
Document Number: J16/06-0008 = WG21 N1938

Date: 2006-02-27

Reply to: William M. Miller

Edison Design Group, Inc.

wmm@edg.com

Lookup Issues in Destructor and Pseudo-Destructor

References

I. Introduction and Background

Name lookup in explicit destructor calls is complicated by the fact that, like constructors, de-

structors do not have “names” per se. Instead, an explicit reference to a class’s destructor is writ-

ten using a special syntactic form involving a type-name that nominates the class. This type-

name is not required to be the name of the class but can be a typedef or a template type parameter

from the expression context, making lookup of the destructor “name” different from that of any

other class member – the member name need not be found in the scope of its class. Another

complicating factor is that the destructor may be referred to by a qualified-id, meaning that the

class name appears twice. Historically, at least, C++ has allowed these two class-names to differ,

requiring two lookups.

Pseudo-destructors were added to the language to support generic programming; they allow a

function template to use the destructor syntax with a dependent type without having to make a

special case for scalar types, which do not have destructors. They add a different wrinkle to

name lookup when the destructor syntax is seen, because a scalar type does not define a scope in

which the pseudo-destructor “name” can be looked up. By analogy with destructors, a pseudo-

destructor reference can involve a qualified-id-like form with the type-name appearing twice,

again potentially requiring two lookups.

The definition of how destructor lookup should be done has evolved over time. For instance,

ISO/IEC 14882:1998 contains the following example in 12.4¶12:

struct B {
virtual ~B() { }

};
struct D : B {

~D() { }
};

D D_object;
typedef B B_alias;
B* B_ptr = &D_object;

void f() {

D_object.B::~B(); // calls B’s destructor

Lookup Issues in Destructor and Pseudo-Destructor References J16/06-0008 = WG21 N1938

page 2 of 11

B_ptr->~B(); // calls D’s destructor

B_ptr->~B_alias(); // calls D’s destructor

B_ptr->B_alias::~B(); // calls B’s destructor

B_ptr->B_alias::~B_alias(); // error, no B_alias in class B
}

The different treatment accorded B_ptr->~B_alias() and B_ptr->B_alias::~B_alias() is il-

luminating. The fact that ~B_alias() was to be accepted as an unqualified-id in a class member

access expression indicates that a dual lookup was intended in this context: the name following

the -> must be looked up both in the class of the object expression and lexically in the context in

which the expression occurs. The rejection of the qualified-id form, on the other hand, shows

that the unqualified-id ~B_alias was to be looked up solely in the scope designated by the

nested-name-specifier, i.e., handled as an ordinary qualified name lookup.

In contrast, this example from 3.4.3¶5 (also in the 1998 Standard) reflects a later stage in the

Committee’s thinking:

struct A {
~A();

};
typedef A AB;
int main()
{

AB *p;

p->AB::~AB(); // explicitly calls the destructor for A
}

Here it is apparent that the unqualified-id in a qualified-id is also intended to be subject to a dual

lookup and not simply a qualified name lookup, in spite of the explicit qualification.

Issue 244 in the Core Language Issues List was originated to reconcile the discrepancy between

these two examples. Discussion of the issue revealed that the Standard did not, in fact, norma-

tively specify how the unqualified-id in a qualified-id naming a destructor is to be looked up.

The resolution of issue 244, adopted by the Committee in October, 2002, replaced the wording in

3.4.3¶5

In a qualified-id of the form:

::opt nested-name-specifier ~ class-name

where the nested-name-specifier designates a namespace scope, and in a qualified-

id of the form:

::opt nested-name-specifier class-name :: ~ class-name

the class-names are looked up as types in the scope designated by the nested-

name-specifier.

with

Lookup Issues in Destructor and Pseudo-Destructor References J16/06-0008 = WG21 N1938

page 3 of 11

Similarly, in a qualified-id of the form:

::opt nested-name-specifieropt class-name :: ~ class-name

the second class-name is looked up in the same scope as the first.

This is the status quo as of this writing as reflected in the current Working Draft, J16/05-0165 =

WG21 N1905.

II. Problems with the Issue 244 Resolution

As described in core language issue 399, one major problem with the resolution of issue 244 is

that it is not clear what “looked up in the same scope as the first” really means. There are at least

four possibilities:

1. The second class-name must be declared in exactly the same declarative region as the

first.

2. The second class-name is looked up normally in the scope in which the first class-

name was declared. This differs from #1 in that names from containing scopes or base

classes would be considered.

3. The second class-name is looked up in the class of the object expression if the first

was found by the class lookup or in the lexical context of the entire postfix expression

if the first was found by the lexical lookup. This differs from #2 in that scopes closer

to the class of the object expression or the context of the entire postfix expression

would be considered.

4. The first class-name is looked up in two scopes, so “looked up in the same scope as

the first” means that the second is also looked up in both those scopes.

Another point made in issue 399 is that all of these possibilities save the last beg the question of

what happens if the first class-name is found by both lookups? Should one context be preferred

over the other for looking up the second class-name? If so, in a call like p->C1::~C2() the look-

up would fail if C2 were found only in the “wrong” context, even though both C1 and C2 are de-

clared together in one of the contexts.

Another way to handle finding the first class-name in both lookups would be to perform a dual

lookup for the second class-name as well in this case. This approach (or interpretation #4 of the

current wording) raises its own question: if the second class-name is found in both contexts,

must the two names refer to the same class, or (in the spirit of the currently-proposed resolution

of core issue 305) would it suffice if only one of the two names refers to the class of the object

expression?

Yet another point raised in issue 399 is that the syntactic requirement for naming a destructor is

Lookup Issues in Destructor and Pseudo-Destructor References J16/06-0008 = WG21 N1938

page 4 of 11

“class-name :: ~ class-name.” Looking up the second name in the same scope as the first could

result in finding a name that is not a class-name in that scope, even though it is a class-name in

the other. For example:

template<typename T> struct S { };
typedef S<int> SI;

void f(SI* p) {
p->SI::~S();

}

Here SI is found (only) by the lexical lookup in the context of the expression, so S is looked up

there, too. However, in this context, S is not a class-name but a template-name, even though it is

a class-name (the injected-class-name) in the class of the object expression. Should this call be

ill-formed under the issue 244 resolution?

III. Suggested Resolution for Issue 399

All of the problems cited in the preceding section stem from the fact that the second class-name

in this form of destructor reference is permitted to differ from the first, thus requiring that the sec-

ond name be looked up; the questions all deal with the specification and/or results of this second

lookup. As was noted in the original discussion of issue 244, there is no compelling rationale for

allowing these names to differ.

[Digression: In fact, assuming that the currently-proposed resolution for core issue 305 is

adopted, there will be no need at all for this form of destructor reference, so there is even less rea-

son to support the obfuscatory practice of using different names in the nested-name-specifier and

the destructor “name.” The two-class-name form of destructor reference is mostly an historical

accident: The Annotated C++ Reference Manual required that form in the original specification

of explicit destructor call (“Destructors are invoked... explicitly using the destructor’s fully quali-

fied name,” ARM 12.4, p. 278). Very early in the standardization process, it was observed that

using a qualified-id for the destructor name would suppress the virtual call mechanism and that

the unqualified forms p->~C() and x.~C() presented no special problems. As a result, support

for the simpler forms was added, but the fully-qualified form was also retained.

As discussed in issue 305, there remain certain obscure cases in Standard C++ where a qualified-

id is required to avoid ambiguity between the lexical and class lookups for the class-name used

in the destructor reference:

struct A { };
struct C{

struct A { };
};

void f(C::A* p) {
p->~A();

}

Lookup Issues in Destructor and Pseudo-Destructor References J16/06-0008 = WG21 N1938

page 5 of 11

The lookup of A in the class of p finds the injected-class-name C::A, while the lexical lookup in

the context of the expression finds ::A, resulting in an ambiguity. The proposed resolution of is-

sue 305 addresses this problem by stating that this ambiguity is ignored if either of the two look-

ups finds a name that refers to the class of the object expression.

With this resolution in place, there is never a need to use the fully-qualified form of destructor

reference. In fact, the fully-qualified form should be discouraged to the extent possible because

of its effect in suppressing the virtual function call mechanism: if the dynamic type of the object

differs from the type used to “name” the destructor, using the fully-qualified syntax leads easily

to undefined behavior because the lifetime of a base class object will have been ended without

ending that of the derived class object.

For compatibility with existing code, the fully-qualified syntax must continue to be supported,

even though not needed, but allowing the two class-names to differ runs counter to the legiti-

mate desire to discourage even the simple form of the fully-qualified syntax. —end digression]

As revealed by the record of discussion in issue 244, one possible resolution that was considered

was simply to require that the second name be identical to the first and to do no lookup at all on

the second name. This approach was rejected in favor of the still-problematic resolution that was

ultimately adopted, primarily on the basis of its interaction with template-ids. Given the remain-

ing difficulties in the current specification, I think that the no-lookup approach is worth reex-

amining.

First, I do not believe that the template-id examples cited as problematic with the name-matching

approach actually are problems. There appear to be two categories of issues:

1. Where both class-names are template-ids, do the template-ids name the same type?

This is the question behind the example cited in the discussion of issue 244:

A<int>* aip;

aip->A<int>::~A<int>(); // should work

aip->A<int>::~A<char>(); // should not

This does not appear to cause any difficulties with the same-name approach. 5.1¶7 already re-

quires that

Where class-name ::~ class-name is used, the two class-names shall refer to the

same class

and the existing rules (14.4) are adequate to determine whether two template-ids refer to the

same class. As long as the template-names in the two template-ids are the same (which is true by

definition in this approach), the existing rules are sufficient to handle these cases.

2. What if one class-name is a template-id and the other one is an identifier?

Assuming that the identifier in the first class-name (either the class-name itself or the template-

Lookup Issues in Destructor and Pseudo-Destructor References J16/06-0008 = WG21 N1938

page 6 of 11

name in the template-id) is the name of the template, this concern is addressed by the dual nature

of a class template’s injected-class-name (14.6.1¶1):

Like normal (non-template) classes, class templates have an injected-class-name

(clause 9). The injected-class-name can be used with or without a template-argu-

ment-list. When it is used without a template-argument-list, it is equivalent to the

injected-class-name followed by the template-parameters of the class template en-

closed in <>. When it is used with a template-argument-list, it refers to the speci-

fied class template specialization, which could be the current specialization or an-

other specialization.

The template specialization’s injected-class-name will be found in the class of the object expres-

sion, so the use of that name in the second class-name will also refer to the injected-class-name,

allowing it to have or not to have a template-argument-list. If there is an explicit template-argu-

ment-list in the second class-name, this is equivalent to the preceding issue where 5.1 and 14.4

assure that the second class-name matches the first; otherwise, the bare injected-class-name in

the second class-name is by definition the same type as the template-id in the first.

Suggested wording of 3.4.3¶5:

If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, the first (or

only) type-name is looked up as a type in the scope designated by the nested-

name-specifier. If the pseudo-destructor-name contains a second type-name, no

lookup is performed on that name; instead, it shall be the same as the first. Simi-

larly, in a qualified-id of the form:

::opt nested-name-specifieropt class-name :: ~ class-name

no lookup is performed on the second class-name; instead, the identifier (or tem-

plate-name if the class-name is a template-id) shall be the same as the identifier or

template-name in the first class-name. [Note: It is not necessary that both class-

names be identifiers or both be template-ids. If the first class-name is a template-

id or refers to the injected-class-name of a class template specialization (14.6.1),

the identifier or template-name in the second class-name also refers to the in-

jected-class-name of that class template specialization. The two class-names must

denote the same class type (5.1); see 14.4 regarding equivalence of template-ids.

—end note] [Example:

struct C {
typedef int I;

};
typedef int I1, I2;
extern int* p;
extern int* q;

p->C::I::~I(); // I is looked up in the scope of C

p->C::~I(); // I is looked up in the scope of C

q->I1::~I2(); // error: I2 is not the same name as I1

Lookup Issues in Destructor and Pseudo-Destructor References J16/06-0008 = WG21 N1938

page 7 of 11

struct A { };
typedef A AB;
AB* pa;

pa->AB::~AB(); // explicitly calls the destructor for A

pa->AB::~A(); // error: A is not the same name as AB

template<typename T> struct X { };
X<int>* pxi;

pxi->X::~X<int>(); // X is X<int>, class-names match

pxi->X<int>::~X(); // X is X<int>, class-names match

pxi->X<int>::~X<char>(); // error, X<char> is not X<int>

—end example] [Note: 3.4.5 describes how name lookup proceeds after the . and

-> operators. —end note]

In addition, the example in 12.4¶12 would need to be changed:

B_ptr->B_alias::~B(); // error: B is not the same name as B_alias

IV. Namespace-Qualified Destructor and Pseudo-Destructor Referen-

ces

The discussion of core issue 399 contains the following note, dated September, 2004:

The resolution for issue 244 removed the discussion of p->N::~S, where N is a

namespace-name. However, the resolution did not make this construct ill-formed;

it simply left the semantics undefined. The meaning should either be defined or

the construct made ill-formed.

I do not believe this is an accurate description of the current state of the working draft. While it

is true that the explicit discussion of this form was removed from 3.4.3¶5, the general treatment

of namespace qualification in 3.4.3.2 still gives the same meaning to this form of destructor refer-

ence.

To see why this is true, recall from the introduction of this paper that destructors do not have

names; instead, 5.1¶1 indicates that ~ class-name is an unqualified-id, and ¶7 explains

A class-name prefixed by ~ denotes a destructor; see 12.4.

“Name lookup associates the use of a name with a declaration of that name” (3.4¶1), and “A

name is a use of an identifier” (3¶4). In a qualified-id like N::~S, the name to be looked up is S,

not ~S, because ~S is not an identifier and thus not a name.

This is consistent with 3.4.3.2¶1, which says:

If the nested-name-specifier of a qualified-id nominates a namespace, the name

Lookup Issues in Destructor and Pseudo-Destructor References J16/06-0008 = WG21 N1938

page 8 of 11

specified after the nested-name-specifier is looked up in the scope of the name-

space...

Thus, in an expression like p->N::~S, the name S is looked up in the scope of N. If S is found to

be a class-name in the scope of N, N::~S is an id-expression denoting the destructor of the class

N::S in the class member access expression (5.2.5). This processing is exactly the same as de-

scribed by the wording excised from 3.4.3¶5 by the issue 244 resolution, with the exception that

the original wording made explicit that the name was looked up as a type.

I am not sure why namespace-qualification of destructor references was considered to be needed,

but it appears that its inclusion in the 1998 Standard was intentional, as there was explicit provi-

sion for it in 3.4.3¶5. Perhaps a clue can be obtained from the discussion found in core issue

305, which deals with examples like:

struct A { };
struct C {

struct A { };
void f();

};

void C::f() {
::A* a;
a->~A();

}

In the current Standard, the reference to A in a->~A() is ambiguous, and the observation is made

in the discussion of the issue, “You can’t say a->~::A(),” which would resolve the ambiguity.

However, it is possible in the current Standard to say a->::~A(), which means the same thing.

As noted above, if the proposed resolution for issue 305 is adopted, this ambiguity will no longer

occur, however, removing this situation as a motivation for namespace-qualification of destructor

references.

There is a similar provision for pseudo-destructor-names. The grammar in 5.2¶1 contains the

following definition:

pseudo-destructor-name:

::opt nested-name-specifieropt type-name :: ~ type-name

::opt nested-name-specifier template template-id :: ~ type-name

::opt nested-name-specifieropt ~ type-name

The third production provides support for pseudo-destructor references of the form p->C::~T()

and p->N::~T(), where C is a class, N is a namespace, and T is a type-name denoting a scalar

type; p is a pointer to that scalar type.

The motivation for such forms is clearer for pseudo-destructors than it is for real destructors. In

a reference to a class destructor, the object expression determines a class type in which the class-

name used in the destructor “name” can be looked up. Assuming the proposed resolution for is-

sue 305 is adopted, it will always be possible to write p->~C(), where p is a pointer to a class

Lookup Issues in Destructor and Pseudo-Destructor References J16/06-0008 = WG21 N1938

page 9 of 11

named C, to invoke the destructor with no qualification needed for the class type, regardless of

the scope in which the class is defined or the scope in which the reference appears.

That is not the case for a pseudo-destructor, however. In a pseudo-destructor reference of the

form p->~T(), T must be visible in the expression context because p is a pointer to a scalar type

and thus does not does not determine a scope that can be searched for T. If T is a type-name de-

clared in a namespace or class scope such that it cannot be found by unqualified lookup from the

context of the postfix-expression, T must be qualified in the pseudo-destructor reference. For ex-

ample, one of the major C++ validation suites contains code similar to the following:

namespace N {
enum E { e };

}

void f() {
N::E* p;
p->N::~E();

}

Use of the N:: qualifier allows the type-name E to be found when forming the pseudo-destructor

reference.

(By analogy with destructor references, the “historical accident” described in the digression in

section III above is also supported for pseudo-destructor references, e.g., p->N::E::~E(). The

rationale for this “fully-qualified” form, however, is even less compelling for pseudo-destructors

than for destructors, because a scalar type does not define a scope that can be opened using a

nested-name-specifier: “E::” is nonsense if E is a scalar type.)

However, this motivation is significantly less persuasive when considered in the context of the

intended use for pseudo-destructors: there is no reason ever to invoke a pseudo-destructor on a

known type, and in the generic context, the unknown type will always be a template type parame-

ter or a dependent type, never namespace-qualified.

My personal opinion is that, while I see no great motivation for supporting namespace qualifica-

tion of destructor and pseudo-destructor references, I also see no particularly strong reason for re-

moving them. Given that they are adequately handled in the current working draft, on balance I

would suggest leaving them as is with no further changes.

V. Specification Problems for Pseudo-Destructor References

There are a number of problems with the way pseudo-destructors are handled in the current work-

ing draft. (Some of these are covered in core issue 555, while others are mentioned only here.)

It is necessary to cover some background information before delineating the various problems.

The first point to note is that a destructor reference is an id-expression, i.e., either an unqualified-

id or a qualified-id. These are defined in the grammar and descriptive material in 5.1, “Primary

expressions.” In contrast, a pseudo-destructor reference is neither an unqualified-id nor a quali-

Lookup Issues in Destructor and Pseudo-Destructor References J16/06-0008 = WG21 N1938

page 10 of 11

fied-id; instead, the nonterminal pseudo-destructor-name enters the grammar as a special kind of

postfix-expression and is defined in 5.2, “Postfix expressions.” As a result of this distinction, a

pseudo-destructor reference is not a class member access expression and thus is not described in

5.2.5, “Class member access,” rather, it has its own subsection: 5.2.4, “Pseudo destructor call.”

The first problem to note is that determination of which case applies to a given expression is for-

mally circular. 5.2.4¶1 begins,

The use of a pseudo-destructor-name after a dot . or arrow -> operator represents

the destructor for the non-class type named by type-name.

It then goes on in ¶2,

The left-hand side of the dot operator shall be of scalar type. The left-hand side of

the arrow operator shall be of pointer to scalar type.

5.2.5¶1 begins,

A postfix expression followed by a dot . or an arrow ->... and then followed by an

id-expression, is a postfix expression.

It then continues in ¶2,

For the first option (dot) the type of the first expression... shall be “class object”...

For the second option (arrow) the type of the first expression... shall be “pointer to

class object”...

That is, to know whether a given expression is a class member access or a pseudo-destructor call,

you must determine whether the tokens following the . or -> constitute an id-expression or a

pseudo-destructor-name, which then also places requirements on the postfix expression before

the dot or arrow operator. That decision depends on knowing whether the identifier in ~T is a

class-name (which makes ~T an unqualified-id and thus part of an id-expression) or just a type-

name (which makes it part of a pseudo-destructor-name). In order to know that, you must look

up the identifier – and the lookup rules are different, depending on whether the expression is a

pseudo-destructor-name or an id-expression!

In fact, the intent here is different, avoiding the apparent circularity: the determination of whether

a given expression is a class member access of a pseudo-destructor call is based not on the syntax

of what follows the . or -> but on the type of the postfix expression preceding the operator. If

that left-hand expression has a scalar type before . or a pointer to scalar before ->, the expression

is treated as a pseudo-destructor call. If it has a class type or pointer to class type, the expression

is a class member access. These two sections need to be restructured to reflect this intent.

Another problem with the specification of pseudo-destructor handling is that some of the lookup

rules for pseudo-destructor calls appear to be specified in 3.4.5, “Class member access.” Not on-

ly is this inappropriate in light of the fact that a pseudo-destructor call is, in fact, not a class mem-

ber access, the way these rules are written makes them impossible to apply. 3.4.5¶2-3 read as fol-

Lookup Issues in Destructor and Pseudo-Destructor References J16/06-0008 = WG21 N1938

page 11 of 11

lows:

If the id-expression in a class member access (5.2.5) is an unqualified-id, and the

type of the object expression is of a class type C (or of pointer to a class type C),

the unqualified-id is looked up in the scope of class C. If the type of the object ex-

pression is of pointer to scalar type, the unqualified-id is looked up in the context

of the complete postfix-expression.

If the unqualified-id is ˜type-name, and the type of the object expression is of a

class type C (or of pointer to a class type C), the type-name is looked up in the con-

text of the entire postfix-expression and in the scope of class C. The type-name

shall refer to a class-name. If type-name is found in both contexts, the name shall

refer to the same class type. If the type of the object expression is of scalar type,

the type-name is looked up in the scope of the complete postfix-expression.

Note that these two paragraphs explicitly apply to “a class member access,” which, according to

5.2.5¶2, requires that the object expression be a class type or pointer thereto. Consequently, the

statements in 3.4.5¶2-3 that purport to handle object expressions of scalar type are vacuous be-

cause an object expression of scalar type can never occur in a class member access. (Not to men-

tion the fact that ¶2 deals only with “pointer to scalar type” and ¶3 only with “scalar type”!)

A similar objection might be advanced regarding the treatment of pseudo-destructor calls in

3.4.3¶5: because a pseudo-destructor-name is not a qualified-id, it could seem inappropriate to

deal with it in a section entitled “Qualified name lookup.” Here, however, I believe the criticism

to be less justified. The specification in 3.4.3¶5 deals only with pseudo-destructor-names that

contain nested-name-specifiers, and it is precisely the nested-name-specifier in a qualified-id that

is dealt with in this section, anyway.

Even accepting the intent of the specifications in 3.4.5 and 3.4.3 to deal with pseudo-destructor-

names, however, there is still a gap in the coverage. 3.4.5 claims to deal with pseudo-destructor

calls of the form p->~T(), while 3.4.3 describes the handling of pseudo-destructor-names that

contain a nested-name-specifier. Nowhere in the current working draft is there any description of

how to handle a pseudo-destructor call of the form p->T::~T(). (The “T::” is not a nested-

name-specifier; even though the grammar of nested-name-specifier has recently changed to allow

a non-class type-name to appear, the semantic description of 5.1¶7-8 makes it clear that only

class-names and namespace-names are permitted in nested-name-specifiers.)

The most straightforward means of addressing these structural issues in the specification of pseu-

do-destructor calls would be to create a new subsection in 3.4 for them, just as 5.2 has parallel

subsections for pseudo-destructor calls and class member access expressions. As noted above,

however, it probably makes most sense to continue to describe the handling of nested-name-

specifiers in pseudo-destructor-names in 3.4.3, with a pointer to it in the new subsection.

