
ISO/IEC JTC1/SC 22/WG 20 N 619665

 Date: 16 November 19981999-04-21

ISO
ORGANISATION INTERNATIONALE DE NORMALISATION

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ÌÅÆÄÓÍÀÐÎÄÍÀß ÎÐÃÀÍÈÇÀÖÈß ÏÎ ÑÒÀÍÄÀÐÒÈÇÀÖÈÈ

CEI (IEC)
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
INTERNATIONAL ELECTROTECHNICAL COMMISSION

ÌÅÆÄÓçÄêéÑÍÀß ÇËÅÊÒÐÎÒÅÕÍÈ×ÅÑÊÀß ÊÎÌÈÑÑÈß

Title Proposed editorial changes to ISO/IEC FCD 14651.2 - International String Ordering - Method
for comparing Character Strings and Description of the Common Template Tailorable Ordering

[ISO/CEI CD 14651 - Classement international de chaînes de caractères - Méthode de
comparaison de chaînes de caractères et description du modèle commun d’ordre de
classement]

Status: Final Committee DocumentExpert contribution

Reference: SC22/WG20 N 568R (Disposition of comments on first FCD ballot)619

Date: 1998-11-161999-04-21

Project: 22.30.02.02

Editor: Alain LaBonté

 Gouvernement du Québec
 Secrétariat du Conseil du trésor
 875, Grande-Allée Est, Secteur 3C
 Québec, QC G1R 5R8
 CanadaMichael Everson

Email: alb@sct.gouv.qc.caeverson@indigo.ie

ISO/IEC 14651:1999(E) ISO/IEC

ii

Contents:

FOREWORD..iii
INTRODUCTION .. iv
1 Scope ...1
2 Conformance..2
3 Normative References..2
4 Definitions.. 53
5 Symbols and abbreviations.. 53
6 Requirements... 64
6.1 Reference method for establishing an order between two character strings...64

6.1.1 Preparation of character strings prior to comparison ...64
6.1.2 Comparison method of reference resulting in ordering two character strings ...74

6.2 Building the Ordering ordering key used in the reference comparison method ..75
6.2.1 Preliminary considerations ...75

6.2.1.1 Assumptions ..75
6.2.1.2 Blocks and processing properties..75

6.2.2 Key composition ..86
6.2.2.1 Formation of subkey level 1 through (m – 1) (level i; m=4 in the Common Template)..86
6.2.2.2 Formation of subkey level m (m=4 in the Common Template table) ...96

6.3 Common Template Table: formation and interpretation...107
6.3.1 BNF Syntax Rules ..107
6.3.2 Well-formedness Conditionsconditions ..119
6.3.3 Interpretation of Tailored tailored Tables tables ..129
6.3.4 Conditions for considering specific table equivalences ..1310
6.3.5 Conditions for results to be considered equivalent ...1310

6.4 Declaration of a delta .. 1311
6.5 Name of the Common Template Table and name declaration.. 1412
Annex A -- Common Template Table (normative) ...1513
Annex B -- Benchmarks (informative) ...1715
B.1 Example 1 – Canadian delta and benchmark ... 1715
B.2 Example 2 – Danish delta and benchmark.. 2018
Annex C -- Preparation (informative) ..2220
C.1 General considerations ... 2220
C.2 Handling of numeral substrings in collation.. 2220

C.2.1 Handling of ‘ordinary’ numerals for natural numbers ...2321
C.2.2 Handling of positional numerals in other scripts ...2724
C.2.3 Handling of other non-pure positional system numerals or non-positional system numerals (e.g. Roman
numerals)..2724
C.2.4 Handling of numerals for whole numbers ..2725
C.2.5 Handling of positive positional numerals with fraction parts ..2927
C.2.6 Handling of positive positional numerals with fraction parts and exponent parts ...3027
C.2.8 Handling of date and time of day indications ...3128
C.2.9 Making numbers less significant than letters ...3330
C.2.10 Maintaining determinacy ...3330

C.3 Posthandling.. 3431
Annex D -- Tutorial on solutions brought by this standard to problems of lexical ordering
(informative) ...3532
Annex E -- BIBLIOGRAPHY...4036

ISO/IEC ISO/IEC 14651:1999(E)

iii

FOREWORD

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work.

In the field of information technology, ISO and IEC have established a joint technical committee
known as ISO/IEC JTC1. Draft International Standards adopted by the joint technical committee are
circulated to the national bodies for voting. Publication as an international standard requires approval by
at least 75% of the national bodies that cast a vote.

The ISO/IEC 14651 International Standard has been prepared by the Joint Technical Committee
ISO/IEC JTC1, Information Technology.

ISO/IEC 14651:1999(E) ISO/IEC

iv

INTRODUCTION

This International Standard provides a method for ordering text data worldwide, and provides a
Common Template Table whose tailoring eases adaptation of a specific script to the requirements of a
given language while retaining universal properties for other scripts. The purpose of such a mechanism is
to correct past errors of the past regarding collation done , since previously collation operations were
based only on binary coded character values. Past approaches have often not respected cultural
preferences for collation. English is one exception, although a poor one, when only upper case
alphabetic data was used instead of other characters including punctuation and spacing.

This is one of the major flaws that affect affecting portability between countries and between
applications. (Traditionally, different programs used different ordering specifications.) Therefore, it has
been considered feasible necessary to design a Common Template Table for ordering and a comparison
method that can be used as a reference for the results to be achieved by implementations. This
Standard is the achievement result of efforts to meet this challenge.

The Common Template Table requires some tailoring in different local environments. However
conformance to this International Standard requires that the all deviations to from the Template, called
"deltas", be declared to document result discrepancies.

This Standard describes a method to order text data independently of context. It has provisions to
allow a lot great deal of of flexibility in implementations, while remaining an excellent international
reference for ordering to which all technical and cultural environments can commonly refer to.

INTERNATIONAL STANDARD ISO/IEC ISO/IEC 14651:1999(E)

1 Scope

This International Standard defines:

- A simple method of reference for comparing two characters strings in order to determine their
respective order in a sorted list. The method is applicable can be applied on strings that exploiting
the full repertoire of ISO/IEC 10646 (independently of coding). These comparisons are also
applicable for to subrepertoiressubsets of that repertoire, such as those of the different parts of
ISO/IEC 8859 parts or any other character set, standardized or private, to produce ordering
results valid (after tailoring) in for a given set of languages for each script. This method uses
transformation tables derived either from either the Common Template Table defined in this
International Standard or from one of its tailorings.

- A reference format using a variant of the Backus-Naur Form (BNF) to describe the Common
Template Table used normatively in this International Standard.

- A specific Common Template Table used by the comparison method. This table describes a
basic order for all characters specified encoded in the first edition of ISO/IEC 10646-1 up to
amendment 7 in this edition of this International Standard31. This The table is a starting point in
for enabling the specification of culturally acceptable orders adapted to different cultures, without
requiring an implementor to have a knowledge of all the different scripts already taken care of by
this International Standardencoded in the UCS.

 NoteNOTE: It is to be considered normal practice that this Common Template Table be
modified with a minimum of efforts effort to suit the needs of a local environment. The main benefit,
worldwide, is that for other scripts, no modification is should be required and that the order will remain as
consistent as possible and predictable from an international point of view.

- A reference name representing this particular version of the Common Template Table for use by
various applications as a starting base for tailoring. In particular, this name implies that the table
is linked to a particular stage of development of the ISO/IEC 10646 Universal multiple-octet coded
character set.

 This International Standard does not mandate:

- A specific comparison method; any equivalent method giving the same results is acceptable.

- A specific format for describing or tailoring tables in a given implementation.

- Specific symbols to be used by implementations except the name of the Common Template
Table.

- A specific user interface for choosing options.

- A specific internal format for intermediate keys used in comparisons nor for the table used. The
use of numeric keys is not mandated either.

- A context-dependent ordering which would require complex transformation of data to order.

 Note: Although no user interface is prescribed required to choose options or to specify tailoring of the
Common Template Table, conformance requires always declaring the applicable delta, a declaration
of differences with this table. It is highly recommended that these fundamental choices be presented
by the application interfacing with the users of the results produced, for instance, in a Preferences
dialogue box.

ISO/IEC 14651:1999(E) ISO/IEC

2

 2 Conformance

 An application is conformant to this International Standard if it meets the requirements prescribed in
section clause 6.

 Any A declaration of conformity to this International Standard shall be accompanied by a declaration
of the tailoring delta described in clause 6.4 in case tailoring is not provided by the concerned the
application concerned does not provide a tailoring facility to the end user. In the case that such tailoring
is provided, the declaration shall indicate which of the elements of clause 6.3 it is possible to tailor in the
concerned application and which ones elements have no tailoring provisions. More specifically, it is the
responsibility of implementers implementors to show how their delta declaration is related to the table
syntax described in clause 6.3, and how the comparison method they use, if . If different from the one
mentioned in clause 6.1, can be considered as giving the same results as those prescribed by the
method specified in clause 6.1.

 3 Normative References

 The following standards contain provisions which, through reference in this text, constitute provisions
of this International Standard. At the time of publication, the editions indicated were valid. All standards
are subject to revision, and parties to agreements based on this International Standard are encouraged
to investigate the possibility of applying the most recent editions of the standards listed below.

 Members of IEC and ISO maintain registers of currently valid International Standards.

- ISO/IEC 10646-1:1993 Information technology -- Universal Multiple-Octet Coded Character Set
(UCS) -- Part 1: Architecture and Basic Multilingual Plane

- ISO/IEC 10646-1:1993/Amd.1:1996 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 1:
Transformation Format for 16 planes of group 00 (UTF-16).

- ISO/IEC 10646-1:1993/Amd.2:1996 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 2: UCS
Transformation Format 8 (UTF-8).

- ISO/IEC 10646-1:1993/Amd.3:1996 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 3.

- ISO/IEC 10646-1:1993/Amd.4:1996 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 4.

- ISO/IEC 10646-1:1993/Amd.5:1998 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 5: Hangul
syllables.

- ISO/IEC 10646-1:1993/Amd.6:1997 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 6: Tibetan.

- ISO/IEC 10646-1:1993/Amd.7:1997 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 7: 33
additional characters.

ISO/IEC ISO/IEC 14651:1999(E)

3

- ISO/IEC 10646-1:1993/Amd.10:1998 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 10:
Ethiopic.

- ISO/IEC 10646-1:1993/Amd.11:1998 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 11: Unified
Canadian Aboriginal Syllabics.

- ISO/IEC 10646-1:1993/Amd.12:1998 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 12:
Cherokee.

- ISO/IEC 10646-1:1993/Amd.14:1999 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 14: Yi.

- ISO/IEC 10646-1:1993/Amd.16:1998 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 16: Braille
patterns.

- ISO/IEC 10646-1:1993/Amd.18:1998 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 18: XXX
EURO.

- ISO/IEC 10646-1:1993/Amd.19:1998 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 19: Runic.

- ISO/IEC 10646-1:1993/Amd.20:1998 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 20: Ogham.

- ISO/IEC 10646-1:1993/Amd.22:1998 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 22:
Keyboard symbols.

- ISO/IEC 10646-1:1993/Amd.23:1998 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 23:
Extended Bopomofo and other characters.

- ISO/IEC 10646-1:1993/Amd.24:1999 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 24: Thaana.

- ISO/IEC 10646-1:1993/Amd.25:1999 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 25: Khmer.

- ISO/IEC 10646-1:1993/Amd.26:1999 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 26:
Myanmar.

- ISO/IEC 10646-1:1993/Amd.27:1999 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 27: Syriac.

- ISO/IEC 10646-1:1993/Amd.29:1999 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 29:
Mongolian.

ISO/IEC 14651:1999(E) ISO/IEC

4

- ISO/IEC 10646-1:1993/Amd.30:1999 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 30: Latin
and other characters.

- ISO/IEC 10646-1:1993/Amd.31:1999 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 31: Tibetan.

ISO/IEC ISO/IEC 14651:1999(E)

5

4 Definitions

For the purposes of this International Standard, the following definitions apply:

4.1 canonical form the coding of a UCS character in 4 octet binary form according to ISO/IEC
10646-1

4.2 character string a sequence of characters considered as a single object

4.3 collation ordering of elements

4.4 collating symbol a symbol used to specify weights assigned to a character

4.5 collating element a single weight or a sequence of weights attributed to a character at a specific
level of ordering

4.6 delta list of differences of a specific ordering table relatively to the Common Template
Table defined in this International Standard

4.7 glyph a recognizable abstract graphic symbol which is independent of any specific
design

4.8 graphic character a character, other than a control function, that has a visual representation
normally handwritten, printed, or displayed. To a graphic character normally
corresponds a glyph

4.9 level whenever used without qualification in this International Standard, level stands
for the depth at which a comparison is made on two character strings.

4.10 token a number used as an actual comparison element by the reference comparison
method

4.11 ordering a process in which a set of strings are assigned a given order relative to any
other set of strings

4.12 ordering key a series of numerical values used to determine an order

4.13 preparation a process in which character strings are modified internally to lead to
straightforward comparisons according to this standard

4.14 script a set of graphic characters used for the written form of one or more languages

5 Symbols and abbreviations

Identification of characters of the repertoire of ISO/IEC 10646-1 (Universal multiple-octet-coded
Character Set or UCS) repertoire is made in this edition of this International Standard by means of
symbols of the form <UXXXX>. The occurrences of XXXX which follow the letter "U" represent the
hexadecimal value (using upper case letters when applicable) of a coded character as defined in ISO/IEC
10646 but no specific coded value is intended. What is being referenced is a graphic character,
independently of its coding, and any character set whose which is a subrepertoire is taken into account
in of ISO/IEC 10646-1 is covered in this way.

ISO/IEC 14651:1999(E) ISO/IEC

6

This use of symbols is a means to be code-independent (the same value being possibly is used even
if the coded character set in use in a given implementation is not ISO/IEC 10646). At the same time, this
is a means to keep a straightforward link with the Universal multiple-octet Coded Character Set (UCS),
which contains all the coded graphic characters ever defined by ISO/IEC JTC1 standards. Addenda to
ISO/IEC 10646 will be published from time to time; these addenda may then also result in require that
addenda to this International Standard if necessaryalso be made.

By convention, if a character outside of the standard repertoire of ISO/IEC 10646 is to be used in
tailored ordering tables, it is recommended that the code-independent symbol identifying this character
use the form <Pyyyyyyyy> for documentary purposes indicating its nonstandard nature. The binding to
actual coding of these symbols for nonstandard characters is left to implementation and to tailoring. If,
for example, actual UCS coding is used, then private Private Use zones of this character set will
normally be used for meeting such special requirements, and binding could then be specified so that the
sequence yyyyyyyy used in the symbol represents private-Private Use zone UCS coding.

In the Common Template Table arbitrary symbols representing weights are used according to the
BNF notation description in 6.3.1.

6 Requirements

6.1 Reference method for establishing an order between two character strings

6.1.1 Preparation of character strings prior to comparison

It may be necessary to transform character strings before these character strings are fed into the
comparison method is applied to them (see annex C for an example of such preparation). Although not
part of the scope of this International Standard, context-sensitive preparation may be an important part of
the ordering process, as for example in telephone-book ordering, a complex case in point.

An application conformant to this international International standard Standard shall, at the minimum,
prepare the string so that sequences using either combining sequences or using precomposed
characters be presented to the comparison method described in 6.1, if they are meant to be equivalent.
An application is also conformant if it uses a comparison method for forming ordering keys which,
without making any such preparation, is demonstrated to produce results identical to the ones resulting
from the use of such a preparation.

Note 1: In this International Standard, the Common Template Table is built has been constructed so that, with
a minimum of effort, precomposed characters will be ordered in the same way as when equivalent
sequences of combining characters are used, provided that the preparation prescribed in the previous
paragraph is has been made. It is has been demonstrated that by tailoring the Common Template
Table to add extra token values at level 2 for all precomposed characters affected by a diacritics, it is
possible to accomplish obtain identical results for combining sequences without requiring that
preparation. However, as it is not typically the case that such double-coding will be used, it is not
considered required necessary to add extra tokens, for keeping in order to preserve a reasonable
economy of means in the general case.

Note 2: Escape sequences constitute very sensitive data to interpret, and it is highly recommended that
preparation should filter out or transform these sequences. Ideally, all control characters should be
filtered out before comparison and reintroduced afterward, in case of absolute homography, to
distinguish two character strings being compared.

ISO/IEC ISO/IEC 14651:1999(E)

7

6.1.2 Comparison method of reference resulting in ordering two character strings

The following describes the comparison method used as a reference to determine conformance to
this International Standard:

1. In considering a table describing weights at m levels for each of n characters in the implementation
character set, build a numeric key for both each of two arbitrary character strings being compared,
according to the algorithm of key formation described in clause 6.2 of this International Standard.

2. Compare the numeric keys produced for the two character strings. The character string whose
numeric key is smaller shall be ordered before the other one. If the two numeric keys are identical in
value then the two character strings compared shall be considered as equal according to this
International Standard.

The table used in this reference method for comparison is the result of the numeric interpretation of
the symbols in the Common Template Table, or in a tailored table into a table of n by m elements (n
characters by m levels described per character). In the Common Template Table, the number of levels m
described per character is equal to 4.

6.2 Building the Ordering ordering key used in the reference comparison method

6.2.1 Preliminary considerations

6.2.1.1 Assumptions

The ordering table is a transformation table that can be considered as a matrix of n lines. n is the
number of characters in the repertoire used. In each line 4 levels are described in the Common Template
Table. This number of levels can be extended in the tailoring phase by the end-user. The user shall take
care that, in case of , when tailoring, take are to adjust levels be adjusted so that the last level may
processed in a special way according to what is described in what followsthe description below.
Normally the last level is intended to specify "special" characters, i.e., characters normally not part of
the orthography of any scriptspelling of words of a language (sich as dingbats, punctuation, etc.),
sometimes called "ignorable" characters in the context of computerized ordering.

6.2.1.2 Blocks and processing properties

A tailored table may be separated into blocks. Each block has specific scanning and ordering
properties.

One of the tailoring possibilities is to assign a given order to each block and to change the relative
order of a whole an entire block relatively to other blocks.

The scanning direction (forward or backward) used to process the string at each level is a property of
each block. These properties can be changed.

A specific property of the last level of comparison is that, before comparing weights of each
"ignorable" character, a comparison on the numeric position of each such character of in the two strings
is effected (in . In other words, for two strings equivalent at all levels except the last one, the string
having an ignorable in the lowest position comes before the other one. In case ignorables share the
same positions, then weights are considered, and this until a difference is found).

NoteNOTE: The scanning direction (forward or backward) is not normally related to the natural writing
direction of a script or of scripts described by one a particular block. The scanning direction applies to
the logical sequence of the coded character string.

ISO/IEC 14651:1999(E) ISO/IEC

8

According to ISO/IEC 10646, for scripts written right to left, such as Arabic, the lowest positions in the
logical sequence of characters correspond to the rightmost characters of a string (from the point of view
of their natural presentation sequence). Conversely, for the Latin script, written left to right, the lowest
positions in the logical sequence of characters correspond to the leftmost characters of the string (from
the point of view of their natural presentation sequence).

Scanning forward starts with the lowest positions in the logical sequence, while scanning backward
starts from the highest positions, and this independently of the presentation sequence. The scanning
direction for ordering purposes is a property of a block.

In ISO/IEC 10646-1, the Arabic script is artificially separated into two pseudoscripts: 1) the logical,
intrinsic Arabic, coded independently of shapes, and 2) the Arabic presentation forms. Both allow to
code the complete coding of Arabic completely, but intrinsic Arabic is normally preferred for better
processing, while the second presentation-form Arabic is preferred by some presentation-oriented
applications (it does not, however, handle most non-Arabic languages using the Arabic script (Sindhi,
etc) as full sets of presentation forms for those languages have not been encoded). ISO/IEC 10646-1
does not prescribe that the logical order of the presentation forms be coded in presentation order or
logical order. Therefore, tables can be tailored to specify a specific block for these characters and the
scanning properties can then be specified according to the coding employed by the application.

6.2.2 Key composition

A series of m intermediary subkeys is formed out of a character string composing a comparison field;
m is the maximum number of levels described in either the Common Template Table or the in the tailored
ordering table. The following paragraphs subclauses describe the formation of each of these subkeys
whose successive sequence forms a complete ordering key. In the Common Template table, m is equal
to 4.

6.2.2.1 Formation of subkey level 1 through (m – 1) (level i; m=4 in the Common Template)

For i varying from 1 to (m – 1) (from 1 to 3 if the Common Template Table is used), form subkey level i
in the following way:

During forward scanning of each character of the input character string, one or more tokens are
obtained. These tokens correspond to the transformation value of that character at level i.

The scanning properties for the level i being processed needs to must be carefully monitored.
When there is a change in scanning direction at level i (this impliesimplying that the character
being processed comes from a block that which is different from the preceding character
processed and which has different scanning properties) and the new direction is backward,
stacking of the token will be done take place at the position where the change of direction has
occurred. Therefore, when such a condition occurs, the application shall retain the current
position in the output subkey i as position p (push position).

According to the scanning direction assigned to the level i of the block in which the character
being processed belongs, the obtained token is either added in sequence (concatenated) at the
end of subkey i (which behaves like a list), or pushed at position p of subkey i (which then
behaves like a stack). Subkey i is initially empty.

NoteNOTE: This is the equivalent of backward or forward scanning of the input string for that level. This
property of scanning direction is given for each level of each block and is a block property. The
Common Template Table has only one block until it is tailored.

ISO/IEC ISO/IEC 14651:1999(E)

9

6.2.2.2 Formation of subkey level m (m=4 in the Common Template table)

If the order_start_entry does not uses the position value at level m of a block (the
position value is explicitly used in the template only for the only block defined) then the formation of
subkey level m is done in exactly the same way as the above-defined formation. Otherwise, the
formation of subkey level m is as follows, in accordance with frequent common market practice:

During forward scanning of each character of the input character string, a pair of tokens is
concatenated to subkey level m. The first token of the pair corresponds to the logical position in
the original character string of the character being processed. The second token in the pair
corresponds to the weight assigned to that character at level m of the table. When the character
is not assigned at level m in the table, it is ignored for the formation of subkey level m and no
pair is concatenated. The pair of tokens is concatenated immediately after subkey level m.
Subkey level m is initially empty.

Generally, and in the Common Template Table, levels represent the following decomposition for basic
characters:

Level 1: The Base base level of each script. This level corresponds to the set of basic letters of the
alphabet for that script, if the script is alphabetic, and to the set of basic characters of the script
if the script is ideographic or syllabic.

Level 2: The level corresponding to diacritical marks affecting each basic character of the script. For
some scriptslanguages, letters with diacritics are always considered an integral part of the basic
letters of the alphabet, and are not considered at this second level, but rather at the first. For
example, in Spanish, N TILDE in Spanish is considered a basic letter of the Latin script.
Therefore, tailoring for Spanish will change the definition of N TILDE from "the weight of an N in
the first level and a tilde the weight of a TILDE in the second level" to "the weight of an N TILDE
(placed after N and before O) in the first level, and indication of the absence of extra a diacritics
in the second level".

Level 3: The level corresponding to case or to variant character shape that affects each affecting the
basic characters of the script.

Level 4: This level represents the level common to all scripts or the level not specifically belonging to any
script. The property of this level is that it is ordered positionally according to this International
Standard. This means that the numerical value of the position in the original string has
precedence over the weight assigned to the special character which occupies this position. This
It also means that subkey level m is composed of a pair of values for each such character (the
character string being always being scanned forward in the logical string sequence). The first
value of the pair corresponds to the sequential position of the character in the input string in
logical sequence. The second value of the pair corresponds to the weight assigned to the
character according to level m in script <SPECIAL>.

 In the tableCommon Template Table, this behavior is described using the parameter couple
"forward, position". To be conformant to this, the parameter couple "backward, position" shall
never be specified for level m (see clause 5.4 THERE IS NO CLAUSE 5.4!). These two
parameters shall be considered mutually exclusive.

 In the Common Template table, definitions of these characters for levels 1 to 3 are such that
they are ignored at these levels and values are exclusively assigned to level m (m being equal to
4 in the Common Template).

ISO/IEC 14651:1999(E) ISO/IEC

10

6.3 Common Template Table: formation and interpretation

This section clause specifies:

- the syntax used to form the Common Template Table in Annex annex A of this International
Standard or a table tailored starting from table based upon the Common Template Table

- conditions of well-formedness of a table using this syntax

- interpretation of tables formed using this syntax

- conditions for considering two tables as equivalent

- conditions for considering comparison results as equivalent

6.3.1 BNF Syntax Rules6.3.1 BNF syntax rules

Definitions between {curly brackets} make use of terms not defined in this BNF syntax, and assume
general English usage.

Other conventions:
* means 0 or more repetitions of a token,
parentheses indicate optional occurrence of a token.

NOTE: THE USE OF SMART QUOTES HERE IS PECULIAR.

1. character ::= {any member of the repertoire of the encoded
character set in use}

2. line_delimiter ::= {end-of-line in the text conventions in use}
3. digit ::= ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’
4. hexdigit ::= digit|’A’|’B’|’C’|’D’|’E’|’F’|digit
5. id_start ::=

’a’|’b’|’c’|’d’|’e’|’f’|’g’|’h’|’i’|’j’|’k’|’l’|’m’|’n’|’o’|’p’|’q’
|’r’|’s’|’t’|’u’|’v’|’w’|’x’|’y’|’z’|’A’|’B’|’C’|’D’|’E’|’F’|’G’|’H
’|’I’|’J’|’K’|’L’|’M’|’N’|’O’|’P’|’Q’|’R’|’S’|’T’|’U’|’V’|’W’|’X’|’
Y’|’Z’

6. id_part ::= id_start|digit|’-’|’_’|’+’
7. comment_char ::= ‘%’
8. space ::= ’ ’
9. four_digit_hex_string ::= hexdigit hexdigit hexdigit hexdigit
10. comment ::= comment_char character*
11. identifier ::= id_start id_part*
12. simple_symbol ::= ’<’ identifier ’>’
13. ucs_symbol ::= ’<U’ four_digit_hex_string ’>’
14. symbol ::= simple_symbol | ucs_symbol
15. symbol_group ::= symbol |’"’ symbol symbol* ’"’
16. level_token ::= symbol_group | ’IGNORE’
17. delimited_level_token ::= level_token ’;’
18. multiple_level_token ::= delimited_level_token* level_token
19. line_completion ::= ((space)comment) line_delimiter
20. symbol_list_item ::= symbol
21. symbol_list_item_range ::= symbol_list_item ’..’ symbol_list_item
22. symbol_list_element ::= symbol_list_item_range | symbol_list_item
23. symbol_definition ::= symbol_list_element

ISO/IEC ISO/IEC 14651:1999(E)

11

24. symbol_weight_entry ::= symbol_list_item space multiple_level_token
line_completion

25. delimited_symbol_list_element ::= symbol_list_element ’;’
26. symbol_list ::= delimited_symbol_list_element* symbol_list_element
27. section_identifier ::= identifier
28. section_definition_simple_entry ::= ’section’ space

section_identifier line_completion
29. section_definition_list_entry ::= ’section’ space

section_identifier space symbol_list line_completion
30. section_definition_entry ::= section_definition_simple_entry |

section_definition_list_entry
31. target_symbol ::= symbol
32. reorder_after_entry ::= ’reorder-after’ space target_symbol

line_completion
33. reorder_end_entry ::= ’reorder-end’ line_completion
34. reorder_section_after_entry ::= 'reorder-section-after' space

section_identifier space target_symbol line_completion
35. direction ::= ’forward’ | ’backward’
36. delimited_direction ::= direction ’;’
37. multiple_level_direction ::= delimited_direction* direction
38. order_start_entry ::= 'order_start' space identifier ';'

multiple_level_direction space (',position') line_completion
39. order_end_entry ::= ’order_end’ line_completion
40. simple_line ::= (symbol_definition | symbol_weight_entry)

line_completion
41. tailoring_line ::= (section_definition_entry | reorder_after_entry

| reorder_end_entry | reorder_section_after_entry |
order_start_entry | order_end_entry) line_completion

42. table_line ::= simple_line | tailoring_line
43. section ::= {ordered set of simple_line’s –See I1 below.}
44. untailored_template_table ::= simple_line*
45. tailored_table ::= table_line*
46. weight_table ::= untailored_template_table | tailored_table

6.3.2 Well-formedness Conditions6.3.2 Well-formedness conditions

WF1. Any simple_symbol occurring in a multiple_level_token must occur in a symbol_definition in the
same symbol_weight_entry that in which the multiple_level_token occurs in, or in a symbol_weight_entry
that occurs earlier in the sequence of table_line’s that constitute a tailored_table. [I.e.That is, all
simple_symbol’s must be “defined” before they are “used”. Note that hex_symbol’s are all assumed to
be predefined.]

WF2. All multiple_level_token’s in a tailored_table must contain the same number of
delimited_level_token’s. [That isI.e., a tailorable table must be consistent in its use of levels throughout.]

WF3. A tailored_table may not contain a multiple_level_direction if it does not also contain a
multiple_level_token. [That isI.e., no order_start statement can be used in a table which defines no
multi-level weights.]

WF4. A multiple_level_direction in a tailored_table must contain the same number of
delimited_direction’s as the number of delimited_level_token’s of any multiple_level_token in that
tailored_table. [That isI.e., any order_start must have the same number of levels as is generally used in
the table.]

ISO/IEC 14651:1999(E) ISO/IEC

12

WF5. If a level_token in a multiple_level_token consists of a symbol_group, all successive level_token’s
in that multiple_level_token must also consist of a symbol_group. [That isI.e., don’t use ‘IGNORE’ may
not be used at a level after an explicit symbol for a weighting.]

WF6. Any section_identifier occurring in a reorder_section_after_entry must occur in a
section_definition_entry that which occurs earlier in the sequence of table_line’s that constitutes a
tailored_table. [That isI.e., all section_identifier’s must be “defined” before they are “used”.]

WF7. No two section_definition_entry’s in a tailored_table may contain the same values in their
section_identifier’s. [That isI.e., multiple definition of section’s is prohibited; section_identifier’s must be
unique.]

WF8. Each reorder_after_entry in a tailored_table must be followed by a reorder_end_entry or another
reorder_after_entry.

WF9. If a tailored_table contains one or more order_start_entry’s, it must be terminated with an
order_end_entry.

WF10. No reorder_section_after_entry may contain a target_symbol whose value is the same as any
symbol in the section_definition_list_entry whose section_identifier is the same as the section_identifier
in that reorder_section_after_entry. [That isI.e., a section cannot be reordered after a line which the
section itself contains; prohibit attempts at recursive relocation of lines are prohibited.]

6.3.3 Interpretation of Tailored Tables6.3.3 Interpretation of tailored tables

I1. A section consists either 1) of the list of simple_line’s which contain a symbol_definition whose value
is equal to any symbol contained in the symbol_list in a section_definition_list_entry OR consists , or 2)
of of the list of simple_line’s following a section_definition_simple_entry in a tailored_table. [That isI.e., a
section is defined 1) by a specific symbol_list, or just 2) by taking all the lines following the
section_definition_entry until you hit another tailoring line such as an order_start_entry, a
reorder_section_after_entry, another section_definition_entry, or the end of the entire table, is
encountered.]

I2. A tailored_table containing a reorder_after_entry is equivalent to the same tailored_table with the
table_line’s between that reorder_after_entry and the first subsequent reorder_end_entry reordered to
immediately follow the last table_line in the tailored_table containing a symbol_definition whose symbol
is the same as the target_symbol in the reorder_after_entry, and with that reorder_after_entry and that
reorder_end_entry removed. [That isI.e., move the block of lines between the reorder_after_entry and the
reorder_end_entry to follow the target_symbol and remove the reorder_after_entry and reorder_end_entry
themselves.]

I3. A tailored_table containing a section_reorder_after_entry is equivalent to the same tailored_table with
the section associated with that section-reorder_after_entry reordered (in the same relative order as the
table_line’s have in that section) to immediately follow the last table_line in the tailored_table containing
a symbol_definition whose symbol is the same as the target_symbol in the section_reorder_after_entry,
and with that section_reorder_after_entry removed.

I4. A weight_table is said to be in normal form when it contains no reorder_after_entry’s or
section_reorder_after_entry’s. [In general, a tailored_table can be put into normal form by the operations
implied by I1 and I2.]

I5. A weight_table in normal form is said to be evaluated when each symbol_definition in the
weight_table is mapped to a positive integral numeric value such that those values are increase

ISO/IEC ISO/IEC 14651:1999(E)

13

monotonically [WHAT DOES THIS MEAN???] increasing by the order that in which the
symbol_definition’s occur in the weight_table. (The table_line’s of the weight_table are first mapped to
the set of positive integers, by sequential order in the file. This mapping defines an ordered set of line
numbers. The symbol_definition’s are then mapped to a set of positive integers that varies monotonically
with the set of line numbers.) [Note that this does not restrict the starting number for the weight of the
first symbol_definition, nor does it require that the numbers for these weights be immediately
consecutive.]

I6. An evaluated weight_table is said to be collation-element-weighted when each simple_symbol
occurring in each multiple_level_token in that evaluated weight_table has been mapped to the integral
value which corresponds to the symbol_definition that which contains the same simple_symbol. [I.e.,
each multiple_level_token can now be interpreted as containing either symbol’s mapped to integral
weight values or , or as instances of the string ‘IGNORE’. All hex_symbol’s are assumed to map to an
integral weight value equal to that hex_symbol interpreted as a hexadecimal number. At this point the
mathematical injection of strings can be defined using the weight_table.]

6.3.4 Conditions for considering specific table equivalences

C1 Two collation weighting tables W1 and W2 are said to be equivalent if, for all strings S defined on a
repertoire R, any comparison of any two of the strings S1 and S2 based on their corresponding numbers
from the injection P1 produced on W1 is matched exactly matched by the comparison of S1 and S2
based on their corresponding numbers from the injection P2 produced on W2. [That isI.e., if one takes
two strings, builds keys for each based on table 1 and compares them, one should always get the same
results as when one builds keys for them based on table 2 and compares them.]

6.3.5 Conditions for results to be considered equivalent

C2. An implementation of international string ordering is conformant with this standard International
Standard if for any set of strings S defined on a repertoire R, the implementation can duplicate the same
comparisons as those resulting from comparison of the numbers from an injection constructed according
to the rules of Section clause 6.1.2 of this standardInternational Standard.

C3. An implementation of international string ordering is conformant with this standard International
Standard if any tailoring it uses can be demonstrated to be equivalent to a weight_table constructed
according to the rules of clause 6.1.2 of this standard.

6.4 Declaration of a delta

It is recommended that tailoring be done starting with based upon the Common Template table Table
described in annex A. If the format used in the Common Template Table is used, then tailoring can be
accomplished using, for example, ISO/IEC 14652, which uses a syntax that is compatible with the one
described in this International Standard.

Any declaration of conformance to this International Standard shall be accompanied with a
declaration of the differences that occuring in the comparison table used relatively to the Common
Template Table if when a fixed table is used by the application. These differences are called a delta
according to this International Standard. Such a delta shall contain the equivalent of:

ISO/IEC 14651:1999(E) ISO/IEC

14

1. At least one valid order_start_entry described in clause 6.3.1; many an unlimited number of blocks
containing an order_start_entry and an order_end_entry may be declared. The direction values may
vary between “forward” and “backward” depending on writing systemslinguistic requirements.

2. The number of levels used for comparison.

3. The list of symbol_definition weights (as defined in 6.2.1) weights added and after which
symbol_definition entry each insertion is made.

4. The list of simple_line entries (as defined in 6.2.1) entries deleted or inserted, referencing after which
simple_line entry in the Common Template Table the insertions are made

 In cases where the an applications has provision to allow the end-user to tailor the table himself or
herself, any a statement of conformance shall indicate which ones of the 4 elements of the previous list
are tailorable and which ones of those 4 elements are not tailorable. For those which are not tailorable,
the delta of fixed elements relative to the Common Template Table shall be declared.

 NoteNOTE: The declaration may use a different syntax from the one proposed specified in 6.3 provided
that the relationship with this syntax can be reasonably established. For example, the following
declarations are valid:

 "Collate U+00E5 after U+007A at the primary level.
 Collate U+00E4 after U+00E5 at the primary level. "

 or

 "The primary alphabet order is modified so that in all cases z < å < ä"

 These two notations can reasonably be considered to be equivalent to the more precise expressions
(which also give weights at levels 2 and 3):

 reorder_after <U007A>
<U00E5> <U00E5>;<BLANK>;<MIN>

 reorder_end

 reorder_after <U00E5>
<U00E4> <U00E4>;<BLANK>;<MIN>
reorder_end

 6.5 Name of the Common Template Table and name declaration

 Whenever the Common Template Table is referred externally as a starting base point in a given
context, either applicative or contractualwhether in an application, contract, or procurement requirement,
it shall be referenced using the name ISO14651_1999_TABLE1. If another name is used due to different
practical constraints, any a declaration of conformance shall indicate how the correspondence between
this other name and the name ISO14651_1999_TABLE1 is taken care of.

 The use of a defined name is necessary to manage the different stages of development of this table.
This follows from the nature of the reference character repertoire, for which development will be ongoing
for a number of years or even decades, as that development will necessitate amendments to (at least)
annex A of this International Standard.

ISO/IEC ISO/IEC 14651:1999(E)

15

 Annex A -- Common Template Table (normative)
 In this ordering table constituting , which constitutes a common Common templateTemplate Table, a

number of characters and scripts of the world are is missing, due to the non-inclusion of fact that those
characters or scripts in the current stage of development of have not yet been encoded in the reference
character set repertoire, that of ISO/IEC 10646-1 (Universal multiple-octet coded Character Set, or UCS)
at time of publishingthe preparation of this International Standard.

 It is the intent of ISO/IEC to complete include the ordering of those scripts explicitly in the common
Common template Template Table whenever data becomes available, by way of amendments to this
International Standard. If the common Common template Template Table is not tailored for unspecified
characters, then an implicit order is assigned in the following table, which might may not meet the user
requirements of a particular community. Any delta with this table shall be declared in any a statement of
conformance to this International Standard as per the prescriptions specifications of the conformance
clause.

 Name used for referring to this table in this version of this International standard:
ISO14651_1999_TABLE1

 NoteNOTE: The complete table can be found at URL

 http://www.dkuug.dk/jtc1/sc22/open/n2844/n2844t1.txt

 for the whole duration of the FCD ballot stage. When the DIS will be is produced, the complete table
will be inserted in this International Standard. This table is intended to be machine-readable and is
normally produced on paper only for checking or for reference purposes or for helping in declaring to
declare a delta.

 Brief excerpt of the table, which requires 520K of storage in plain text:
 % escape_char /
 % comment_char %

 % LC_COLLATE

 % Decomment the lines above to create a 14652-style
 % LC_COLLATE definition.

 % Autogenerated LC_COLLATE weight symbol table
 % created from unidata.txt
 % Equivalent to weights of basekeys.txt + compkeys.txt

 % Order of internal symbols

 <RES-1>
 <BLK>
 <MIN>
 .
 .
 .
 <BODKA>
 <CJKVS>
 <S0200>..<S1105> % 0x0200..0x1105

ISO/IEC 14651:1999(E) ISO/IEC

16

 % order_start AllScripts;forward;forward;forward;forward,position

 % Decomment the order_start line (and corresponding order_end line at
 % the end of this table) to specify directions for each level.
% To tailor for French accent handling, or not to make French
 % a special case add an order_start statement
 % and order_end for Latin in the Latin section, as follows:

 % order_start Latin;forward;backward;forward;forward,position

 % <Uxxxx> <Base>;<Accent>;<Case>;<Special>

 % Note that <Special> must be evaluated as exact hex value
 % and not as an autoweighted symbol.

 <U0000> IGNORE;IGNORE;IGNORE;<@0000> % NULL
 .
 .
 .

ISO/IEC ISO/IEC 14651:1999(E)

17

 Annex B -- Benchmarks (informative)

 B.1 Example 1 – Canadian delta and benchmark

 The next few pages containThis annex describes benchmark 1, based on Canadian standard
CAN/CSA Z243.4.1-1998 (and -1992). The delta that precedes the benchmark has been simplified for the
illustration here; a bigger larger delta is required, mainly for special characters, for full conformance to
this Canadian standard, referenced and is given here as an example only. The example’s specifications
are to be performed using the Common Template Table of annex A, with the following delta:

5. Block properties: only one block with the following properties:

 order_start TABLE;forward;backward;forward;forward,position

6. Number of levels unchanged to 4.

7. No symbol change.

8. No other insertion, deletion or redefinition than:

- æ sorted as if it were separate letters "ae" at level 1. The letters "ae" are distinguished only
at level 2 from the joined digraph letter "æ" and are then sorted before it. Upper case is
distinguished from lower case at level 3.

- ð sorted as if it were the letter "d" at level 1. Letter The letter "ð" is distinguished at level 2
from the letter "d" and is sorted before it. Upper case is distinguished from lower case at
level 3.

- þ sorted as if it were separate letters "th" at level 1. The letters "th" are distinguished only
at level 2 from the letter "þ" and are then sorted before it. Upper case is distinguished from
lower case at level 3.

Note: the last two letters are not used in the benchmark but are part of the Canadian delta.

Alternate formal ISO/IEC 14652 tailoring equivalent

copy ISO14651_1999_TABLE1
order_start TABLE;forward;backward;forward;forward,position
reorder-after <U00C6>
<U00E6> <S6CD><S72D>;<COMPAT><COMPAT>;<MIN><MIN>;IGNORE % <ae>
<U00C6> <S6CD><S72D>;<COMPAT><COMPAT>;<CAP><CAP>;IGNORE % <AE>
reorder-after <U1E0E>
<U00F0> <S705>;<COMPAT>;<MIN>;IGNORE % <d->
<U00D0> <S705>;<COMPAT>;<CAP>";IGNORE % <D->
reorder-after <U2122>
<U00FE> <S88B><S781>;<COMPAT><COMPAT>;<MIN><MIN>;IGNORE % <th>
<U00DE> <S88B><S781>;<COMPAT><COMPAT>;<CAP><CAP>;IGNORE % <TH>
reorder-end

ISO/IEC 14651:1999(E) ISO/IEC

18

1 Unordered list (required test as per Canadian standard CAN/CSA Z243.4.1-1998)

ou
lésé
péché
vice-président
9999
OÙ
haï e
coop
caennais
lèse
dû
air@@@
côlon
bohème
gêné
meðal
lamé
pêche
LÈS
vice versa
C.A.F.
�orsmörk
cæsium
resumé
Bohémien
co-op
pêcher
les
CÔTÉ
résumé
Ålborg
cañon
du
haie
pécher
Mc Arthur
cote
colon
l'âme
resume
élève

�orvar›ur
Canon
lame
Bohême
0000
relève
gène
casanier
élevé
COTÉ
relevé
Grossist
vice-presidents' offices
Copenhagen
côte
McArthur
Mc Mahon
Aalborg
Größe
vice-president's offices
cølibat
PÉCHÉ
COOP
@@@air
VICE-VERSA
gêne
CO-OP
révélé
révèle
çà et là
MacArthur
Noël
île
aï eul
Île d'Orléans
nôtre
notre
août
NOËL
@@@@@
L'Haÿ-les-Roses

CÔTE
COTE
côté
coté
aide
air
vice-president
modelé
Thorvardur
MODÈLE
maçon
MÂCON
pèche
pêché
medal
ovoï de
pechère
ode
péchère
œil

ISO/IEC ISO/IEC 14651:1999(E)

19

2 List with required results as per Canadian standard CAN/CSA Z243.4.1-1998

@@@@@
0000
9999
Aalborg
aide
aï eul
air
@@@air
air@@@
Ålborg
août
bohème
Bohême
Bohémien
caennais
cæsium
çà et là
C.A.F.
Canon
cañon
casanier
cølibat
colon
côlon
coop
co-op
COOP
CO-OP
Copenhagen
cote
COTE
côte
CÔTE
coté
COTÉ
côté
CÔTÉ
du
dû
élève
élevé

gène
gêne
gêné
Größe
Grossist
haie
haï e
île
Île d'Orléans
lame
l'âme
lamé
les
LÈS
lèse
lésé
L'Haÿ-les-Roses
MacArthur
MÂCON
maçon
medal
me›al
McArthur
Mc Arthur
Mc Mahon
MODÈLE
modelé
Noël
NOËL
notre
nôtre
ode
œil
ou
OÙ
ovoï de
pèche
pêche
péché
PÉCHÉ
pêché

pécher
pêcher
pechère
péchère
relève
relevé
resume
resumé
résumé
révèle
révélé
�orsmörk
Thorvardur
�orvar›ur
vice-president
vice-président
vice-president's offices
vice-presidents' offices
vice versa
VICE-VERSA

ISO/IEC 14651:1999(E) ISO/IEC

20

B.2 Example 2 – Danish delta and benchmark

The following is a Danish delta following ISO/IEC 14652 tailoring with the assumption that character
mnemonics are to be resolved into UCS identifiers to fit accord with the ISO14651_1999_TABLE1 template
used in this International Standard (this formal specification corresponds to Danish standard DS 377 and to
"Retskrivningsordbogen", the Danish orthography specification):

escape_char /
comment_char %

% The ordering algorithm is in accordance
% with Danish Standard DS 377 (1980)
% and the Danish Orthography Dictionary
% (Retskrivningsordbogen, 1986).
% It is also in accordance with
% Greenlandic orthography.

LC_COLLATE
collating-element <A-A> from "<A><A>"
collating-element <A-a> from "<A><a>"
collating-element <a-A> from "<a><A>"
collating-element <a-a> from "<a><a>"
copy ISO14651_1999_TABLE1
reorder-after <CAP>
<CAP>
<CAPITAL-SMALL>
<SMALL-CAPITAL>
<MIN>
reorder-after <SP>
<SP> <SP>;<SP>;IGNORE;IGNORE
<-> <SP>;<->;IGNORE;IGNORE
<//> <SP>;<//>;IGNORE;IGNORE
reorder-after <U24C6>
<kk> <Q>;<COMPAT>;<MIN>;IGNORE

NOTE: <K><’> MUST BE INSERTED HERE AS EQUIVALENT TO CAPITAL Q IN ORDER TO CONFORM TO
GREENLANDIC PRACTICE; THIS MAY IMPLY THAT K’ IN NON-GREENLANDIC CONTEXTS WILL BE SORTED
INCORRECTLY FOR DANISH. (ARGUMENT FOR ADDING CAPITAL KRA TO THE UCS?)

reorder-after <U2122>
<TH> "<T><H>";"<TH><TH>";"<CAP><CAP>";IGNORE
<th> "<T><H>";"<TH><TH>";"<MIN><MIN>";IGNORE
reorder-after <U1EF4>
% <U:> and <U"> are treated as <Y> in Danish
<U:> <Y>;<U:>;<CAP>;IGNORE
<u:> <Y>;<U:>;<MIN>;IGNORE
<U"> <Y>;<U">;<CAP>;IGNORE
<u"> <Y>;<U">;<MIN>;IGNORE
reorder-after <U1E94>
% <AE> is a separate letter in Danish
<AE> <AE>;<BLK>;<CAP>;IGNORE
<ae> <AE>;<BLK>;<MIN>;IGNORE

ISO/IEC ISO/IEC 14651:1999(E)

21

<AE'> <AE>;<AIGUT>;<CAP>;IGNORE
<ae'> <AE>;<AIGUT>;<MIN>;IGNORE
<A3> <AE>;<MACRON>;<CAP>;IGNORE
<a3> <AE>;<MACRON>;<MIN>;IGNORE
<A:> <AE>;<COMPAT>;<CAP>;IGNORE
<a:> <AE>;<COMPAT>;<MIN>;IGNORE
% <O//> is a separate letter in Danish
<O//> <O//>;<BLK>;<CAP>;IGNORE
<o//> <O//>;<BLK>;<MIN>;IGNORE
<O//'> <O//>;<AIGUT>;<CAP>;IGNORE
<o//'> <O//>;<AIGUT>;<MIN>;IGNORE
<O:> <O//>;<TREMA>;<CAP>;IGNORE
<o:> <O//>;<TREMA>;<MIN>;IGNORE
<O"> <O//>;<2AIGU>;<CAP>;IGNORE
<o"> <O//>;<2AIGU>;<MIN>;IGNORE
% <AA> is a separate letter in Danish
<AA> <AA>;<BLK>;<CAP>;IGNORE
<aa> <AA>;<BLK>;<MIN>;IGNORE
<A-A> <AA>;<A-A>;<CAP>;IGNORE
<A-a> <AA>;<A-A>;<CAPITAL-SMALL>;IGNORE
<a-A> <AA>;<A-A>;<SMALL-CAPITAL>;IGNORE
<a-a> <AA>;<A-A>;<MIN>;IGNORE
<AA'> <AA>;<AA'>;<CAP>;IGNORE
<aa'> <AA>;<AA'>;<MIN>;IGNORE
reorder-end
END LC_COLLATE

Benchmark 2 for Danish

A/S
ANDRE
ANDRÉ
ANDREAS
AS
CA
ÇA
CB
ÇC
DA
ÐA
DB
ÐC
DSB
D.S.B.
DSC
EKSTRA-ARBEJDE
EKSTRABUD
HØST
HAAG
HÅNDBOG
HAANDVÆRKSBANKEN
Karl

karl
NIELS-JØRGEN
NIELS JØRGEN
NIELSEN
oqararaaq
oKararaoK IS THIS RIGHT?
pequtai
peKutai
K’ânâK IS THIS RIGHT?
Qasigiangguit
Qeqertarsuaq
Qaanaaq IT’S NOT AN Å
RÉE, A
REE, B
Rée, B
RÉE, B
RÉE, L
REE, V
SCHYTT, B
SCHYTT, H
SCHÜTT, H
SCHYTT, L
SCHÜTT, M

SS
ß
SSA
STORE VILDMOSE
STOREKÆR
STORM PETERSEN
STORMLY
�orsmörk
THORVALD
THORVARDUR
ÞORVARÐUR
THYGESEN
VESTERGÅRD, A
VESTERGAARD, A
VESTERGÅRD, B
ÆBLE
ÄBLE
ØBERG
ÖBERG

ISO/IEC 14651:1999(E) ISO/IEC

22

Annex C -- Preparation (informative)

C.1 General considerations

Preparation is necessary only for modification and/or duplication of original strings to render them context-
independent prior to the comparison phase. Examples are:

- duplicating duplication of a string such as "41" for phonetic ordering into 3 differentiated strings for
trilingual multilingual phonetic ordering usage (Irish Gaelic, German, English, and French , English
and German"):

DAICHEAD A hAON

QUARANTE-ET-UN

EINUNDVIERZIG

FORTY-ONE

FORTY-ONE

QUARANTE-ET-UN

EINUNDVIERZIG

- removing removal or rotating rotation of characters that are a nuisance for special requirements of
ordering; for example, in France, removing "de" in "de Gaulle" and not removing "De" in "De Gaulle"
(the former indicating according to noble origin, the latter or not), to give:

Gaulle (de)

De Gaulle

- transformation of incomplete abbreviated data into a fuller form; for example, transformation of "Mc
Arthur" to give "Mac Arthur"

- transformation of numbers so that the result will be ordered in numerical order and not positionally ,
as opposed to positional order (see specific section presented hereafterbelow). Numeric ordering is
particularly delicate and requires special consideration in many specific cases.

C.2 Handling of numeral substrings in collation

A numeral is a string representing a number. We will The examples here only deal with numerals that
which represent values in R, the real numbers, or subsets of R, as these have a total predetermined order.
We will also oOnly be dealing with decimal numerals are dealt with in the examples given here.

The same principles apply to, for example, hexadecimal numerals, with the caveat that there are some
words that look like hexadecimal numerals (such as English AD, BE, ABED, BEDE, CEDE, DEAD, DEAF,

ISO/IEC ISO/IEC 14651:1999(E)

23

DEED, FACE, FADE, FEED), and one must be careful to distinguish which are words and which are
hexadecimal numerals. In some cases one uses run-together numerals run together, perhaps which may
also be mixed with other substrings. This may happen for instance for part numbers, some date formats,
and the like, where it is not obvious which substrings are really separate numerals. Run-together numerals
will are not be discussed below.

The presentation below will start with first give positional system decimal numerals for natural numbers
using the digits 0-9. It will progress to numerals for whole numbers, numerals with a fraction part, a fraction
part and an exponent. There is also a brief discussion on numerals with digits from other scripts, scripts
which sometimes uses another syntax with digits for numerals (like such as Hàn numerals), and Roman
numerals.

C.2.1 Handling of ‘ordinary’ numerals for natural numbers

The Common Template Table has no means of sorting strings with numbers in such a way that the
resulting order reflects the number values represented by the numerals. For example, given the following
randomly-arranged strings:

Release 1
Release 20
Release 12
Release 2
Release 9

the method described in the Common Template Table this International Standard gives yields the
following list of “sorted” strings:

Release 1
Release 12
Release 2
Release 20
Release 9

(It is sufficient to simply to look positionally look at just the first digit in each numeral to see why one
gets this orderthis ordering results.) A more acceptable ordering is:

Release 1
Release 2
Release 9
Release 12
Release 20

The Common Template Table defined in this International Standard cannot be tailored to give this result.
However, preparation can be done prior to the basic collation step to achieve the desired results when
numeric value order is desired. The prepared strings are normally not presented to the user, ; only the
original strings are. The prepared strings are normally only used for the collation key construction. A

ISO/IEC 14651:1999(E) ISO/IEC

24

simple, but not very general, way of preparing numerals for natural numbers ordering is to zero-pad them with
zeroes to a given number of digits. If one zero-pads up to three digits the numerals in our original example
strings up to three digits, the following will resultone gets:

Release 001
Release 020
Release 012
Release 002
Release 009

Using the Common Template Table defined in this International Standard one then gets obtains the
strings in a better order (here showing the strings as they are after preparation, which are normally not
shown in the result):

Release 001
Release 002
Release 009
Release 012
Release 020

However, there are two problems with this approach:

1. One has to must determine beforehand a (usually small) number of digits to pad up to. If the number of
digits to pad up to is too large, the strings after preparation can become rather long, especially if there
are several numerals in each string. If the number of digits to pad up to is too small, however, the risk is
larger greater that there are actually occurring numerals with more digits than one pads has padded up
to, which results in partially getting back to the original situation, where the numerals’s values are not
taken entirely into (full) account.

2. Determinacy is lost, if some of the original numerals were already partially zero-padded. E.g. For
example, if the original strings were:

Release 01
Release 1

the strings after preparation are identical, and the end result (as the user would normally see it)
could be either

Release 01
Release 1

or

Release 1
Release 01

and the relative order may come out differently for different occurrences of numerals, or different runs

ISO/IEC ISO/IEC 14651:1999(E)

25

of the collation process with applying the same rules. Indeterminacy in the collation is not
desirable.

 There are many ways to deal with these problems. The following is one such way.

 To each maximal digit subsequence prepend a fixed-number-of-digits numeral that which represents the
original number of digits in the numeral. For most cases a two-digit count would suffice (allowing up to 99
digits in the original integer numerals). E.g.For example, given the original strings:

Release 1
Release 01
Release 20
Release 12
Release 2
Release 09
Release 9

 One get obtains after this preparation the following strings:

Release 011
Release 0201
Release 0220
Release 0212
Release 012
Release 0209
Release 019

 Which would be collated by the basic mechanism of this standard International Standard to:

Release 011
Release 012
Release 019
Release 0201
Release 0209
Release 0212
Release 0220

 As normally presented to the user:

Release 1
Release 2
Release 9
Release 01
Release 09
Release 12
Release 20

ISO/IEC 14651:1999(E) ISO/IEC

26

 This particular method puts numerals with a like original number of digits close to each- other, even if the
actual value represented is smaller due to the original zero-padding. If the represented values should be
kept close together, one should instead duplicate the numeral: first a count of digits for the leading-zero-
stripped numeral, the leading-zero-stripped numeral itself, followed by the original numeral. The duplication
is needed to get determinacy relative to the original strings. E.g.For example, using the same original
strings as above:

Release 011 1
Release 011 01
Release 0220 20
Release 0212 12
Release 012 2
Release 019 09
Release 019 9

 Which would be collated by the basic mechanism of this standard to:

Release 011 01
Release 011 1
Release 012 2
Release 019 09
Release 019 9
Release 0212 12
Release 0220 20

 As normally presented to the user:

Release 01
Release 1
Release 2
Release 09
Release 9
Release 12
Release 20

 The originally zero-padded numerals consistently comes before the numeral without (or with less) original
zero-padding. The preparation processing could move the original numerals (in order of occurrence) to the
very end of each string, if one wants to give the original zero-padding lesser significance than the text after
following the numerals.

 There being The presence of several natural numerals in each string causes no additional problem.

 Taking care of the natural number numerals is in most cases sufficient, and it is recommended that it be
included as part of the usual preparation of strings to be collated. However such preparation is not required
by this standardInternational Standard.

ISO/IEC ISO/IEC 14651:1999(E)

27

 C.2.2 Handling of positional numerals in other scripts

 ISO/IEC 10646 has encodes decimal digits for a number of scripts. In most cases these are used in a
positional system, just like 0-9 usually are. However, one should not regard a sequence of numerals mixed
from different scripts as a single numeral, but r; rather that , one should consider each maximal substring of
digits of the same script are each considered to be a numeral.

 C.2.3 Handling of other non-pure positional system numerals or non-positional system
numerals (e.g. Roman numerals)

 Chinese and a few some other scripts languages can use decimal digits (in the Hàn script for Chinese, for
instance) interspersed with ideographs for “one thousand”, “ten”, etc. If such numerals are to be collated
according to the value they represent, one can proceed as above, adding a step just after the initial
copyingduplication: convert the copy to the corresponding positional system numeral in the syntax used
here for whole numerals.

 Roman numerals, if handled, can be handled in a similar fashion to the that described above. Duplicate,
and replace the first copy with the same natural number expressed in the decimal positional system. E.g.
“Louis V”, where the V is determined to be a Roman numeral, can be modified to “Louis 5 V”.

 Caveat: In this case human interactive intervention or an expert system may be required, as in the
following example involving the French language: CHAPITRE DIX might mean CHAPTER 10 or CHAPTER
509 ("dix" is the French word for 10, it is also the Roman numeral for 509). This generally requires context to
be resolved with total certainty.

 C.2.4 Handling of numerals for whole numbers

 If negative whole numbers are also to be sorted according to their value, there are a number of issues to
be considered. Most oftenfrequently, negative whole values are given numerals that begin with a negation
sign. The negation sign can may be HYPHEN-MINUS U+002D (caveat: it this character may be represent a
true hyphen, rather than a negation), or MINUS SIGN U+2212. But there are other conventions also, like
using a SLASH SOLIDUS U+002F or a PERCENT SIGN U+0025 to indicate negativeness; or the negation
indication indicator can come after the digits rather than before; or negativeness can be indicated by putting
the digits between parenthesis, and/or putting the digits in a contrasting color (often red, which is not used in
plain text and is therefore outside the scope of this International Standard). We will iIn the examples here,
only deal with the case that negativeness is indicated by an immediately prepended MINUS SIGN is dealt
with. Positiveness is indicated by either the absence of a MINUS SIGN, or the presence of a PLUS SIGN
U+002B.

 Temperature: –9 °C
Temperature: 0 °C
Temperature: –14 °C
Temperature: 05 °C
Temperature: +5 °C
Temperature: –0 °C
Temperature: –09 °C
Temperature: 105 °C

ISO/IEC 14651:1999(E) ISO/IEC

28

Temperature: +05 °C
Temperature: 5 °C

 One preparation to get an acceptable and determinate order for numerals (in this syntax) for whole
numbers is as follows (actual implementations should do something equivalent, but more efficient):

3. Duplicate the numerals in the string (including sign indications), putting the ‘original’ ones (not to be
touched by the following steps) in order of original occurrence at the end or the string, leaving the copies
at the original positions. This step is to ensures determinacy.

4. See to Ensure that all of the copies have an explicit initial sign indicationindicator.

5. Remove leading zeroes in the copies of the numerals (systematically either leaving one zero digit for
zero or representing 0 by the empty string of digits),); alternatively, let all numeral copies have exactly
one leading zero.

6. Between the sign indication indicator and the digits in the copies of the numerals, insert a (two-digit)
count of how many digits there were (after removing the leading zeroes).

7. Do 9’s complement on each digit in each copy of a negated numeral. 9’s complement of a digit that
individually represents the value x, is 9–x. I.e.That is, 9’s complement of 0 is 9, of 9 is 0, of 5 is 4, etc.

8. Done with this (part of the) preparation.

 For the basic collation step, use a tailoring of the template given in this standard. A , namely, a tailoring
where the PLUS SIGN and the MINUS SIGN are significant at the same level as the digits, and where the
MINUS SIGN has less weight than the PLUS SIGN. (In the example below, it is assumed that the weight of
PLUS SIGN is less than the weight of 0, but that this is not a prerequisite for getting an acceptable
ordering.)

 Our example strings after this prehanding:

Temperature: –980 °C –9
Temperature: +00 °C 0
Temperature: –9785 °C –14
Temperature: +015 °C 05
Temperature: +015 °C +5
Temperature: –99 °C –0
Temperature: –980 °C –09
Temperature: +03105 °C 105
Temperature: +015 °C +05
Temperature: +015 °C 5

 Sort these, using the basic mechanism of this standard:

Temperature: –9785 °C –14
Temperature: –980 °C –09
Temperature: –980 °C –9

ISO/IEC ISO/IEC 14651:1999(E)

29

Temperature: –99 °C –0
Temperature: +00 °C 0
Temperature: +015 °C +05
Temperature: +015 °C +5
Temperature: +015 °C 05
Temperature: +015 °C 5
Temperature: +03105 °C 105

 As presented to the user:

Temperature: –14 °C
Temperature: –09 °C
Temperature: –9 °C
Temperature: –0 °C
Temperature: 0 °C
Temperature: +05 °C
Temperature: +5 °C
Temperature: 05 °C
Temperature: 5 °C
Temperature: 105 °C

 This preparation results in a determinate ordering of strings that which may have numerals for whole
numbers in them (also if there are several such numerals in some of the strings), that is such that the
numerals are ordered according to the integer value they represent.

 The process for other syntaxes for whole numbers can be similar. Just add a step to convert the copies
to the syntax used here for whole numbers.

 This technique for handling negative numerals can be used also for numerals with a fractional part, and so
on (see below).

 C.2.5 Handling of positive positional numerals with fractional parts

 The method presented above can easily be adapted to the case where fraction parts may occur and are
to be taken into account. A problem is, however, that the characters often used to delimit the integer part
from the fraction part are also used for other purposes. The separator character is often generally either
PERIODFULL STOP U+002E, or COMMA U+002C. These characters also have other uses, also in
conjunction with digits.

 For the example, assume that PERIOD FULL STOP is used (only) as a fraction part delimiter.

 Do as above, but count only the digits in the integer part of the numeral for the count of digits to be
prepended. The fraction part delimiter character can be removed.

 For example:

 –12.34

 12.34

 3.1415

ISO/IEC 14651:1999(E) ISO/IEC

30

 3.14

 After preparation:

 –978765 –12.34

 +021234 12.34

 +013.1415 3.1415

 +01314 3.14

 After sorting:

 –978765 –12.34

 +01314 3.14

 +0131415 3.1415

 +021234 12.34

 As presented to the user:

 –12.34

 3.14

 3.1415

 12.34

 C.2.6 Handling of positive positional numerals with fraction parts and exponent parts

 For very biglarge, or very tinysmall, values, one often uses formats like 2.5*107 (to just pick illustrate just
one possible way of writing these for the purposes of the examples here). Here there is already an exponent
[THIS BEGS THE QUESTION WHETHER PLAIN TEXT U+2077 IS USED OR RATHER U+0037 WITH
FANCY TEXT SUPERSCRIPT FORMATTING], which must be combined with the “number of integer part
digits” (here: digits before the decimal point), by adding those two numbers to get a resulting fixed-number-
of-digits exponent to prepend just before the first digit. For this example, with a three-digit exponent: we get
+00825. One problem here is that the resulting exponent may be negative. To handle this, use an exponent
bias. For a three-digit exponent a bias of 500 may be suitable, which gives us for this example numeral:
+50825, and for the numeral 2.5*10–7 we get +49425. Negative values are handled as before, with 9’s
complement. –2.5*107 gives –49174, and –2.5*10–7 gives –50574.

 This method should be familiar to anyone with knowledge about (radix 10) floating point arithmetic.

 Thus:

 2.5*10–7

–2.5*107

2.5*107

–2.5*10–7

ISO/IEC ISO/IEC 14651:1999(E)

31

 After preparation (including a duplicate of the original, for determinacy):

 +49425 2.5*10–7

–49174 –2.5*107

+50825 2.5*107

–50574 –2.5*10–7

 After sorting:

 –49174 –2.5*107

–50574 –2.5*10–7

+49425 2.5*10–7

+50825 2.5*107

 As presented to the user:

 –2.5*107

–2.5*10–7

2.5*10–7

2.5*107

 C.2.8 Handling of date and time of day indications

 Going a bit beyond plain numerals, date and time-of-day indications often employ numerals (as well as
names for months, weekdays, etc.) for the parts of the date and time-of-day indication. It is not uncommon
to want to sort this kind of information also when it occurs within strings.

 The preparation needed to get obtain date and time-of-day indications, of some predetermined syntaxes,
sorted according to point in time is similar to what has been described above.

9. Duplicate all date and time-of-day indications to maintain determinacy of collation when the original
strings differ, but point in time identical. Leave the originals at the end of the strings, untouched by the
following steps.

10. Convert the copies of the date and time indications to the same calendar system, if there are several
calendar (sub)systems used and handled. The calendar (sub)system converted to, must be suitable for
being able to get proper time order. We will here use the Gregorian calendar system and the
subsystem of year, month, day-of-month.

11. Put the date and time-of-day elements in order of decreasing significance (to the resolution taken into
account). Full year, month, day-of-month, hour, minute, second, fraction of second.

12. Use a 24-hour/day clock for the time-of-day indications. Remove A.M. or P.M. indications, if present
and handled, in the date-time indication copies.

13. Use the UTC time zone for the date and time-of-day indications. Remove time zone indications, if
present, in the date-time indication copies.

14. Use month numbers, rather than month names. Use two digits each for month, day-of-month, hour,
minute, second.

ISO/IEC 14651:1999(E) ISO/IEC

32

15. Use full year number representation, as many digits as needed. Take abbreviations into account so that
the full year number is used. E.g. ‘98’ might denote year 98 or year 1998, or 1898, or...etc. No
indeterminacy regarding year due to abbreviations like these may be present after the preparation step.

16. For years A.D.CE, use an initial PLUS SIGN. For years B.C.BCE, use an initial MINUS SIGN. Remove
the original A.D.CE or B.C.BCE indication from the copies. (To be nitpicking, year n B.C. should be
represented by year (1–n), which is less or equal to zero if n is positive.)

17. For the year indications, insert between the sign indication and the first digit for the year indication a
digit telling how many digits there are in the full year indication. One digit for this should suffice...

18. For negative years, replace the each digit in the year indication (including the digit telling the number of
digits in the original full year indication) with its 9’s complement digit.

19. Make sure the textual format for all of the date indication copies is the same (paying attention to
hyphens, spaces, ...). etc.). (Most This is most easily accomplished by printing them in the same
format from an internal, non-string, representation.)

20. Alternatively, use a number indicating the point of time on a linear time scale (e.g.for example, hours,
milliseconds, or days from a predetermined point in time), to the resolution desired, and handle this as
an ordinary numeral (see above).

21. Done with this (part of the) preparation.

22. For the basic collation step, use a tailoring of the template given in this standard. Use a tailoring where
the PLUS SIGN and the MINUS SIGN are significant at the same level as the digits, and where the
MINUS SIGN has less weight than the PLUS SIGN.

For example:

Dated: July 19, 1955, at 1 p.m. GMT
Dated: January, 20 B.C.BCE
Dated: Sept. 20, 1995, at 1 p.m. PST
Dated: 11-june/345 A.D.CE [WHAT IS THIS FORMAT?]

After preparation:

Dated: +41955-07-19T13:00Z July 19, 1955, at 1 p.m. GMT
Dated: –780-01 January, 20 B.C.BCE
Dated: +1995-09-20T10:00Z Sept. 20, 1995, at 1 p.m. PST
Dated: +3345-06-11 11-june/345 A.D.CE

After sorting:

Dated: –780-01 January, 20 B.C.BCE
Dated: +3345-06-11 11-june/345 A.D.CE
Dated: +41955-07-19T13:00Z July 19, 1955, at 1 p.m. GMT
Dated: +41995-09-20T10:00Z Sept. 20, 1995, at 1 p.m. PST

As presented to the user:

ISO/IEC ISO/IEC 14651:1999(E)

33

Dated: January, 20 B.C.BCE
Dated: 11-june/345 A.D.CE
Dated: July 19, 1955, at 1 p.m. GMT
Dated: Sept. 20, 1995, at 1 p.m. PST

C.2.9 Making numbers less significant than letters

In many cases numerals preceding letters should be considered as less significant than the following
alphabetic part. But the Common Template Table has specifies digits as to be level 1 significant. To make
numerals less significant than letters, either tailor the weight table so that numerals are ignored at level 1
(but significant at level 2 or 3), or alternatively leave them significant at level 1, but prepare the strings so that
numerals are moved to the end of the string or moved to a less significant field. When doing such a move,
one must pay attention not to map different strings to identical strings (or identical string fields), so that
determinacy is maintained (see the section C.2.10).

Some examples where it is appropriate to consider numerals as less significant than letters: Street or
block names with one or more numbers to indicate where in the street/block, if that/those number(s) precede
the street or block name (common for example in the US and in Japan). C; chemical compound names
which have prepended numerals, e.g., 1,2-diclorobenzol.

C.2.10 Maintaining determinacy

As noted above in several cases, we have duplicated part of the string has been duplicated to maintain
determinacy in collation, when the original strings are different, but when preparation may otherwise turn
different strings into identical strings.

This method of duplicating duplication for determinacy can be used more generally, so if there are several
preparations affecting different parts of the strings, one may simply duplicate the original strings to begin
with, and only do perform the preparation (without additional duplication) on the first half of the “doubled”
string.

One disadvantage with just concatenating the two copies is that the base letters of the second half of the
“doubled” string count as more significant than the accents and case of the resulting first half of the
“doubled” string. The present sis International Standard has no mechanism for handling this in a better way,
where the “original” (the second half of the “doubled” string) would count as less significant than the entire
first half of the “doubled” string. This may be handled better by having the original and copy in different
‘fields’, and construct the collation key by combining the full keys for each ‘field’. Such processing is
beyond the scope of this International Standard, thoughhowever.

Note that the string after preparation is used only for the collation key construction. The original string is
not intended to be retrievable form from the modified string, though that this is possible with this way of
attaining determinacy. The strings to be presented to the user are the original, by preparation untouched,
strings.

To maintain Maintenance of determinacy when some of the original strings to be collated are identical, is
out of the scope for of this standardInternational Standard. A collation processor should, however, document
if it is ‘stable’ (maintaining initial relative order of identical strings) or not. This is useful to know when
collating on one field of multi-field data.

ISO/IEC 14651:1999(E) ISO/IEC

34

C.3 Posthandling

In case of equality established according to this International Standard on two character strings, it may
be necessary to establish a posteriori an ultimate differentiation based on the original record being
processed which may contain additional data. Although this posthandling is not part of the scope of this
International Standard, consideration is given here on an informative basis to this ultimate stage of ordering.

Posthandling is necessary for modifying a resulting ordering key, or appending the original character
string to an ordering key so that the results of comparisons can determine differences particularly in cases
where homography results from the preparation phase. For example, there could be equivalencies if
numerical values (for example, "010" and "10") may have been rendered identical in the preparation phase. A
strict implementation of this International Standard has no knowledge will not recognize that the original
strings are different in such cases, but the predictability requirement may still exist and posthandling will
then be required to achieve this specific requirement.

Another case in point exists, for example, where different coding methods have been used in the original
strings to be ordered in the same process. An optional posthandling phase can then determine internal
differences even when results would appear exactly the same on paper for end-users (for example, an
ISO/IEC 2022 input stream intermixing ISO/IEC 6937 and ISO/IEC 8859-2 coded characters). This may be
required for internal processing of applications and maintaining integrity of comparison between records and
even entire files.

ISO/IEC ISO/IEC 14651:1999(E)

35

Annex D -- Tutorial on solutions brought by this standard to
problems of lexical ordering (informative)

Why aren't existing standard codes, character by character comparisons, and commercial sort programs
appropriate for sorting, and what must be done to solve the problem? For clarity, this discussion will start
with the Latin script.

i. Sorting, in any language using the Latin script, including English, using standard ISO/IEC 646
coding, does not follow traditional dictionary sequence, which is the minimum the average user
needs.

Ex.Example: Sorting the list "august", "August", "container", "coop","co-op", "Vice-president",
"Vice versa" gives the following order, if ISO/IEC 646 coding is used and a simple sort following
binary order is doneperformed:

August
Vice versa
Vice-president
august
co-op
container
coop

which This ordering is obviously wrongincorrect.

ii. Translating Transforming lower case to upper case and removing special characters gives yields a
sorted list acceptable to users, but also yields unpredictable results.

Ex.Example: Sorting the list "August", "august", "coop", "co-op" gives the following order:

August
august
coop
co-op

Sorting the same list with a different initial order, say, "august", "co-op", "August", "co-op", "coop"
may give a different order with this method:

august
August
co-op
coop

iii. If accented characters are introduced using for example ISO/IEC 8859-1 code, the same problems
encountered in steps examples i and ii above are amplified but they share the same causes.

ISO/IEC 14651:1999(E) ISO/IEC

36

iv. If tables are reorganized to make all related characters contiguous, one might think it would
permitthat a simplified single-character sort would result, but this does not work either. Take upper
and lower case unaccented letters as an example. If code point position 01 is assigned to "a", code
position point 02 assigned to "A", code position point 03 to "b", code position point 04 to "B" and so
on, let's see what happens in a list sorted directly by according to these rearranged values will yield
the following:

Sorted Internal
List Values

aaaa 01010101
abbb 01030303
Aaaa 02010101
Abbb 02030303

This is also predictable also, but remains obviously wrong inincorrect for any country from a with
regard to cultural point of viewexpectations.

v. The only path of solution is to decompose the initial data in a way that which will respect traditional
lexical order, and at the same time ensure absolute predictability. For the Latin script, this
necessitates at least four levels:

1. The first decomposition renders information to be sorted case case-insensitive and insensitive to
diacritical mark insensitivemarks, and removesremoving all special characters (which have no pre-
established order in any human [WHAT, THEY HAVE AN ORDER AMONG THE BEES AND
ANTS?] culture):

An example using English:

"résumé" (an English word derived from French but with a very different meaning in
French’curriculum vitae’) becomes "resume" (‘begin again’), without any accent.

An example using French:

"Vice-légation" becomes "vicelegation", with no accent, no upper case and no dashhyphen.

An example using German:

"groß" becomes "gross", with the sharp-s being converted to double-s to render it case
insensitive.

In Spanish or Scandinavian Nordic languages, some extra letters are added to the 26 fixed letters of
the English, French and German alphabets, which are not ordered according to the expectations of
this group ofthose languages. This calls demonstrates the need for adaptability.

2. The second decomposition breaks ties on quasi-homographs, that is, strings that differ only
because they have different diacritical marks. In the English example above, "resumé" and
"résumé" are quasi-homographs. Traditional English lexical order requires that "resume" always
comes before "résumé" (which sorting using only the first level would not guarantee). In this case,
the tradition does not say explicitly specify if whether "resumé" (another spelling) should come

ISO/IEC ISO/IEC 14651:1999(E)

37

before "résumé", which though this would seem logical: most English and German dictionaries only
state that unaccented words precede the accented words (often nothing is stated but the practice
can be determined from the order of the headwords).

Here another characteristic is introduced. In French, because of the large number of multiple
quasi-homograph groups formed of more than 2 instances, main the most important dictionaries
follow a the following rule that is the following: accents are generally not taken into account for
sorting, but in case of homographic ties, the last difference in the word determines the correct order
between two given words, a priority order being then assigned to each type of accent. For
exampleAccording to this, "coté" should be sorted after "côte" but before "côté". This is easy to
implement with “backwards” tailoring as described in clause 1.5 [CHECK REFERENCE]: a number
is assigned to each character of original the data to be sorted, representing either a letter with an
accent or a letter with no accent at all, but these numbers are stacked instead of being added to a
linear list: in other words, the resulting string is made starting from the last character of the original
data and backward. [I DON’T THINK THIS LAST SENTENCE MAKES SENSE]

Example: to obtain the following an order respecting this rule: "cote, "côte", "coté", "côté", numbers
could be assigned indicating respectively "****", "**c*", "a***", "a*c*", where "*" means no accent,
"a" means acute accent, "c" circumflex accent. Here this scheme is sufficient to break the tie
correctly at this second level.

3. The third decomposition breaks ties for quasi-homographs different which differ only because
upper-case and lower-case characters are used. This time, the tradition is well established in
English and German dictionaries, where lower case always precedes upper case in homographs,
while the tradition is not well established in French dictionaries, which generally use only accented
capital letters for common word entries. In known French dictionaries where upper and lower case
letters are mixed, the capitals generally come first, but though this is not an established and stated
rule, because there are numerous exceptions. In some English dictionaries, such as the Concise
Oxford, capitals precede smalls, but in others the reverse is done. In the So for a Common
Template it is advisable to use English and the German traditionstradition has been followed, if one
wants to group the largest possible number of languages together. Let's note here by the way . Note
that in Denmark, upper case comes before is specified to precede lower case, a different but well
well-established rule. This is a second fact calling which demonstrates the need for adaptability in
the model used in this standardInternational Standard.

Example: to have the following order: "august", "August", numbers could be assigned indicating
respectively "llllll", "ulllll", where "l" means lower case and "u" upper case. [THE ACTUAL SYNTAX
SHOULD BE QUOTED HERE]

4. The fourth decomposition breaks the final tie that which, in general, does not correspond to any
strong tradition, namely, the tie due betweento quasi-homographs that differdiffering only because
they contain special characters. Breaking this tie is essential to ensure the absolute predictability
of sorts ordering and also to be able to sort as well as enabling the ordering of strings composed
only of special characters. Since the traces of special characters were removed from the original
data to form the three first orders of decomposition, simply putting them in row sequentially in the
fourth order of decomposition would mean that their position would be lost. These positions are
quite important to solve remaining ties and in consequence we must retain here the original
positions of these special characters must be retained: two quasi-homographs could each contain a
common special character in different positions and thus be strictly different (ex.:example: "ab*cd"
is still different from "a*bcd" despite they share one and only one common special character).

ISO/IEC 14651:1999(E) ISO/IEC

38

Example: to have obtain the following order: "coop", "co-op", "coop-", numbers could be assigned
respectively according to the following pattern: "d", "d3-" and "d5-", where "d" is an alwaysever-
present delimiter that separatesseparating this decomposition from the first three in case all four
decompositions are to be concatenated to form a single sorting key based on numeric values (see
discussion in the next paragraph). "3-" means a dash hyphen in position 3 of the original string. "5-"
means a dash hyphen in position 5, and so on.

These four decompositions can be structured using a four-level key, concatenating the subkeys
from the highest significance to the lowest. If the coded assignment of numbers is done properly,
instead of necessitating a cumbersome exception process for dealing with homographs, all
decompositions may be made at once and resulting strings concatenated and passed through a
standard sort ordering program sorting in numeric order. To attain this result, it is sufficient that the
numbers chosen for the first decomposition code set be greater than numbers chosen for the
second one, the second one's greater than the third one's, and that the delimiter chosen for the
fourth decomposition be less than the lowest possible number coded elsewhere for the sort (a
delimiter called logical zero), in which case no restriction applies to the content of the fourth
decomposition. An easier implementation might just choose to put the lowest value possible as a
delimiter between each subkey, in which case no restriction ever applies.

This method has beenwas fully described with tables for the first time in Règles du classement
alphabétique en langue française et procédure informatisée pour le tri, Alain LaBonté, Ministère des
Communications du Québec, 19 août 19881988-08-19, ISBN 2-550-19046-7.

Reduction techniques have been designed to considerably shorten space requirements. As no
implementation is required to use specific numbers for weights and does not require neither
reduction nor compression is required, this issue is outside the scope of this standard International
Standard. Nevertheless, but it is interesting to note that implementation can be optimized. This has
been improved over time and is highly feasibleeasy to accomplish.

A plublic-domain reduction technique is described in details (with ample numerous examples) in
Technique de réduction - Tris informatiques à quatre clés, Alain LaBonté, Ministère des
Communications du Québec, June 1989-06 (ISBN 2-550-19965-0).

vi. For a number of languages, the Common Template presented in this standard will need to be
adapted, both in the table values for the four orders of keys (which can require redefining characters
or introducing multicharacter collating elements into the table) and in the potential context analysis
processing necessary to achieve culturally correct results for users of these languages. To illustrate
this (without discussing context analysis which is not necessary in what follows), examples of
dictionary sequences are given here for two languages which native order is not in the Common
Template table:

Traditional Spanish (note where "ch" is greater than "cu" and "ña" is greater than "no"):
cuneo<cúneo<chapeo<nodo<ñaco

(Comparative French/English/German sort:
chapeo<cuneo<cúneo<ñaco<nodo)

Danish (note where "a" is less than "c", "cz" is less than "cæ" and "cø", and "aa" is equivalent to "å"
", which is greater than "z", even in cases where it is pronounced differently):

ISO/IEC ISO/IEC 14651:1999(E)

39

Alzheimer<czar<cæsium<cølibat< Aachen<Aalborg<Århus

(Comparative French/English/German sort:
Aachen<Aalborg< Alzheimer<Århus<cæsium<cølibat<czar)

vii. It is important that in all coding environments, and in all programming environments, the order be
consistent so that sort ordering programs can giveyield reliable results re-useable in programs;
conversely, comparisons of two character strings where an order is expected should be in
lineaccord with results given by sort ordering programs. Hence Therefore, it is advisable that all
processes which expect a given order all use the same comparison API. This standard International
Standard has built been based on this requirement that , which fomerly was not respected before. .

Furthermore, it should be possible to have access, externally, to the ultimate binary strings on
which real comparison is made. This will allow old processes which can not be changed easily but
which are able to sort raw binary data, to sort in a consistent way with new processes. This
standard International Standard allows this practice, while it also provides providing a way to avoid
completely avoid the use of such binary strings.

ISO/IEC 14651:1999(E) ISO/IEC

40

Annex E -- BIBLIOGRAPHY

The following standards and documents are considered relevant to this standard, in addition to the normative
references.

CAN/CSA Z243.4.1-1998 – Canadian Alphanumeric Ordering Standard – A National Standard of Canada,
Canadian Standards Association

DS 377 (1980) – DS 377:1980 Alfabetiseringsregler – Dansk Standard

ISO/IEC 646, Information technology -- ISO 7-bit coded character set for information interchange

ISO/IEC 2022, Information technology – Code extension techniques

ISO/IEC 6937, Information technology – Coded character sets for text communication

ISO/IEC 8859-1, Information technology -- 8-bit single-byte coded graphic character sets --
Part 1: Latin alphabet No. 1

ISO/IEC 8859-1, Information technology -- 8-bit single-byte coded graphic character sets --
Part 15: Latin alphabet No. 9

ISO/IEC 14652, Information Technology -- Specification Method for Cultural Conventions (FCD)

Règles du classement alphabétique en langue française et procédure informatisée pour le tri, Conseil du
trésor du Québec – URL: http://www.tresor.gouv.qc.ca/doc/classm.htm

Retskrivningsordbogen – 2nd edition 1996, Dansk Sprognævn & Aschehoug Dansk Forlag A/S

Technique de réduction - Tris informatiques à quatre clés, Conseil du trésor du Québec –
URL: http://www.tresor.gouv.qc.ca/doc/techtri.htm

END OF THIS INTERNATIONAL STANDARD

