
Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 1

Transliteration in ICU

Mark Davis
Alan Liu

ICU Team, IBM

2000.08.03

winkleaf
SC22/WG20 N915

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 2

What is ICU?
• Unicode-Enablement Library
• Open-Source: non-viral license
• Full-featured, cross-platform

– C, C++, Java APIs
– String handling, character properties, charset

conversion,…
– Unicode-conformant Normalization, Collation,

Compression,…
– Complete locales: Date, time, currency, number,

message formatting, resource bundles, …
• http://oss.software.ibm.com/icu/

The International Components for Unicode(ICU) is a C and C++ library that provides
robust and full-featured Unicode support on a wide variety of platforms. The library
provides:

•Calendar support
Character set conversions
Collation (language-sensitive)
Date & time formatting
Locales (170+ supported)
Resource Bundles

•Message formatting
Normalization
Number & currency formatting
Time zones
Transliteration
Word, line & sentence breaks

The ICU project is licensed under the X License, which is compatible with GPL but
non-viral.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 3

What is Transliteration?
• Script to Script conversion
• In ICU, also:

– Uppercase, Lowercase, Titlecase
– Normalization
– Curly “quotes”, em dashes (—)
– Full/Halfwidth
– Custom transformations

• Built on a Unicode foundation

Transliteration is the general process of converting characters from one particular script to
another one. This provides a way for people to see personal names or place names in a much
more recognizable format.

ICU provides a general mechanism for performing transliterations. It includes a set of standard
transliterators, such as Greek or Katakana to Latin. Most of these transliterators also have
inverse mappings, which convert in the other direction. Filters can also be specified, so that a
transliterator only applies to specific characters. Additional transliterators can be easily built
from a series of textual rules (at runtime).

Broadly speaking, ICU transliteration can also include manipulations of characters within a
single script, such as upper- and lowercasing, or producing special symbols. For example, this
includes converting typewriter 'straight quotes' and fake dashes (--) to curly quotes and long
dashes. It can also be used to convert unfamiliar letters within the same script, such as
converting Icelandic THORN (þ) to th. It is very important to note that this transliteration is
not translation. It is converting the letters from one script to another, not translating the
underlying words.

Of course, all of this is built, like all of ICU, on a foundation of Unicode. Without Unicode it
would be almost impossible to construct efficient software that covers the same range of
languages and scripts.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 4

Default Script? Script
• General conversions: Greek-Latin

– Source-Target Reversible:
f ? ph ? f

– Not Target-Source Reversible:
f ? f ? ph

• Variants
– By Language: Greek-German
– By Standard: Greek-Latin/ISO-843
– Can build your own
– May not be reversible!

ICU provides a number of default script-to-script transliterations, including transformations to
Latin for scripts of the locales supported by ICU, and certain other transformations such as
Hiragana-Katakana, and conversions between the Indic scripts. The transformations to the
Latin script are source-target reversible.

ICU also provides a number of variant transliterations, and you can build your own. These
transliterations may not be reversible, unless you make the extra efforts to make them so!

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 5

Examples
• ? , ? ?
• ? , ? ?
• ? , ? ?

• ? ? ? , ? ? ? ?
• ? ? ? , ??? ?
• ? ? ? ? , ? ? ?

• ??? t s?, ???a
• ?a???d??, ???s t??
• Te?d???t??, ?????

• Gim, Gugsam
• Gim, Myeonghyi
• Jeong, Byeongho

• Takeda, Masayuki
• Masuda, Yoshihiko
• Yamamoto, Noboru

• Roútse, Ánna
• Kaloúdes, Chrêstos
• Theodorátou, Eléne

Here are some examples of script-script transliterations. On the left are customer names from a
database. On the right are transliterations; text that will be read far more easily by the average
English-speaking database support engineer.

Of course, an Arabic-speaking support engineer might choose to have the names all
transliterated into Arabic, instead!

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 6

API: Information
• Like other ICU APIs, can get each of the

available transliterator IDs:
– count =
Transliterator:: countAvailableIDs();

– myID =
Transliterator::getAvailableID(n);

• And get a localizable name for each:
– Transliterator::getDisplayName(myID,
france, nameForUser);

Note: these are C++ APIs; C and Java are also available.

The API is pretty simple. ICU allows you to get a list of all the available transliterator IDs, and
localizable names for them.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 7

API: Creation

• Use an ID to create:
– myTrans =
Transliterator::createInstance("Latin
-Greek");

Once you have an ID, you can create an instance of a transliterator.

In the C API, this is an “open” call.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 8

API: Simple usage

• Convert entire string
– myTrans.transliterate(myString);

The simplest usage is to just convert an entire string.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 9

More Control

• Specify Context
• Use with Styled Text

abcdefghijklmnopqrstuvwxyz

contextStart

start limit

contextLimit

More sophisticated APIs allow more complex text to be used with Transliterators, such
as styled text. With these APIs, the input parameters supply information about the
range of text that should be transliterated, plus the possibly larger range of text that
can serve as context. The transliterator can take account of that context in performing
its transformations.

Transliterators don’t just work on plain text; they can also work on styled text. This is
done through the Replaceable interface. This is an interface (or abstract class in C++)
to text that handles a very few operations: essentially access to characters, plus
replacement of a substring by another. By using this interface, replacement text can
take on the same style as the text it is replacing, so that style information is not lost.
With a replaceable interface to HTML or XML, even higher level structure can be
preserved.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 10

Buffered Usage

• No conversion for clipped match

…t…t

?…

th…

…t …t
x

ØFill buffer
ØTransliterate
ØMay have left-overs

ØCopy left-overs to start
ØFill rest of buffer
ØTransliterate

Transliterator objects are stateless; they retain no information between calls to
transliterate(). This might seem to limit the complexity of the transliteration operation.
In practice, subclasses perform complex transliterations by delaying the replacement
of text until it is known that no other replacements are possible. In other words,
although the Transliterator objects are stateless, the source text itself embodies all the
needed information, and delayed operation allows arbitrary complexity.

The complete parameter indicates whether or not you are to consider the text up to
limit to be complete or not. For example, for keyboard input this should normally be
false. Only when the conversion is complete is that parameter set to true. For
example, suppose that a transliterator converts "sh" to X, and "s" in other cases to Y. If
the complete parameter is true, then a dangling "s" converts to Y; when the complete
parameter is false, then the dangling "s" should not be converted, since there is more
text to come.

In other words, a rule will have a clipped match if the rule matches up to the end of the
buffer, but would require more characters past the end of the buffer for it to really
match. When the complete parameter is not set, then any clipped match will stop the
processing, because more characters could be coming.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 11

Keyboard Input

• Like Buffered Usage
– Conversions aren’t performed if they may

extend over boundaries

Key Result
a a
p ap
a apa
p apap
h apaf

The buffering support is also used for keyboard input.

This shows what appears on the screen as the user types. The left column is the key typed by
the user, while the right column shows what appears on the screen. Notice that the “p” does
not get converted until the next letter is typed.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 12

Filters

• “[aeiou] Latin - Greek”
– “Latin” is the source
– “[aeiou]” is a filter, restricts the application to

only English vowels.
– “Greek” is the target

• “[^\u0000-\u007E] Any - Hex”
– “A d is…” ? “A \u03B4 is\u2026”

Filters can be used to restrict the application of a transliterator to a subset of Unicode
characters. For example, we may only want to convert certain characters from Latin to Greek,
or normalize letters from Devanagari, or transform non-ASCII characters into an escaped-hex
representation.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 13

UnicodeSet Filters
• Ranges [ABC a-z]
• Union [[:Lu:] [:P:]]
• Intersection [[:Lu:] & [\u0000-\u01FF]]
• Set Difference [[:Lu:] - [\u0000-\u01FF]]
• Complement [^aeiou]
• Properties

– Uppercase letters [:Lu:]
– Punctuation [:P:]
– Script [:Greek:]
– Other Unicode properties in ICU 2.0

The filters use something called a UnicodeSet. This is similar to regular expression ranges. It
allows ranges, boolean operations, and Unicode properties. These will be enhanced
considerably in ICU 2.0.

UnicodeSet is also used within rules, in building Transliterators. We will see that a bit later.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 14

Example Filter

• [:Lu:] Latin - Katakana; Latin - Hiragana;

– Converts all uppercase Latin characters to
Katakana,

– Then converts all other Latin characters to
Hiragana.

A common transliteration for input is uppercase to katakana,
lowercase to hiragana. You would do that with the example here.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 15

Compound Transliterators

• “Kana-Latin; Any-Title”
1. ? ? ? , ? ? ? ?
2. takeda, masayuki
3. Takeda, Masayuki

• Any number
• Each takes optional filter

Transliterators can also be chained together. This is done by using a semicolon as a separator,
and listing a number of Transliterator IDs. The text is processed as if each transliterator is
invoked on it, one after another.

Any number of IDs can be used, and each ID can include a filter. In addition, a filter can be
applied to the entire compound.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 16

Custom Rules
• Similar to Regular

Expressions
– Variables
– Property matches
– Contextual matches
– Rearrangement

• $1, $2…

– Quantifiers:
• *, +, ?

• But More Powerful…
– Ordered Rules
– Cursor Backup
– Buffered/Keyboard

• And Less Powerful…
– Only greedy quantifiers
– No backup

• So no (X | Y)

– No input-side back
references

For the more adventurous, Transliterators can be constructed using rules. These rules are
similar to regular expression matches, but not identical. They are not as powerful as full
regular expressions in general, since their primary focus is different; on the other hand, some
of their capabilities exceed what is found in normal regular expression engines.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 17

Simple Example

• ID: “UnixQuotes-RealQuotes”
– '``' > “; convert two graves to a right-quote

– \'\' > ” ; convert two generics to a left-quote

• Example (from the SJ Mercury News)

– Ashcroft credited Mueller with an ``expertise in
criminal law that is broad and deep.''

– Ashcroft credited Mueller with an “expertise in
criminal law that is broad and deep.”

Here is a simple example. The two rules you see here are used to convert Unix quote marks
into real quote marks. Below is a sample of text from an article in the San Jose Mercury News
online, with this transliterator applied.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 18

Rule Ordering
• Find first rule that matches at start

– If no match, advance start by 1
– If match,

• Substitute text
• Move start as specified by rule

(default: to end of substituted text)

• Continue until start reaches limit
– For buffered case: stops if there is a clipped

match

Rules are applied in order, as described here. We will see the consequences on that on the next
slide.

Note that in buffered input, where more characters could be coming, then the processing stops
if a clipped match is reached. That is where a rule matches up to the end of the buffer, but
needs more characters to complete the match.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 19

Rule Ordering Example

Reg Exp.Translit.

s/xy/c/xy > c ;

s/yx/d/yx > d ;

xyx-yxy

cx-yccx-dy

Because of the ordering, the results of a transliteration is not the same as what you would get
by simply applying the first rule to the whole text, then the next rule to the whole text, etc.
Instead, the text at each point is converted according to the rule precedence.

The example on this slide illustrates this. The result of transliteration differs significantly from
what would happen by simply applying multiple regular expressions. Since the transliterator
processes each of its rules at each point, it catches the yx before the xy in the second case.
Since each of the regular expressions is evaluated over the whole string, that isn’t possible.
Simply using multiple regular expressions can’t account for the interaction and ordering of
characters and rules.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 20

Context

• Rules:
– { ? } [G? ? ? ? ? ? ?] > n;
– ? > g;

• Meaning:
– Convert gamma into n

• IF followed by any of G, ? , ? , ? , ?, ?, ?, or ?

– Otherwise into g

Context can be used to have the results of a transformation be different depending on the
characters before or after.

Note: The context itself (e.g. G, …, ?) is unaffected by the replacement; only the text between
the curly braces is changed.

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 21

Cursor Backup

• Allows text to be revisited
• Reduces rule-count
• Example Rules

1. BY > ? | ~Y ;
2. ~YO > ?;

|BYO

? |~YO

? ?|

1

2

Cursor backup is a very powerful ability. It allows rules to be structured so that they do a
replacement, then backup to allow other rules to be invoked on the transformed text.

It can drastically reduce rule count. In this example, instead of having rules for the
combinations of consonant + Y + vowel (for the relevant vowels and consonants), you can just
have rules for consonant + Y, and Y + vowel. This reduces the number of rules from
consonant_count times vowel_count to consonant_count plus vowel_count .

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 22

Demonstration

• Public Demo
– http://oss.software.ibm.com/icu/demo
– (local copy, samples)

• Bug Reports Welcome
– http://dwoss.lotus.com/developerworks/

opensource/icu/bugs

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 23

ICU Transliteration

• Powerful, flexible mechanism
• Works with Styled Text, not just plaintext
• Transliteration, Transcription,

Normalization, Case mapping, etc.
• Compounds & Filters
• Custom Rules
• http://oss.software.ibm.com/icu

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 24

References (http://oss.software.ibm.com/..)

• User Guide:
– /icu/userguide/Transliteration.html

• C API
– /icu/apiref/utrans_h.html

• C++
– /icu/apiref/

• class_Transliterator.html, class_RuleBasedTransliterator.html,…

• Java API
– /icu4j/doc/com/ibm/text/

• Transliterator.html, RuleBasedTransliterator.html, …

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 25

Q & A

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 26

Transliteration Sources

• Søren Binks
– http://homepage.mac.com/sirbinks/translit.html

• UNGEGN
– http://www.eki.ee/wgrs/

• …

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 27

Backup Slides

Transliteration in ICU

San Jose, California, Sept. 200119th International Unicode Conference 28

Styled Text Handling
• Transliterator operates on Replaceable, an

interface/abstract class defined by ICU
• In ICU4c, UnicodeString is a Replaceable

subclass (with no out-of-band data -- no styles)
• ICU4j defines ReplaceableString, a Replaceable

subclass, also with no styles
• Clients must define their own Replaceable

subclass that implements their styled text.

