O problems

Section: 27.4.3.2 lib.fpos.operations Status DR Submitter : Matt Austern Date: 23 Jun 98

First, 27.4.4.1 lib.basic.ios.cons table 89. Thisis pretty obvious: it should betitled "basic_ios<>() effects’, not "ios_base()
effects’.

[The second itemis aduplicate; seeissue 6 for resolution.]

Second, 27.4.3.2lib.fpos.operations table 88 . There are a couple different things wrong with it, some of which I've already
discussed with Jerry, but the most obvious mechanical sort of error isthat it uses expressions like P(i) and p(i), without ever

defining what sort of thing "i" is.

(The other problemisthat it requires support for streampos arithmetic. Thisis impaossible on some systems, i.e. ones where
file position is a complicated structure rather than just a number. Jerry tells me that the intention was to require syntactic
support for streampos arithmetic, but that it wasn't actually supposed to do anything meaningful except on platforms, like
Unix, where genuine arithmetic is possible.)

Proposed Resolution:

Change 27.4.4.1 lib.basic.ios.cons table 89 title from "ios_base() effects” to "basic_ios<>() effects".

53. Basic_iosdestructor unspecified

Section: 27.4.4.1 lib.basic.ios.cons, 27.4.4.2 lib.basic.ios.members Status Ready Submitter: Matt Austern Date: 23 Jun
98

There€'s nothing in 27.4.4 saying what basic_ios's destructor does.
Theimportant question is whether basic_ios::~basic_ios() destroys rdbuf().
Proposed Resolution:
Add after 27.4.4.1 lib.basic.ios.cons paragraph 2:

virtual ~basic_ios();

Notes The destructor does not destroyr dbuf ().

Add afootnoteto 27.4.4.2lib.basic.ios.members paragraph 6, rdouf effects, which says:

r dbuf (0) doesnot setbadbi t.

Page 27

Library Issues List

54. Basic_streambuf's destructor

Section: 27.5.2.1 lib.streambuf.cons Status Ready Submitter: Matt Austern Date: 25 Jun 98

The class synopsis for basic_streambuf shows a (virtual) destructor, but the standard doesn't say what that destructor does. My
assumptionisthat it does nothing, but the standard should say so explicitly.

Proposed Resolution:

Add after 27.5.2.1 lib.streambuf.cons paragraph 2:
virtual ~basic_streanbuf();

Effects None.

55. Invalid stream position is undefined
Section: 27 lib.input.output Status Ready Submitter: Matt Austern Date:26 Jun 98

Several member functionsin clause 27 are defined in certain circumstances to return an "invalid stream position”, aterm that
is defined nowhere in the standard. Two places (27.5.2.4.2, paragraph 4, and 27.8.1.4, paragraph 15) contain a cross-reference
to adefinitionin _lib.iostreams.definitions _, a nonexistent section.

| suspect that theinvalid stream position is just supposed to be pos_type(-1). Probably best to say explicitly in (for example)
27.5.2.4.2 that thereturn value is pos_type(-1), rather than to use the term "invalid stream position”, define that term
somewhere, and then put in a cross-reference.

The phrase "invalid stream position™” appears ten times in the C++ Standard. In seven placesit refers to areturn value, and it
should be changed. In three places it refers to an argument, and it should not be changed. Here are the three places where
"invalid stream position” should not be changed:

27.7.1.3 [lib.stringbuf.virtuals], paragraph 14
27.8.1.4 [lib.filebuf.virtuals], paragraph 14
D.7.1.3 [depr.strstreambutf.virtual s], paragraph 17

Proposed Resolution:

In 27.5.2.4.2 [lib.streambuf.virt.buffer], paragraph 4, change "Returns an object of class pos_type that stores an invalid stream
position (_lib.iostreams.definitions)" to "Returns pos_t ype(of f _type(-1))"

In 27.5.2.4.2 [lib.streambuf.virt.buffer], paragraph 6, change "Returns an object of class pos_type that stores an invalid stream
position” to "Returnspos_t ype(off _type(-1))".

In 27.7.1.3 [lib.stringbuf.virtuals], paragraph 13, change "the object stores an invalid stream position” to "thereturn valueis
pos_type(off_type(-1))-

Page 28

Library Issues List

In 27.8.1.4 [lib.filebuf.virtuals], paragraph 13, change "returns an invalid stream position (27.4.3)" to "returns
pos_type(off_type(-1))"

In 27.8.1.4 [lib.filebuf.virtuals], paragraph 15, change "Otherwise returns an invalid stream position
(_lib.iostreams.definitions)" to "Otherwisereturnspos_t ype(of f _type(-1))"

In D.7.1.3 [depr.strstreambuf.virtuals], paragraph 15, change "the object stores an invalid stream position” to "the return value
ispos_type(off_type(-1))"

In D.7.1.3 [depr.strstreambuf.virtuals], paragraph 18, change "the object stores an invalid stream position” to "the return value
ispos_type(off_type(-1))"

56. Showmanyc'sreturn type
Section: 27.5.2 lib.streambuf Status DR Submitter: Matt Austern Date:29 Jun 98

The class summary for basic_streambuf<>, in 27.5.2, says that showmanyc has return type int. However, 27.5.2.4.3 says that
its return typeis streamsize.

Proposed Resolution:

Changeshowmanyc'sreturn typein the 27.5.2 lib.streambuf class summarytost r eansi ze.

57. Mistakein char_traits

Section: 21.1.3.2 lib.char.traits.specializations.wchar.t Status DR Submitter: Matt Austern Date:1 Jul 98

21.1.3.2, paragraph 3, says "Thetypes streampos and wstreampos may be different if the implementation supports no shift
encoding in narrow-oriented i ostreams but supports one or more shift encodings in wide-oriented streams”.

That's wrong: the two are the same type. The <iosfwd> summary in 27.2 says that streampos and wstreampos are, respectively,
synonyms for fpos<char_traits<char>::state type> and fpos<char_traits<wchar_t>::state type>, and, flipping back to clause
21, weseein21.1.3.1 and 21.1.3.2 that char_traits<char>::state type and char_traits<wchar_t>::state type must both be
mbstate t.

Proposed Resolution:

Remove the sentencein 21.1.3.2 lib.char.traits.specializations.wchar.t paragraph 3 which begins "The types streampos and
wstreampos may be different...” .

58. Extracting a char from a wide-oriented stream

Section: 27.6.1.2.3 lib.istream::extractors Status Open Submitter: Matt Austern Date:1 Jul 98

Page 29

Library Issues List

27.6.1.2.3 has member functions for extraction of signed char and unsigned char, both singly and as strings. However, it doesn't
say what it meansto extract achar fromabasi c_streanbuf <charT, Traits>

basic_streambuf, after all, has no members to extract a char, so basic_istream must somehow convert from charT to signed
char or unsigned char. The standard doesn't say how it isto perform that conversion.

Proposed Resolution:

oper at or >>should usenar r owto convert fromchar Ttochar.

59. Ambiguity in specification of gbump

Section: 27.5.2.3.1 lib.streambuf.get.area Status DR Submitter: Matt Austern Date: 28 Jul 98

27.5.2.3.1 saysthat basic_streambuf::gbump() "Advances the next pointer for the input sequence by n."

The straightforward interpretation isthat it isjust gptr() += n. An alternative interpretation, though, isthat it behaves asif it
calls sbumpc ntimes. (Theissue, of course, iswhether it might ever call underflow.) Thereis asimilar ambiguity in the case of
pbump.

AT&T implementation used the former interpretation.
Proposed Resolution:

Change 27.5.2.3.1 lib.streambuf.get.area paragraph 4 gbump effects from:

Effects. Advances the next pointer for the input sequence by n.
to:
Effects: Adds n to the next pointer for the input sequence.

Make the same change to 27.5.2.3.2 lib.streambuf.put.area paragraph 4 pbump effects.

60. What isa formatted input function?

Section: 27.6.1.2.1 lib.istream.formatted.regmts Status Open Submitter: Matt Austern Date: 3 Aug 98

Paragraph 1 of 27.6.1.2.1 contains general requirements for all formatted input functions. Some of the functions defined in
section 27.6.1.2 explicitly say that those requirements apply ("Behaves like aformatted input member (as described in
27.6.1.2.1)"), but others don't. The question: is 27.6.1.2.1 supposed to apply to everything in 27.6.1.2, or only to those member
functions that explicitly say "behaves like aformatted input member"? Or to put it differently: are we to assume that

everything that appears in a section called "Formatted input functions' really is aformatted input function? | assume that
27.6.1.2.1 isintended to apply to the arithmetic extractors (27.6.1.2.2), but | assumethat it is not intended to apply to
extractors like

Page 30

Library Issues List
basi c_i stream% operat or>>(basic_i stream& (*pf) (basic_istreamy));
and
basi c_i stream& operat or>>(basi c_streambuf*);
Thereisasimilar ambiguity for unformatted input, formatted output, and unformatted outpuit.

Comments : It seems like the problemis that the basic_istream and basic_ostream operator <<()'s that are used for the
manipulators and streambuf* are in the wrong section and should have their own separate section or be modified to makeiit
clear that the "Common requirements” listed in section 27.6.1.2.1 (for basic_istream) and section 27.6.2.5.1 (for
basic_ostream) do not apply to them.

Proposed Resolution:

The three member functions described in paragraphs 1-5 and the one described in paragraph 12-14 of section 27.6.1.2.3 should
each have something added (perhaps a Notes clause?) that says: "The common requirements listed in section 27.6.1.2.1 do not
apply to this function.”

The four member functions described in paragraphs 1-9 of section 27.6.2.5.3 should each have something added (perhaps a
Notes clause?) and the one described in section that says. "The common requirements listed in section 27.6.2.5.1 do not apply
to this function.”

61. Ambiguity in iostreams exception policy

Section: 27.6.1.3 lib.istream.unformatted Status Open Submitter: Matt Austern Date:6 Aug 98

Theintroduction to the section on unformatted input (27.6.1.3) says that every unformatted input function catches all
exceptions that were thrown during input, sets badbit, and then conditionally rethrows the exception. That seems clear enough.
Several of the specific functions, however, such as get() and read(), are documented in some circumstances as setting eofbit
and/or failbit. (The standard notes, correctly, that setting eofbit or failbit can sometimes result in an exception being thrown.)
The question: if one of these functions throws an exception triggered by setting failbit, is this an exception "thrown during
input" and hence covered by 27.6.1.3, or does 27.6.1.3 only refer to alimited class of exceptions? Just to make this concrete,
suppose you have the following snippet.

char buffer[N];
istreamis;

i”s:exceptions(istream:faiIbit); /'l Throw on failbit but not on badbit.
i s.read(buffer, N);

Now suppose we reach EOF before we'veread N characters. What iostate bits can we expect to be set, and what exception (if
any) will be thrown?

Proposed Resolution:

Clarify that the phrase "thrown during input” refers only to exceptions thrown by streambuf’s overridden virtuals, not exceptions
thrown as part of istream's error-reporting mechanism.

Page 31

Library Issues List

62. Sync'sreturn value

Section: 27.6.1.3 lib.istream.unformetted Status DR Submitter: Matt Austern Date:6 Aug 98

The Effects clause for sync() (27.6.1.3, paragraph 36) says that it "calls rdbuf()->pubsync() and, if that function returns-1 ...
returns traits::eof()."

That |ooks suspicious, becausetraits::eof() is of typetraits::int_type while the return type of sync() isint.
Proposed Resolution:

In 27.6.1.3 lib.istream.unformatted, paragraph 36, change"returnst r ai t s: : eof ()" to"returns- 1",

63. Exception-handling policy for unformatted output

Section: 27.6.2.6 lib.ostream.unformatted Status Open Submitter: Matt Austern Date: 11 Aug 98

Clause 27 detail s an exception-handling policy for formatted input, unformatted input, and formatted output. It says nothing for
unformatted output (27.6.2.6). 27.6.2.6 should either include the same kind of exception-handling policy asin the other three
places, or elseit should have afootnote saying that the omission is deliberate.

Proposed Resolution:

Add an exception-handling policy similar to the onein 27.6.2.5.1 lib.ostream.formatted.reqgmts, paragraph 1. The omission
seems to have been unintentional .

64. Exception handlinginbasi c_i stream : oper at or >>(basi c_st r eanbuf *)

Section: 27.6.1.2.3 lib.istream::extractors Status DR Submitter: Matt Austern Date:11 Aug 98

27.6.1.2.3, paragraph 13, is ambiguous. It can beinterpreted two different ways, depending on whether the second sentenceis
read as an elaboration of thefirst.

Proposed Resolution:

Replace 27.6.1.2.3 lib.istream::extractors, paragraph 13, which begins "If the function inserts no characters ..." with:

If the function inserts no characters, it callsset st at e(f ai | bi t), which may throw

i os_base: :fail ure(27.4.4.3). If it inserted no characters because it caught an exception thrown while
extracting charactersfromsb andf ai | bi t isoninexcepti ons() (27.4.4.3), then the caught exception
is rethrown.

Page 32

Library Issues List

65. Under specification of strstreambuf::seekoff

Section: D.7.1.3 depr.strstreambuf.virtuals Status Open Submitter: Matt Austern Date: 18 Aug 98

The standard says how this member function affects the current stream position. @pt r orppt r) However, it does not say how
this member function affects the beginning and end of the get/put area.

Thisis an issue when seekoff is used to position the get pointer beyond the end of the current read area. (Whichislegal. Thisis
implicit in the definition of seekhigh inD.7.1, paragraph 4.)

Proposed Resolution:

66. Strstreambuf::setbuf

Section: D.7.1.3 depr.strstreambuf.virtuals Status DR Submitter: Matt Austern Date: 18 Aug 98

D.7.1.3, paragraph 19, says that strstreambuf::setbuf "Performs an operation that is defined separately for each class derived
from strstreambuf”. This is obviously an incorrect cut-and-paste from basic_streambuf. There are no classes derived from
strstreambuf.

Proposed Resolution:

D.7.1.3 depr.strstreambuf.virtual s, paragraph 19, replace the setbuf effects clause which currently says "Performs an operation
that is defined separately for each class derived from strstreambuf™ with:

Effects implementation defined, except that set buf (0, 0) has no effect.

67. Setw uselessfor strings
Section: 21.3.7.9 lib.string.io Status Dup Submitter: Steve Clamage Date: 9 Jul 98
In acomp.std.c++ posting : What should be output by :

string text("Hello");
cout << '[' << setw(10) << right << text << ']';

Shouldn't it be:
[Hel | 0]

Another person replied: Actually, according to the FDIS, the width of the field should be the minimum of width and the length
of the string, so the output shouldn't have any padding. | think that this is atypo, however, and that what is wanted is the
maximum of the two. (As written, setw is useless for strings. If that had been the intent, one wouldn't expect them to have

Page 33

Library Issues List

mentioned using its value.)

It's worth pointing out that thisis arecent correction anyway; I1RC, earlier versions of the draft forgot to mention formatting
parameters what soever.

Rationale:

Duplicate. Seeissue 25.

68. Extractorsfor char* should store null at end

Section: 27.6.1.2.3 lib.istream::extractors Status DR Submitter: Angelika Langer Date: 14 Jul 98

Extractors for char* (27.6.1.2.3) do not store anull character after the extracted character sequence whereas the unformatted
functions like get() do. Why isthis?

Proposed Resolution:

27.6.1.2.3 lib.istream::extractors, paragraph 7, change the last list item from:

A null byte (charT()) in the next position, which may bethefirst position if no characters were extracted.
to become a new paragraph which reads:

Operator>> then stores anull byte (charT()) in the next paosition, which may be thefirst position if no
characters were extracted.

69. Must elements of a vector be contiguous?
Section: 23.2.4 lib.vector Status Ready Submitter: Andrew Koenig Date: 29 Jul 1998
Theissueisthis:

Must the elements of a vector be in contiguous memory?

(Please note that thisis entirely separate from the question of whether a vector iterator is required to be a pointer; the answer
to that questionis clearly "no," asit would rule out debugging i mplementations)

Proposed Resolution:
Add the following text to the end of 23.2.4 [lib.vector], paragraph 1.

The elements of avector are stored contiguously, meaning that if V isavect or <T, Al | ocat or >whereT

Page 34

Library Issues List

is sometype other thanbool , thenit obeystheidentity &v[n] == &V[0] + nforal0 <= n <
V. size().

Rationale:

The LWG fed s that as a practical matter the answer is clearly "yes'. There was considerable discussion as to the best way to
express the concept of "contiguous”, which is not directly defined in the standard. Discussion included:

® Anoperational definition similar to the above proposed resolution is already used for valarray £6.3.2.3).

®* Thereisno need to explicitly consider a user-defined operator& because elements must be copyconstructible (23.1
para 3) and copyconstructible (20.1.3) specifies requirements for operator&.

® Thereisno issue of one-past-the-end because of language rules.

70. Uncaught_exception() missing throw() specification

Section: 18.6 lib. support.exception, 18.6.4 lib.uncaught Status DR Submitter: Steve Clamage Date:

In article SEQO4@pratique.fr, writes:

uncaught_exception() doesn't have athrow specification.

It isintentionnal ? Does it means that one should be prepared to handl e exceptions thrown from uncaught_exception() ?
uncaught_exception() is called in exception handling contexts where exception safety is very important. >

Proposed Resolution:

In 18.6 lib.support.exception and 18.6.4 lib.uncaught add "throw()" to uncaught_exception().

1. Do_get_monthname synopsis missing ar gument

Section: 22.2.5.1 [lib.localetime.get | Status DR Submitter: Nathan Myers Date: 13 Aug 98

Thelocalefacet member ti me_get <>:: do_get _nont hnaneisdescribed in 22.2.5.1.2 [lib.locale.time.get.virtuals]
with five arguments, consistent with do_get weekday and with its specified use by member get_monthname. However, in the
synopsis, it is specified instead with four arguments. The missing argument is the "end" iterator value.

Proposed Resolution:

In22.2.5.1 [lib.localetime.get], add an "end" argument to the declaration of member do_monthname as follows:

virtual iter_type do_get_nonthname(iter_type s, iter_type end, ios_baseg&,
i os_base::iostate& err, tnrt t) const;

Page 35

Library Issues List
72. Do_convert phantom member function
Section: 22.2.1.5 lib.locale.codecvt Status Dup Submitter: Nathan Myers Date: 24 Aug 98

In22.2.1.5 par 3lib.locale.codecvt, and in 22.2.1.5.2 par 8 lib.locale.codecvt.virtuals, a nonexistent member function
"do_convert" is mentioned. This member was replaced with "do_in" and "do_out", the proper referents in the contexts above.

Proposed Resolution:

Duplicate; seeissue 24 for resolution

73. i s_open should be const
Section: 27.8.1 lib.filestreams Status NAD Submitter: Matt Austern Date: 27 Aug 98

Classes basi c_i f streambasi c_of st reamandbasi c_f st r eamall have amember functioni s_open. It
should beaconst member function, sinceit does nothing but call oneofbasi ¢_f i | ebuf'sconst member functions.

Rationale:

Not adefect. Thisis addiberate feature; const streams would be meaningless.

74. Garbled text for codecvt:: do_max_I| ength

Section: 22.2.1.5.2 lib.locale.codecvt.virtuals Status Ready Submitter: Matt Austern Date: 18 Sep 98

Thetext of codecvt : : do_max_| engt Hs"Returns' clause (22.2.1.5.2, paragraph 11) is garbled. It has unbalanced
parentheses and a spuriousn.

Proposed Resolution:

Replace 22.2.1.5.2 lib.locale.codecvt.virtuals paragraph 11 with the following:

Returns: Themaximumvaluethatdo_| engt h(state, from from end, 1)canreturnforany
validrange[from from end) andst at eT value state. The specialization codecvt <char,
char, nbstate_t>::do_nmax_I| engt h()returns 1.

75. Contradiction incodecvt : : | engt h 'sargument types

Section: 22.2.1.5 lib.locale.codecvt Status Ready Submitter: Matt Austern Date: 18 Sep 98

Page 36

Library Issues List

The class synopses for classescodecvt <>(22.2.1.5) andcodecvt _byname<>(22.2.1.6) say that thefirst parameter of
the member functions| engt handdo_I engt hisof typeconst st at eT& The member function descriptions, however
(22.2.1.5.1, paragraph 6; 22.2.1.5.2, paragraph 9) say that thetypeis st at e T& Either the synopsis or the summary must be
changed.

If (as| believe) the member function descriptions are correct, then we must also add text saying howdo_| engt h changesits
st at eT argument.

Proposed Resolution:

In22.2.1.5 [lib.locale.codecvt], and al'so in 22.2.1.6 [lib.locale.codecvt byname], changethest at e T argument type on both
member | engt h() and member do_1| engt h() from

const stateT&
to
stateT&

In22.2.1.5.2 [lib.locale.codecvt.virtuals], add to the definition for memberdo_| engt h a paragraph:

Effects: Theeffect onthe st at e argument is “asif"itcaleddo_i n(state, from from end,
from to, to+max, to)forto pointingtoabuffer of at least max eements.

76. Can acodecvt facet alwaysconvert oneinternal character at atime?

Section: 22.2.1.5 lib.locale.codecvt Status Open Submitter: Matt Austern Date: 25 Sep 98

This issue concerns the requirements on classes derived fromcodecvt, including user-defined classes. What arethe
restrictions on the conversion from external characters (e.gchar) tointernal characters (e.g.wchar _t)? Or, aternatively,
what assumptions about codecvt facets canthel/O library make?

The question is whether it's possible to convert from internal charactersto external characters oneinternal character at atime,
and whether, given avalid sequence of external characters, it's possibleto pick off internal characters one at atime. Or, to put
it differently: given a sequence of external characters and the corresponding sequence of internal characters, does a positionin
theinternal sequence correspond to some position in the external sequence?

To makethis concrete, supposethat[fi rst, | ast) isasequenceof M external charactersandthat[i fi rst,
i | ast) isthecorresponding sequence ofN internal characters, whereN > 1. That is, my_encodi ng. i n(), appliedto

[first, last),yidds[ifirst, ilast).Now thequestion: doesthere necessarily exist a subsequence of external
characters, [fi rst, | ast_1), suchthat the corresponding sequence of internal charactersis the single character
*ifirst?

(What a"no" answer would mean isthatny _encodi ng translates sequences only as blocks. There's a sequence of M
external characters that maps to a sequence of N internal characters, but that external sequence has no subsequence that maps
toN-1 internal characters.)

Some of thewording in the standard, such asthe description ocodecvt : : do_max_| engt h(22.2.1.5.2, paragraph 11)
andbasi c_fil ebuf:: underfl o\ (27.8.1.4, paragraph 3) suggests that it must always be possible to pick off internal

Page 37

Library Issues List

characters one at a time from a sequence of external characters. However, thisis never explicitly stated one way or the other.

Thisissue seems (and is) quite technical, but it isimportant if we expect users to provide their own encoding facets. Thisisan
area where the standard library calls user-supplied code, so awell-defined set of requirements for the user-supplied codeis
crucial. Users must be aware of the assumptions that the library makes. This issue affects positioning operations on

basi c_fi | ebuf, unbuffered input, and several ofcodecvt's member functions.

Proposed Resolution:

77. Valarray operator[] const returning value

Section: 26.3.2.3 [lib.valarray.access] Status NAD Future Submitter: Date: 9 Sep 98

valarray:
T operator[] (size_t) const;
why not
const T& operator[] (size_t) const;
asin vector ?77?
One can't copy even from a const valarray eg:
mencpy(ptr, &v[O0], v.size() * sizeof(double));

[1] find this bug in valarray is very difficult.
Rationale:

The LWG believes that the interface was deliberately designed that way. That is what valarray was designed to do; that's
where the "value array" name comes from. LWG members further comment that "we don't want valarray to beafull STL
container." 26.3.2.3lib.valarray.access specifies properties that indicate "an absence of aliasing” for non-constant arrays; this
allows optimizations, including special hardware optimizations, that are not otherwise possible.

78. Typo: event_call_back

Section: 27.4.2 lib.ios.base Status DR Submitter: Nico Josuttis Date: 29 Sep 98
typo: event_call_back should be event_callback

Proposed Resolution:

Inthe 27.4.2 lib.ios.base synopsis change "event_call _back" to "event_callback”.

Page 38

Library Issues List

79. Inconsistent declaration of polar ()

Section: 26.2.1 lib.complex.synopsis, 26.2.7 lib.complex.value.ops Status DR Submitter: Nico Josuttis Date: 29 Sep 98

In 26.2.1 lib.complex.synopsis polar is declared as follows:

t enpl at e<cl ass T> conpl ex<T> pol ar(const T&, const T&);
In 26.2.7 lib.complex.value.opsit is declared as fol lows:

t enpl at e<cl ass T> conpl ex<T> pol ar(const T& rho, const T& theta = 0);
Thus whether the second parameter is optional is not clear.

Proposed Resolution:

In 26.2.1 lib.complex.synopsis change:
tenpl at e<cl ass T> conpl ex<T> pol ar(const T&, const T&);
to:

t enpl at e<cl ass T> conpl ex<T> pol ar(const T& rho, const T& theta = 0);

80. Global Operatorsof complex declared twice

Section: 26.2.1 lib.complex.synopsis, 26.2.2 lib.complex Status DR Submitter: Nico Josuttis Date: 29 Sep 98

Both 26.2.1 and 26.2.2 contain declarations of global operators for class complex. This redundancy should be removed.
Proposed Resolution:

Reduce redundance according to the general style of the standard.

81. Wrong declaration of dlice operations

Section: 26.3.5 lib.template.dlice.array , 26.3.7 lib.template.gslice.array , 26.3.8, 26.3.9 Status NAD Submitter: Nico
Josuttis Date: 29 Sep 98

Isn't the definition of copy constructor and assignment operators wrong? Instead of

slice_array(const slice_arrayé&);

Page 39

Library Issues List

slice_array& operator=(const slice_array&)

IMHO they haveto be

slice_array(const slice_array<T>&);
slice_array& operator=(const slice_array<T>&);

Samefor gslice array.
Rationale:

Not a defect. The Standard is correct as written.

82. Missing constant for set elements

Section: 23.1.2 lib.associativeregmts Status NAD Submitter: Nico Josuttis Date: 29 Sep 98

Paragraph 5 specifies:

For set and multiset the value typeis the same as the key type. For map and multimap it is equal to pair<const Key, T>.
Strictly speaking, thisis not correct because for set and multiset the value typeis the same as the constant key type.
Rationale:

Not adefect. The Standard is correct as written; it uses a different mechanism (const &) forset andmul ti set. Seeissue
103 for arelated issue.

83. String::nposvs. string::max_size()
Section: 21 lib.strings Status Open Submitter: Nico Josuttis Date: 29 Sep 98

Many string member functions throw if sizeis getting or exceeding npos. However, | wonder why they don't throw if sizeis
getting or exceeding max_size() instead of npos. May be npos is known at compile time, while max_size() is known at runtime.
However, what happens if size exceeds max_size() but not npos, then ? It seems the standard lacks some clarifications here.

Proposed Resolution:

84. Ambiguity with string::insert()

Section: 21.3.5 lib.string.modifiers Status NAD Future Submitter: Nico Josuttis Date: 29 Sep 98

If I try

Page 40

Library Issues List

s.insert(0,1,"' ');
| get an nasty ambiguity. It might be
s.insert((size_type)0, (size_type)l,(charT)" ");
which inserts 1 space character at position O, or
s.insert((char*)0,(size_type)l,(charT)' ")
which inserts 1 space character at iterator/address O (bingo!), or
s.insert((char*)0, (lnputlterator)l, (lnputlterator)' ")

which normally inserts characters fromiterator 1 toiterator ' . But according to 23.1.1.9 (the "do theright thing" fix) itis
equivalent to the second. However, it is still ambigious, because of course | mean thefirst!

Rationale:

Not a defect. The LWG bdievesthisis a'genetic misfortune" inherent in the design of string and thus not a defect in the
Standard as such .

85. String char types
Section: 21 lib.strings Status NAD Submitter: Nico Josuttis Date: 29 Sep 98

The standard seems not to require that charT is equivalent to traits::char_type. So, what happens if charT is not equivalent to
traits::char_type ?

Rationale:

Thereis already wording in 21.1 paragraph 3 (ib.char.traits) that requires them to be the same.

86. String constructorsdon't describe exceptions

Section: 21.3.1 lib.string.cons Status Open Submitter: Nico Josuttis Date: 29 Sep 98

The constructor from arange:

tenpl at e<cl ass I nputlterator>
basi c_string(lnputlterator begin, Inputlterator end,
const Allocator& a = Allocator());

lacks a throw specification. However, | would expect that it throws according to the other constructors if the numbers of
charactersin the range equal s npos (or exceeds max_size(), see above).

Page 41

Library Issues List

Proposed resolution:

87. Error in description of string::compar &)

Section: 21.3.6.8 lib.string::compare Status Dup Submitter: Nico Josuttis Date: 29 Sep 98

Thefollowing compare() description is obviously a bug:

int conpare(size_type pos, size_type nl,
charT *s, size_type n2 = npos) const;

because without passing n2 it should compare up to the end of the string instead of comparing npos characters (which throws ar
exception)

Rationale:

Duplicate; seeissue 5.

88. Inconsistency between string::insert() and string::append()

Section: 21.3.5.4 lib.string::insert, 21.3.5.2 lib.string::append Status NAD Future Submitter: Nico Josuttis Date: 29 Sep
98

Why does

tenpl at e<cl ass I nputlterator>
basi c_string& append(lnputlterator first, Inputlterator |ast);

return a string, while

tenpl at e<cl ass I nputlterator>
void insert(iterator p, Inputlterator first, Inputlterator |ast);

returns nothing ?
Rationale:

The LWG believes thisinconsistency is not sufficiently serious to constitute a defect.

89. Missing throw specification for string::insert() and string::replace()

Section: 21.3.5.4 lib.string::insert, 21.3.5.6 lib.string::replace Status Dup Submitter: Nico Josuttis Date: 29 Sep 98

Page 42

Library Issues List

All insert() and replace() members for strings with an iterator asfirst argument lack athrow specification. The throw
specification should probably be: length_error if size exceeds maximum.

Rationale:

Considered aduplicate becauseit will be solved by the resol ution of issue 83.

90. Incorrect description of operator >> for strings
Section: 21.3.7.9 lib.string.io Status DR Submitter: Nico Josuttis Date: 29 Sep 98
The effect of operator >> for strings containe the following item:

i sspace(c, getl oc()) istruefor the next availableinput character c.
Hereget | oc() hastobereplacedbyi s. get | oc().
Proposed resolution:
In21.3.7.9lib.string.io paragraph 1 Effects clause replace:

i sspace(c, getl oc()) istruefor the next availableinput character c.

with:

i sspace(c,is.getloc())istrueforthenext availableinput character c.

91. Description of operator>> and getling() for string<> might cause endless loop
Section: 21.3.7.9 lib.string.io Status Open Submitter: Nico Josuttis Date: 29 Sep 98

Operator >> and getline() for strings read until eof() in the input streamis true. However, this might never happen, if the
stream can't read anymore without reachin EOF. So shouldn't it be changed into that it reads until 'good() ?

Proposed resolution:

92. Incomplete Algorithm Requirements
Section: 25 lib.algorithms Status Open Submitter: Nico Josuttis Date: 29 Sep 98

The standard does not state, how often a function object is copied, called, or the order of calls inside an agorithm. This may
lead to suprising/buggy behavior. Consider the following example:

Page 43

Library Issues List

class Nth { // function object that returns true for the nth el enent
private:
int nth; /'l element to return true for
int count; /'l el ement counter
public:

Nth (int n) : nth(n), count(0) {

bool operator() (int) {
return ++count == nth;
}

}s

/1 remove third el ement
list<int>::iterator pos;
pos = renove_if(coll.begin(),coll.end(), [/ range
Nt h(3)), /'l renpve criterion
coll.erase(pos,coll.end());

This call, in fact removes the 3rd AND the 6th eement. This happens because the usual implementation of the algorithm
copies the function object internaly:

tenpl ate <class Forwiter, class Predicate>
Forwiter std::renmove_if(Forwiter beg, Forwiter end, Predicate op)

{
beg = find_if(beg, end, op);
if (beg == end) {
return beg;

el se {
Forwliter next = beg;
return renmove_copy_if(++next, end, beg, op);

}

The algorithm uses find_if() to find the first eement that should be removed. However, it then uses a copy of the passed
function object to process the resulting elements (if any). Here, Nth is used again and removes a so the sixth element. This
behavior compromises the advantage of function objects being able to have a state. Without any cost it could be avoided (just
impolement it directly instead of calling find_if()).

Proposed resolution:

The standard should specify that this kind of implementation is abug. Something like "it is guaranteed that an algorithm uses
the same object for all calls of passed function objects (however, it may be a copy)”.

93. Incomplete Valarray Subset Definitions
Section: 26.3 lib.numarray Status NAD Future Submitter: Nico Josuttis Date: 29 Sep 98

You can easily create subsets, but you can't easily combine them with other subsets. Unfortunately, you almost always needs
an explicit type conversion to valarray. Thisis because the standard does not specify that valarray subsets provide the same
operations as valarrays.

For exampl e, to multiply two subsets and assign the result to a third subset, you can't write the following:

Page 44

Library Issues List

va[slice(0,4,3)] = va[slice(1,4,3)] * va[slice(2,4,3)];
Instead, you haveto code as follows:

*

va[slice(0,4,3)] = static_cast<val array<doubl e> >(va[slice(1,4,3)])
static_cast<val array<doubl e> >(va[slice(2,4,3)]);

Thisistedious and error-prone. Even worse, it costs performance because each cast creates atemporary objects, which could
be avoided without the cast.

Proposed resolution:
Extend all valarray subset types so that they offer all valarray operations.
Ratinale:

Thisis not adefect in the Standard; it is arequest for an extension.

94. May library implementors add template parametersto Standard Library classes?
Section: 17.4.4 lib.conforming Status Open Submitter: Matt Austern Date: 22 Jan 98

Isit apermitted extension for library implementors to add templ ate parameters to standard library classes, provided that those
extra parameters have defaults? For example, instead of definingt enpl ate <cl ass T, class Alloc =

al l ocator<T> > cl ass vector;ddiningitast enpl ate <class T, class Alloc =
allocator<T>, int N = 1> class vector;

The standard may well already allow this (I can't think of any way that this extension could break a conforming program,
considering that users are not permitted to forward-declare standard library components), but it ought to be explicitly permitted
or forbidden.

Proposed Resolution:

Add a new subclause [presumably 17.4.4.9] following 17.4.4.8 [lib.res.on.exception.handling]:

17.4.4.9 Template Parameters

A specialization of atemplate class described in the C++ Standard Library behaves the same as if the
impl ementation declares no additional template parameters.

Footnote/ Additional template parameters with default val ues are thus permitted.
Add "template parameters’ to thelist of subclauses at the end of 17.4.4 paragraph 1 [lib.conforming].
Rationale:

The LWG believes the answer should be "yes, adding template parameters with default val ues should be permitted.” A careful
reading of 17.4.4 and its subclauses found no mention of additional template parameters.

Page 45

Library Issues List

95. Membersadded by the implementation

Section: 17.4.4.4 |lib.member.functions Status NAD. Submitter: AFNOR Date: 7 Oct 98

In17.3.4.4/2 vs 17.3.4.7/0 thereis a hole; an implementation could add virtual members a base class and break user derived

classes.
Example:

/[inmplenmentation code:
struct _Base { // _Base is in the inplenenter namespace
virtual void foo ();

1
class vector : _Base // deriving froma class is allowed
{ ... b

/'l user code:
class vector_checking : public vector

{

void foo (); // don't want to override _Base::foo () as the
// user doesn't know about _Base::foo ()

b
Proposed Resolution:
Clarify the wording to make the exampleillegal .
Rationale:

Thisis not adefect in the Standard. The exampleisaready illegal. See 17.4.4.4 lib.member.functions paragraph 2.

96. Vector<bool> isnot a container

Section: 23.2.5 lib.vector.bool Status Open Submitter: AFNOR Date: 7 Oct 98

vect or <bool >isnot acontainer asits reference and pointer types are not references and pointers.
Also it forces everyone to have a space optimization instead of a speed one.

See also: 99-0008 == N1185 Vector<bool> is Nonconforming, Forces Optimization Choice.

Proposed Resolution:

Page 46

Library Issues List
97. Insert inconsistent definition
Section: 23 lib.containers Status NAD Future Submitter: AFNOR Date: 7 Oct 98

insert(iterator, const val ue_type&)isdefined both on sequences and on set, with unrelated semantics: insert
here (in sequences), and insert with hint (in associative containers). They should have different names (B.S. says. do not abuse
overloading).

Rationale:

Thisis not adefect in the Standard. It is a genetic misfortune of the design, for better or for worse.

98. Input iterator requirementsare badly written
Section: 24.1.1 lib.input.iterators Status Open Submitter: AFNOR Date: 7 Oct 98
Table72in24.1.1 (lib.input.iterators) specifies semantics for * r ++ of:
{ Ttnp = *r; ++r; return tnp; }
This does not work for pointers and overconstrains implementors.
Proposed Resolution:

Add for *r++: “To call the copy constructor for thetype T is allowed but not required.”

99. Reverse_iterator comparisons completely wrong

Section: 24.4.1.3.13 lib.reverse.iter.op<, etc. Status NAD Submitter: AFNOR Date: 7 Oct 98

The<, >, <=, >= comparison operator are wrong: they return the opposite of what they should.

Note: same problemin CD2, these were not even defined in CD1
SGI STL codeis correct; this problem is known since the Morristown meeting but there it was too |late

Rationale:

Thisis not adefect in the Standard. A careful reading shows the Standard is correct as written.

100. Insert iterators/ostream_iterators overconstrained

Section: 24.4.2 lib.insert.iterators, 24.5.4 lib.ostreambuf.iterator Status NAD Submitter: AFNOR Date: 7 Oct 98

Page 47

Library Issues List

Overspecified For an insert iterator it, the expression *it is required to return areferenceto it. Thisisasimple possible
implementation, but as the SGI STL documentation says, not the only one, and the user should not assume that thisis the case.

Rationale:

The LWG bdieves this causes no harm and is not a defect in the standard.

101. Noway tofreestoragefor vector and deque

Section: 23.2.4 lib.vector, 23.2.1 lib.deque Status NAD Submitter: AFNOR Date: 7 Oct 98
Reserve can not free storage, unlike string::reserve

Rationale:

Thisis not a defect in the Standard. The LWG has considered this issue in the past and sees no need to change the Standard.
Degue has no reserve() member function. For vector, shrink-to-fit can be expressed in asingle line of code (where is
vect or <T>):

vector<T>(v).swap(v); [/ shrink-to-fit v

102. Bugininsert rangein associative containers

Section: 23.1.2 lib.associative.regmts Status Open Submitter: AFNOR Date: 7 Oct 98

Table 69 of Containers say that a.insert(i,j) islinear if [i, j) is ordered. It seems impossibleto implement, asit means that if [i,
1) =[x], insert in an associative container is O(1)!

Proposed Resolution:

N+log (size()) if [i,j) is sorted according to value_comp()

103. set::iterator isrequired to be modifiable, but this allows modification of keys

Section: 23.1.2 lib.associative.regmts, 23.3.3 lib.set, 23.3.4 lib.mutliset Status Open Submitter: AFNOR Date: 7 Oct
98

Set::iterator is described as implementation-defined with a reference to the container requirement; the contai ner requirement
says that const_iterator is an iterator pointing to const T and iterator an iterator pointing to T.

23.1.2 paragraph 2 implies that the keys should not be modified to break the ordering of elements. But that is not clearly
specified. Especially considering that the current standard requires that iterator for associative containers be different from
const_iterator. Set, for example, has the following:

Page 48

Library Issues List

typedef inplenmentation defined iterator;
// See _lib.container.requirenments_

23.1 lib.container.requirements actually requires that iterator type pointing to T (table 65). Disallowing user modification of
keys by changing the standard to require an iterator for associative container to be the same as const_iterator would be overkill
since that will unnecessarily significantly restrict the usage of associative container. A class to be used as e ements of set, for
example, can no longer be modified easily without either redesigning the class (using mutabl e on fields that have nothing to do
with ordering), or using const_cast, which defeats requiring iterator to be const_iterator. The proposed solution goesin line
with trusting user knows what heis doing.

Proposed Resolution:

Option A. In 23.1.2lib.associative.regmts, paragraph 2, after first sentence, and before "1n addition,...”, add oneline:

Modification of keys shall not change their strict weak ordering.

Option B. Add three new sentences to 23.1.2 |ib.associative.regmts :

At the end of paragraph 5: "Keys in an associative container are immutable.” At the end of paragraph 6: "For
associ ative contai ners where the value type i s the same as the key type, both i t er at or and

const _it er at or areconstant iterators. It is unspecified whether or noti t er at or and

const _it erat or arethe sametype.”

Option C: To 23.1.2 lib.associative.regmts, paragraph 3, which currently reads:

The phrase " equival ence of keys" means the equival ence rel ation imposed by the comparison and not the
operator==on keys. That is, two keys k1 and k2 in the same container are considered to be equivalent if for the
comparison object comp, comp(kl, k2) == false && comp(k2, k1) == false.

add the following:

For any two keys k1 and k2 in the same container, comp(k1, k2) shall return the same value whenever it is
evaluated. [Note: If k2 isremoved from the container and later reinserted, comp(k1, k2) must still return a
consisent val ue but this value may be different than it was thefirst time k1 and k2 were in the same container.
Thisisintended to allow usage like a string key that contains a filename, where comp compares file contents; if
k2 isremoved, thefileis changed, and the same k2 (filename) is reinserted, comp(k1, k2) must again return a
consistent val ue but this value may be different than it was the previous time k2 was in the container.]

Rationale:

Simply requiring that keys beimmutableis not sufficient, because the comparison object may indirectly (via pointers) operate
on values outside of the keys. Furthermore, requiring that keys be immutabl e places undue restrictions ons et for structures
where only a portion of the structure partici pates in the comparison.

104. Description of basic_string::operator([] isunclear
Section: 21.3.4 lib.string.access Status NAD Submitter: AFNOR Date: 7 Oct 98

Itisnot clear that undefined behavior applies when pos == size () for the non const version.

Page 49

Library Issues List

Proposed Resolution:
Rewrite as: Otherwise, if pos > size () or pos == size () and the non-const version is used, then the behavior is undefined.
Rationale:

The Standard is correct. The proposed resol ution already appears in the Standard.

105. fstream ctorsargument types desired
Section: 27.8 lib.filestreams Status NAD FutureSubmitter: AFNOR Date: 7 Oct 98

fstream ctors take a const char* instead of string.
fstream ctors can't take wchar_t

An extension to add a const wchar_t* to fstream would make the implementation non conforming.
Rationale:

Thisis not adefect in the Standard. 1t might be an interesting extension for the next Standard.

106. Numeric library private members are implementation defined

Section: 26.3.5 lib.templatedlicearray , etc. Status DR Submitter: AFNOR Date: 7 Oct 98

Thisisthe only place in the whol e standard where the impl ementation has to document something private.
Proposed Resolution:
Remove the comment which says "// remainder i mplementation defined” from:

26.3.5 lib.template.dlice.array
26.3.7 lib.template.gslice.array
26.3.8 lib.template. mask.array
26.3.9 lib.template.indirect.array

107. Valarray constructor is strange

Section: 26.3.2 lib.template.valarray Status NAD Submitter: AFNOR Date: 7 Oct 98

The order of theargumentsis (elem, size) instead of the normal (size, e em) intherest of thelibrary. Since e em often has an
integral or floating point type, both types are convertible to each other and reversing them leads to awell formed program.

Page 50

Library Issues List

Rationale:

The LWG believes that whilethe order of argumentsis unfortunate, it does not constitute a defect in the standard.

108. Lifetime of exception::what() return unspecified
Section: 18.6.1 lib.exception para8, 9 Status Review Submitter: AFNOR Date: 7 Oct 98

Thelifetime of the return value of exception::what() is left unspecified. This issue has implications with exception safety of
exception handling: some exceptions should not throw bad_alloc.

Proposed Resolution:
Add to 18.6.1lib.exception paragraph 9 (exception::what notes clause) the sentence:

Thereturn value remains valid until the exception object fromwhich it is obtained is destroyed or a non-const
member function of the exception object is called.

109. Missing bindersfor non-const sequence el ements
Section: 20.3.6 lib.binders Status Open Submitter: Bjarne Stroustrup Date: 7 Oct 98

There are no versions of binders that apply to non-const € ements of a sequence. This makes examples like for_each() using
bind2nd() on page 521 of "The C++ Programming Language (3rd)" non-conforming. Suitable versions of the binders need to be
added.

Proposed Resolution:

10. istreambuf_iterator::equal not const

Section: 24.5.3 [lib.istreambuf.iterator], 24.5.3.5 [lib.istreambutf.iterator::equal] Status Ready Submitter: Nathan Myers
Date: 15 Oct 98

Member istreambuf_iterator<>::equal is not declared "const”, yet 24.5.3.6 [lib.istreambuf.iterator::op==] says that
operator==, which is const, callsit. Thisis contradictory.

Proposed Resolution:

In 24.5.3 [lib.istreambuf.iterator | and also in 24.5.3.5 [lib.istreambuf.iterator::equal], replace:

bool equal (i streanmbuf _iteratoré& b);

Page 51

Library Issues List
with:

bool equal (const istreanmbuf _iterator& b) const;

111. istreambuf _iterator::equal over specified, inefficient

Section: 24.5.3.5 [lib.istreambuf.iterator::equal] Status Open Submitter: Nathan Myers Date: 15 Oct 98

The member istreambuf _iterator<>::equal is specified to be unnecessarily inefficient. While this does not affect the efficiency
of conforming implementations of iostreams, because they can "reach into" theiterators and bypass this function, it does affect
users who useistreambuf_iterators.

Theinefficiency results from a too-scrupul ous definition, which requires a "true” result if neither iterator is at eof. In practice
these iterators can only usefully be compared with the "eof" value, so the extratest implied provides no benefit, but slows
down users' code.

The solution is to weaken the requirement on the function to return true only if both iterators are at eof.
Proposed Resolution:

Replace 24.5.3.5 [lib.istreambuf.iterator::equal], paragraph 1,

-1- Returns: trueif and only if both iterators are at end-of-stream, or neither is at end-of-stream, regardl ess of
what streambuf object they use.

with

-1- Returns: trueif and only if both iterators are at end-of-stream, regardless of what streambuf object they use.

112. Minor typoinostreanbuf _iterator constructor

Section: 24.5.4.1 lib.ostreambuf.iter.cons Status Review Submitter: Matt Austern Date: 20 Oct 98

Therequires clausefor ost r eanbuf _i t er at or'sconstructor fromanost r eam t ype (24.5.4.1, paragraph 1) reads s
isnot null". However,sis areference, and references can't be null.

Proposed Resolution:

In 24.5.4.1 lib.ostreambuf.iter.cons:

Move the current paragraph 1, which reads "Requires: sisnot null.”, from thefirst constructor to the second constructor.
Insert a new paragraph 1 Requires clause for thefirst constructor reading:

Requires: s. rdbuf () isnot null.

Page 52

Library Issues List

113. Missing/extraiostream sync semantics

Section: 27.6.1.1 lib.istream, 27.6.1.3 lib.istream.unformatted, para36 Status NAD Submitter: Steve Clamage Date: 13
Oct 98

In 27.6.1.1, class basic_istream has a member function sync, described in 27.6.1.3, paragraph 36.

Following the chain of definitions, | find that the various sync functions have defined semantics for output streams, but no
semantics for input streams. On the other hand, basic_ostream has no sync function.

The sync function should at minimum be added to basic_ostream, for internal consistency.
A larger question is whether sync should have assigned semantics for input streams.

Classic iostreams said streambuf:: sync flushes pending output and attempts to return unread input charactersto the source. It is
a protected member function. Thefilebuf version (which is public) has that behavior (it backs up the read pointer). Class
strstreambuf does not override streambuf::sync, and so sync can't be called on a strstream.

If we can add corresponding semantics to the various sync functions, we should. If not, we should remove sync from
basic_istream.

Rationale:
A sync function is not needed in basic_ostream because the flush function provides the desired functionality.

Asfor the other points, the LWG finds the standard correct as written.

114. Placement forms examplein error twice

Section: 18.4.1.3 [lib.new.delete.placement | Status Review Submitter: Steve Clamage Date: 28 Oct 1998

Section 18.4.1.3 contains the following example;

[Exanpl e: This can be useful for constructing an object at a known address:
char place[si zeof (Sonet hing)];
Sonet hing* p = new (place) Sonething();

-end exanpl e]

First codeline: "place" need not have any special aignment, and the following constructor could fail due to misaligned data.
Second code line: Aren't the parens on Something() incorrect? [Dublin: the LWG believesthe () are correct.]
Examples are not normative, but neverthel ess should not show codethat isinvalid or likey to fail.

Proposed Resolution:

Page 53

Library Issues List

Replace thefirst line of codein the examplein 18.4.1.3 [lib.new.del ete.placement] with:

voi d* place = operator new(sizeof (Sonething));

15. Typoin strstream constructors

Section: D.7.4.1 [depr.strstream.cong Status Review Submitter: Steve Clamage Date: 2 Nov 1998

D.7.4.1 strstream constructors paragraph 2 says.

Effects: Constructs an object of class strstream, initializing the base class with iostream(& sb) and initializing
sbwith one of the two constructors:

- If mode& app==0, then s shall designate thefirst element of an array of n elements. The constructor is
strstreambuf(s, n, s).

- If mode& app==0, then s shall designate the first element of an array of n eements that contains an NTBS
whosefirst e ement is designated by s. The constructor is strstreambuf(s, n, s+std::strlen(s)).

Notice the second condition is the same as thefirst. | think the second condition should be"If mode& app==app", or
"mode& app!=0", meaning that the append bit is set.

Proposed Resolution:

In D.7.3.1 [depr.ostrstream.cong paragraph 2 and D.7.4.1 [depr.strstream.cong paragraph 2, change the first condition to
(mde&app) ==0and the second condition to(nrode&app) ! =0.

16. bitset cannot be constructed with a const char*

Section: 23.3.5 lib.template.bitset Status NAD Future Submitter: Judy Ward Date: 6 Nov 1998

The following code does not compile:

#i ncl ude <bitset>
usi ng nanmespace std;
bitset<32> b("111111111");

If you cast the ctor argument to astring, i.e.:
bi tset<32> b(string("111111111"));
then it will compile. Thereason is that bitset has the following templatized constructor:

tenpl ate <class charT, class traits, class Allocator>
explicit bitset (const basic_string<charT, traits, Allocator>& str, ...);

Page 54

Library Issues List

According to the compiler vendor, the user cannot pass this template constructor aconst char * and expect a conversion to
basi c_stri ng. Thereasonis"When you have atemplate constructor, it can get used in contexts where type deduction can
be done. Type deduction basically comes up with exact matches, not ones involving conversions.”

| don't think the intention when this constructor became templ atized was for construction fromaconst char * to no longer
work.

Proposed Resolution:

Add to 23.3.5lib.template.bitset a bitset constructor declaration

explicit bitset(const char*);
and in Section 23.3.5.1 lib.bitset.cons add:
explicit bitset(const char* str);

Effects:
Calsbhitset((string) str, 0, string::npos);

Rationale:

Although the problemisreal, the standard is designed that way so it is not adefect. Education is the immediate workaround. A
future standard may wish to consider the Proposed Resolution as an extension.

117. basi c_ost r eam usesnonexistent num put member functions

Section: 27.6.2.5.2 lib.ostream.inserters.arithmetic Status Review Submitter: Matt Austern Date: 20 Nov 98

The effects clause for numeric inserters says that insertion of avaluex, whosetypeis either bool ,shor t,unsi gned
short,int,unsigned int,l ong,unsi gned | ong,fl oat,doubl e,l ong doubl e orconst voi d*,is
delegated to num_put, and that insertion is performed as if through the following code fragment:

bool failed = use_facet<
num put <char T, ostreanbuf _iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(), val). failed();

This doesn't work, becausenum_put <>::put is only overloaded for thetypesbool , I ong,unsi gned | ong,doubl e,
| ong doubl e, andconst voi d*. That is, the code fragment in the standard is incorrect (it is diagnosed as ambiguous at
compiletime) for thetypes shor t,unsi gned short,i nt,unsi gned i nt,andf| oat.

We must either add new member functionstonum_put, or else change the descriptioninost r eamso that it only calls
functions that are actually there. | prefer the latter.

Proposed Resolution:

Replace 27.6.2.5.2, paragraph 1 with the following:

Page 55

Library Issues List

Theclassesnum_get <>andnum_put <> handle local e-dependent numeric formatting and parsing. These
inserter functions usetheimbued! ocal e valueto perform numeric formatting. Whenval isof typebool ,

| ong,unsi gned | ong,doubl e,l ong doubl e orconst voi d*, theformatting conversion occurs
asif it performed the following code fragment:

bool failed = use_facet<
num put <char T, ostreanbuf _iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(), val). failed();

Whenval isof typeshort ori nt theformatting conversion occurs asif it performed the following code
fragment:

bool failed = use_facet<
num put <char T, ostreanbuf _iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(), static_cast<long>(val)). failed();

Whenval isof typeunsi gned short orunsi gned i nt theformatting conversion occurs asiif it
performed the following code fragment:

bool failed = use_facet<
num put <char T, ostreanbuf iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(), static_cast<unsigned |long>(val)). f

Whenval isof typef | oat theformatting conversion occurs as if it performed the following code fragment:

bool failed = use_facet<
num put <char T, ostreanbuf _iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(), static_cast<double>(val)). failed();

18. basi c_i st r eam uses nonexistent num get member functions

Section: 27.6.1.2.2 lib.istream.formatted.arithmetic Status Open Submitter: Matt Austern Date: 20 Nov 98

Formatted input is defined for thetypesshor t,unsi gned short,i nt,unsi gned int,l ong,unsi gned | ong,
fl oat,doubl e,| ong doubl e bool ,andvoi d*. According to section 27.6.1.2.2, formatted input of avaluex is done
asif by the following code fragment:

typedef num get< charT,istreanbuf _iterator<charT,traits> > nunget;
i ostate err = O;

use_facet< nunget >(loc).get(*this, 0, *this, err, val);
setstate(err);

According to section 22.2.2.1.1 lib.facet.num.get. members, however,num _get <>: : get () isonly overloaded for the types
bool ,l ong,unsi gned short,unsi gned int,unsi gned | ongunsi gned | ong,fl oat,doubl e, | ong
doubl e, andvoi d*. Comparing the lists from the two sections, wefind that 27.6.1.2.2 is using a nonexistent function for
typesshort andi nt.

Proposed Resolution:

Addshort andi nt overloadsfornum get <>: : get ()

Page 56

Library Issues List

119. Should virtual functions be allowed to strengthen the exception specification?

Section: 17.4.4.8 lib.res.on.exception.handling Status: Ready Submitter: Judy WardDate: 15 Dec 1998

Section 17.4.4.8 lib.res.on.exception.handling states:

"An implementation may strengthen the exception-specification for a function by removing listed exceptions.”

The problemisthat if animplementation is allowed to do this for virtual functions, then alibrary user cannot write a class that
portably derives from that class.

For exampl e, this would not compileif ios_base::failure::~failure had an empty exception specification:

#i ncl ude <i os>
#include <string>

class D : public std::ios_base::failure {

public:
D(const std::string&);
~D(); /1 error - exception specification nmust be conpatible with
/1l overridden virtual function ios_base::failure::~failure()
1

Proposed Resolution:

Change Section 17.4.4.8 lib.res.on.exception.handling from:

"may strengthen the exception-speciification for a function”
to:

"may strengthen the exception-specification for a non-virtual function”.

120. Can an implementor add specializations?

Section: 17.4.3.1 lib.reserved.names Status: Open Submitter: Judy WardDate: 15 Dec 1998

Section 17.4.3.1 says.

It is undefined for a C++ program to add declarations or definitions to namespace std or namespaces within
namespace std unless otherwise specified. A program may add templ ate specializations for any standard
library template to namespace std. Such a specialization (complete or partial) of a standard library template
results in undefined behavior unless the declaration depends on a user-defined name of external linkage and
unless the specialization meets the standard library requirements for the original template...

Page 57

Library Issues List
Thisimpliesthat it is ok for library users to add specializations, but not implementors. A user program can actually detect this,

for example, the following manual instantiation will not compileif the implementor has made ctype<wchar_t> a
specialization:

#i ncl ude <l ocal e>
#i ncl ude <wchar. h>

tenpl ate class std::ctype<wchar_t>; // can't be specialization

Proposed Resolution:
Add to 17.4.4lib.conforming a section called Specializations with wording:

An implementation can define additional specializations for any of the template classes or functions in the standard library if a
use of any of these classes or functions behaves as if the implementation did not define them.

121. Detailed definition for ctype<wchar_t> specialization missing

Section: 22.1.1.1.1 lib.locale.category Status: Open Submitter: Judy WardDate: 15 Dec 1998

Section 22.1.1.1.1 has thefollowing listed in Table 51: ctype<char>, ctype<wchar_t>.
Also Section 22.2.1.1 lib.locale.ctype says:

Theinstantiations required in Table 51 (22.1.1.1.1) namely ctype<char> and ctype<wchar_t> , implement
character classing appropriate to the implementation's native character set.

However, Section 22.2.1.3lib.facet.ctype.special only has a detail ed description of the ctype<char> specialization, not the
ctype<wchar_t> specialization.

Proposed Resolution:

Add the ctype<wchar_t> detailed class description to Section 22.2.1.3 lib.facet.ctype.specia .

122. streambuf/wstreambuf description should not say they ar e specializations

Section: 27.5.2 lib.streambuf Status: Open Submitter: Judy WardDate: 15 Dec 1998

Section 27.5.2 describes the streambuf classes this way:
The class streambuf is a specialization of the template class basic_streambuf specialized for the type char.

The class wstreambuf is a specialization of the template class basic_streambuf specialized for the type wchar _t.

Page 58

Library Issues List

Thisimplies that these classes must be template specializations, not typedefs.
It doesn't seem this was intended, since Section 27.5 has them declared as typedefs.
Proposed Resolution:

Remove the two sentences above, since the streambuf synopsis already has a declaration for the typedefs.

123. Should valarray helper arraysfill functions be const?

Section: 26.3.5.4 lib.dlicear fill , 26.3.7.4 lib.gslice.array.fill , 26.3.8.4 lib.mask.array.fill , 26.3.9.4 lib.indirect.array..fill
Status: Open Submitter: Judy WardDate: 15 Dec 1998

One of the operator=in the valarray hel per arraysis const and oneis not. For example, 1ook at slice_array. This operator=in
Section 26.3.5.2 lib.slice.arr.assign is const:

voi d operator=(const val array<T>&) const;
but this onein Section 26.3.5.4 lib.dlicearr fill , is not:

voi d operator=(const T&);
The description of the semantics for these two functionsis similar.
Proposed Resolution:

Maketheoper at or =(const T&) versions of slice_array, gslice array, indirect_array, and mask_arrayconst member
functions.

124. ctype byname<charT>::do_scan_is& do_scan_not return type should be const char T*

Section: 22.2.1.2 lib.locale.ctype.byame Status: Ready Submitter: Judy WardDate: 15 Dec 1998

In Section 22.2.1.2 lib.locale.ctype.byame ctype byname<charT>::do_scan_is() and do_scan_not() are declared to return a
const char* not a const charT*.

Proposed Resolution:

Change Section 22.2.1.2 lib.locale.ctype.byame do_scan_is() and do_scan_not() to return a const charT*.

125. valarray<T>::operator!() return typeisinconsistent

Section: 26.3.2 lib.templatevalarray Status: Ready Submitter: Judy WardDate: 15 Dec 1998

Page 59

Library Issues List

In Section 26.3.2 lib.template.valarray valarray<T>:.operator!() is declared to return avalarray<T>, but in Section 26.3.2.5
lib.valarray.unary it is declared to return avalarray<bool>. The latter appears to be correct.

Proposed Resolution:

Changein Section 26.3.2 lib.template.valarray the declaration of operator!() so that the return typeis valarray<bool>.

126. typosin Effects clause of ctype::do_narrow()

Section: 22.2.1.1.2 lib.locale.ctype.virtuals Status: Ready Submitter: Judy WardDate: 15 Dec 1998

In Section 22.2.1.1.2 lib.locale.ctype.virtuals the following typos need to be fixed:

do_wi den(do_narrow(c),0) ==

shoul d be:

do_wi den(do_narrow(c,0)) == ¢

(is(Mc) || 'ctc.is(M do_narrow(c),dfault))
shoul d be:

(is(Mc) || 'ctc.is(M do_narrow(c,dfault)))

Proposed Resolution:

Fix as suggested above

127. auto_ptr<> conversion issues
Section: 20.4.5 lib.auto.ptr Status Ready Submitter: Greg Colvin Date: 17 Feb 99
There are two problems with the currentaut o_pt r wording in the standard:

First, theaut o_pt r _r ef definition cannot be nested because aut o_pt r <Der i ved>: : aut o_ptr _r efisunrdated
toaut o_ptr<Base>::auto_ptr_ref

Second, thereisnoaut o_pt r assignment operator taking anaut o_pt r _r ef argument.

I have discussed these problems with my proposal coauthor, Bill Gibbons, and with some compiler and library implementers,
and we believe that these problems are not desired or desirableimplications of the standard.

Page 60

Library Issues List
Proposed Resolution:
In 20.4.5 lib.auto.ptr, paragraph 2, movetheaut o_pt r _r ef definition to namespace scope.
In 20.4.5 lib.auto.ptr, paragraph 2, add an assignment operator to theaut o_pt r definition:
auto_ptré& operator=(auto_ptr_ref<X>r) throw();
Also add the assignment operator to 20.4.5.3lib.auto.ptr.conv:

auto_ptré& operator=(auto_ptr_ref<X>r) throw()

Effects: Calls reset(p) for the auto_ptr p that r hol ds.
Returns: *this.

128. Need open_mode() function for file stream, string streams, file buffers, and string buffers

Section: 27.7 lib.string.streams and 27.8 lib.filestreams Status NAD Future Submitter: AngelikaLanger Date: February
22,1999

The following question came from Thorsten Herlemann:

Y ou can set a mode when constructing or opening afile-stream or filebuf, e.g. ios::in, ios::out, ios::binary, ...

But how can | get that mode later on, e.g. in my own operator << or operator >> or when | want to check whether
afile-stream or file-buffer object passed as parameter is opened for input or output or binary? Is there no
possibility? Is this a design-error in the standard C++ library?

It isindeed impossibleto find out what a stream's or stream buffer's open modeis, and without that knowledge you don't know
how certain operations behave. Just think of the append mode.

Both streams and stream buffers should have amode () function that returns the current open mode setting.
Proposed Resolution:
For stream buffers, add a function to the base class as a non-virtual function qualified as const to 27.5.2lib.streambuf
opennode node() const;
Retur nsthe current open mode.

With streams, I'm not sure what to suggest. In principle, the mode could already be returned byi 0s_base, but themodeis
only initialized for file and string stream objects, unless I'm overlooking anything. For this reason it should be added to the most
derived stream classes. Alternatively, it could be added to basi ¢_i os and would be default initialized in
basic_ios<>::init().

Rationale:

This might be an interesting extension for some future, but it is not a defect in the current standard. The Proposed Resolution is

Page 61

Library Issues List

retained for future reference.

129. Need error indication from seekp() and seekg()

Section: 27.6.1.3 lib.istream.unformatted and 27.6.2.4 lib.istream.seeks Status Review Submitter: AngelikaLanger Date:
February 22, 1999

Currently, the standard does not specify how seekg() and seekp() indicate failure. They are not required to set failbit, and they
can't return an error indication because they must return *this, i.e. the stream. Hence, it is undefined what happensiif they fail.
Andthey can_fail, for instance, when afile stream is disconnected from the underlying file (is_open()==false) or when awide
charaacter file stream must perform a state-dependent code conversion, etc.

The stream functions seekg() and seekp() should set failbit in the stream state in case of failure.
Proposed Resolution:

Add to the Effects: clause of seekg() in 27.6.1.3lib.istream.unformatted and to the Effects: clause of seekp() in 27.6.2.4
lib.istream.seeks:

In case of failure, thefunction callsset st at e(f ai | bi t) (which may throwi os_base: : fail ure.

130. Return type of container::erase(iterator) differsfor associative containers

Section: 23.1.2 lib.associative.regmts, 23.1.1 lib.sequence.regmts Status NAD Future Submitter: Andrew Koenig Date: 2
Mar 99

Table 67 (23.1.1) says that container::erase(iterator) returns an iterator. Table 69 (23.1.2) says that in addition to this
reguirement, associ ative containers al so say that container::erase(iterator) returns void.

That's not an addition; it's a change to the requirements, which has the effect of making associative containers fail to meet the
requirements for containers.

Rationale:

The LWG believes this was an explicit design decision by Alex Stepanov driven by complexity considerations. It has been
previously discussed and reafirmed, so thisis not a defect in the current standard. A future standard may wish to reconsider this
issue.

131. list::splice throws nothing
Section: 23.2.2.4 lib.list.ops Status: NAD Submitter: Howard HinnantDate: 6 Mar 99

What happens if a splice operation causes the size() of alist to grow beyond max_size()?

Page 62

Library Issues List
Rationale:

Size() cannot grow beyond max_size().

132. list::resize description uses random accessiterators

Section: 23.2.2.2 lib.list.capacity Status: Ready Submitter: Howard HinnantDate: 6 Mar 99
The description reads:

-1- Effects:

if (sz > size())
insert(end(), sz-size(), c);
else if (sz < size())
erase(begin()+sz, end());
el se

/1 do nothing
Obviously list::resize should not be specified in terms of random access iterators.
Proposed Resolution:

Change 23.2.2.2 paragraph 1 to:

Effects:

if (sz > size())
insert(end(), sz-size(), c);
else if (sz < size())

{
iterator i = begin();
advance(i, sz);
erase(i, end());

}

133. map missing get_allocator ()

Section: 23.3.1 lib.map Status: Ready Submitter: Howard HinnantDate: 6 Mar 99

Thetitlesaysit all.
Proposed Resolution:
Insert:

al l ocator _type get_allocator() const;

Page 63

Library Issues List

after operator=in 23.3.1, paragraph 2, in the map declaration.

134. vector and deque constructors over specified
Section: 23.2.4.1 lib.vector.cons Status: Open Submitter: Howard HinnantDate: 6 Mar 99

The complexity description says: "It does at most 2N calls to the copy constructor of T and logN reallocations if they are just
input iterators ...".

This appears to be overly restrictive, dictating the preci se memory/performance tradeoff for the implementor.
Proposed Resolution:
Change 23.2.1.1, paragraph 6 to:

-6- Complexity: If theiterators first and last are forward iterators, bidirectional iterators, or random access iterators the
constructor makes only N calls to the copy constructor, and performs no reallocations, where N is last - first. It makes order N
callsto the copy constructor of T and order log N reallocations if they areinput iterators.*

And change 23.2.4.1, paragraph 1 to:

-1- Complexity: The constructor template <class Inputlterator> vector(Inputlterator first, Inputlterator last) makes only N cals
to the copy constructor of T (where N is the distance between first and last) and no reallocations if iterators first and last are of
forward, bidirectional, or random access categories. It makes order N calls to the copy constructor of T and order logN
reallocationsif they are just input iterators, sinceit isimpossible to determine the distance between first and last and then do

copying.

135. basic_iostream doubly initialized
Section: 27.6.1.5.1 lib.iostream.cons Status; NAD Submitter : Howard HinnantDate: 6 Mar 99

-1- Effects Constructs an object of class basic_iostream, assigning initial values to the base classes by calling
basic_istream<charT,traits>(sb) (lib.istream) and basic_ostream<charT,traits>(sb) (lib.ostream)

The called for basic_istream and basic_ostream constructors call init(sb). This means that the basic_iostream's virtual base
cassisinitialized twice.

Proposed Resolution:
Change 27.6.1.5.1, paragraph 1 to:

-1- Effects Constructs an object of class basic_iostream, assigning initial values to the base classes by calling
basic_istream<charT,traits>(sb) (lib.istream).

Rationale:

Page 64

Library Issues List

The LWG agreed that theinit function is called twice, but said that thisis harmless and so not a defect in the standard.

136. seekp, seekg setting wrong streams?

Section: 27.6.1.3 lib.istream.unformatted Status: Open Submitter : Howard HinnantDate: 6 Mar 99

I may be misunderstanding theintent, but should not seekg set only the input stream and seekp set only the output stream? The
description seems to say that each should set both input and output streams. If that's really theintent, | withdraw this proposal.

Proposed Resolution:

In section 27.6.1.3 change:

basi c_i streanmkcharT,traits>& seekg(pos_type pos);
Effects: If fail() != true, executes rdbuf()->pubseekpos(pos).

To:

basi c_i streanmkcharT,traits>& seekg(pos_type pos);
Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, io0os_base::in).

In section 27.6.1.3 change:

basi c_istreanckcharT,traits>& seekg(off_type& off, ios_base::seekdir dir);
Effects: If fail() !'= true, executes rdbuf()->pubseekoff(off, dir).

To:

basi c_istreanckcharT,traits>& seekg(off_type& off, ios_base::seekdir dir);
Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::in).

In section 27.6.2.4, paragraph 2 change:

-2- Effects: If fail() !'= true, executes rdbuf()->pubseekpos(pos).
To:
-2- Effects: If fail() !'= true, executes rdbuf()->pubseekpos(pos, io0s_base::out).

In section 27.6.2.4, paragraph 4 change:

-4- Effects: If fail() !'= true, executes rdbuf()->pubseekoff(off, dir).
To:
-4- Effects: If fail() !'= true, executes rdbuf()->pubseekoff(off, dir, ios_base::

Page 65

Library Issues List

137. Do use facet and has facet look in the global locale?
Section: 22.1.1 lib.locale Status Open Submitter: AngelikaLanger Date: March 17, 1999
Section 22.1.1 lib.locade says:

-4- Inthe call to use_facet<Facet>(loc), the type argument chooses a facet, making available all members of the named
type. If Facet is not present in alocale (or, failing that, in the global locale), it throws the standard exception bad_cast. A C++
program can check if alocaleimplements a particular facet with the template function has_facet<Facet>().

This contradicts the specification given in section 22.1.2 lib.locale.global .templates :

template <class Facet> const Facet& use facet(const locale& 10oc);

-1- Get areferenceto afacet of alocale.

-2- Returns: areference to the corresponding facet of loc, if present.

-3- Throws: bad_cast if has_facet<Facet>(loc) isfalse.

-4- Notes: The reference returned remains valid at |east as long as any copy of loc exists

Proposed Resolution:
If ther€'s consensus that section 22.1.2 reflects the intent, then the phrase;
(or, failing that, in the global locale)

should be removed from section 22.1.1.

138. Classctype byname<char> redundant and misleading

Section: 22.2.1.4 lib.locale.ctype.byname.special Status Open Submitter: AngelikaLanger Date: March 18, 1999

Section 22.2.1.4 lib.locale.ctype.byname.special ~ specifies that ctype byname<char> must be a specialization of the
ctype_byname templ ate.

It is common practice in the standard that specializations of class templates are only mentioned where the interface of the
specialization deviates from the interface of the template that it is a specialization of. Otherwise, the fact whether or not a
required instantiation is an actual instantiation or a specialization is |eft open as an implementation detail .

Clause 22.2.1.4 deviates from that practice and for that reason is misleading. Thefact, that ctype _byname<char> is specified
as a speciali zation suggests that there must be something "special™ about it, but it has the exact same interface as the
ctype_byname template. Clause 22.2.1.4 does not have any explanatory value, is at best redundant, at worst misleading -
unless | am missing anything.

Naturally, an implementation will most likely implement ctype byname<char> as a specialization, because the base class
ctype<char> is a specialization with an interface different from the ctype template, but that's an implementation detail and
need not be mentioned in the standard.

Proposed Resolution:

Page 66

Library Issues List

Deete section 22.2.1.4 lib.local e.ctype.byname.special

139. Optional sequence operation table description unclear

Section: 23.1.1 lib.sequence.regmts Status Ready Submitter: Andrew Koenig Date: 30 Mar 99

The sentence introducting the Optional sequence operation table (23.1.1 paragraph 12) has two problems:
A. It says " The operationsin table 68 are provided only for the containers for which they take constant time."

That could be interpreted in two ways, one of them being *"Even though table 68 shows particul ar operations as being
provided, implementations are free to omit them if they cannot implement them in constant time."

B. That paragraph says nothing about amortized constant time, and it should.
Proposed Resolution:
Replace thewording in 23.1.1 paragraph 12 with:

Table 68 lists sequence operations that are provided for some types of sequential containers but not others. An
implementation shall provide these operations for all container types shown in the *“container" column, and
shall implement them so as to take amortized constant time.

Page 67

