
P1003.1d/D11

Annex J
(informative)

Interrupt Control Considerations1

2 J.1 Introduction

3 In the area of realtime systems there often exist devices with very simple inter-
faces,4 that can or should be operated without a full-fledged driver within the
operating5 system: what is needed is the ability to access the control and status
registers6 of the interface, and the ability to capture the interrupts that are gen-
erated7 and have the application program handle them.

The8 functions defined in this section allow a process or thread to capture an inter-
rupt,9 to block awaiting the arrival of an interrupt, and to protect critical sections
of10 code which are contended for by a user-written interrupt service routine. Cap-
turing11 an interrupt involves registering a user-written interrupt service routine
(12 ISR). The introduction of user-written ISRs does not make application programs
completely13 portable, but at least establishes a reference model that allows pro-
grams14 to be rehosted without completely subverting their logic, and confines
non15 -portable code to specified modules.

A16 single threaded process, or a process in an implementation which does not sup-
port17 threads, is considered to consist of a single thread of control; in this case, the
term18 thread in the description of the interfaces in this section shall refer to this
single19 thread of control.

20 J.2 Definitions

21 ⇒⇒ 2.2.2 General Terms Add the following definitions, in the right sorted order:

22 J.2.0.1 interrupt:

23 (1) The suspension of a process to handle an event external to the process. Syn:
24 interruption. See also: interrupt latency; interrupt mask; interrupt

priority;25 interrupt service routine. (2) To cause the suspension of a process.
(3)26 Loosely, a hardware interrupt request.

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

J.2 Definitions 109

P1003.1d/D11 INFORMATION TECHNOLOGY—POSIX

27 J.2.0.2 interruption:

28 See: interrupt.

29 J.2.0.3 interrupt latency:

30 The delay between a computer system’s receipt of a hardware interrupt request
and31 its handling of the request. See also: interrupt priority.

32 J.2.0.4 interrupt mask:

33 A mask used to enable or disable interrupts by retaining or suppressing bits that
represent34 interrupt requests.

35 J.2.0.5 interrupt priority:

36 The importance assigned to a given interrupt request. This importance deter-
mines37 whether the request will cause suspension of the current instructions and,
if38 there are several outstanding interrupt requests, which will be handled first.

39 J.2.0.6 interrupt request:

40 An external or other hardware input that requests the execution of the current
instruction41 flow be suspended to permit execution of an ISR.

42 J.2.0.7 interrupt service routine:

43 A routine that responds to interrupt requests by storing the contents of critical
registers,44 performing the processing required by the interrupt request, and then,
if45 no higher priority process is eligible to run, restoring the register contents and
restarting46 the interrupted process.

47 J.2.0.8 ISR:

48 Abbreviation for interrupt service routine.

49 J.3 Concepts

50 The following opaque data type is defined by the implementation in the header
51 <intr.h> .

52 intr_t

53 Identifies the source of a hardware interrupt in an implementation-defined
54 manner. The implementation shall also supply some means of obtaining
55 legal values of type intr_t, that represent supported interrupt sources a pro-
56 cess may connect to.

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

110 J Interrupt Control Considerations

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D11

57 The header <intr.h> shall define the following symbols:

58 POSIX_INTR_PRI_LOWEST
59 The lowest available interrupt priority.

60 POSIX_INTR_PRI_LOW
61 A low available interrupt priority.

62 POSIX_INTR_PRI_MED_LOW
63 A medium low available interrupt priority.

64 POSIX_INTR_PRI_MEDIUM
65 A medium available interrupt priority.

66 POSIX_INTR_PRI_MED_HIGH
67 A medium high available interrupt priority.

68 POSIX_INTR_PRI_HIGH
69 A high available interrupt priority.

70 POSIX_INTR_PRI_HIGHEST
71 The highest available interrupt priority.

72 J.4 Interrupt Control Functions

73 J.4.1 Associate a User-Written ISR with an Interrupt

74 Functions: posix_intr_associate(), posix_intr_disassociate(), posix_intr_lock(),
75 posix_intr_unlock().

76 J.4.1.1 Synopsis

77 #include <intr.h>

int78 posix_intr_associate (intr_t intr,
79 int (∗intr_handler)(void ∗area),
80 volatile void ∗area, size_t areasize);

int81 posix_intr_disassociate (intr_t intr,
82 int (∗intr_handler)(void ∗area));

int83 posix_intr_lock (intr_t intr);

int84 posix_intr_unlock (intr_t intr);

85 J.4.1.2 Description

86 If the Interrupt Control option is supported: B

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

J.4 Interrupt Control Functions 111

P1003.1d/D11 INFORMATION TECHNOLOGY—POSIX

87 If the number of ISRs currently connected to intr is less than {_POSIX_-
88 INTR_CONNECT_MAX} then the posix_intr_associate() function shall associ-
89 ate the given user-written ISR intr_handler with a given interrupt intr. The B

90 interrupt service routine shall conform to the following function prototype: B

91 int int_handler (void ∗area); B

92 After executing the posix_intr_associate() function, the issuing thread shall
93 become connected to the given interrupt. The system shall call
94 intr_handlers in the reverse order that the ISRs were registered until one of
95 the intr_handlers returns a code signifying that the interrupt has been han-
96 dled. The most recently registered ISR is thus called first.

97 Although an ISR is initially located in a process’ address space, it executes
98 in an implementation-defined context, subject to a number of
99 implementation-defined restrictions. It is unspecified what restrictions
100 may be imposed by an implementation.

101 The execution context of an ISR may have an address space different from
102 the normal process’ space, so any data areas accessed by the ISR must be
103 clearly identified as such. The argument area identifies a communication
104 region, whose size is areasize, where the ISR and the thread shall be able to
105 exchange data; when the ISR is called, it shall receive the address of the
106 communication region as its first argument. Implementations may have
107 additional arguments of implementation-defined types.

108 The return code which is returned by the ISR determines whether the inter-
109 rupt has been handled by this ISR, and whether the thread that registered
110 the ISR should be notified of the successful handling of this interrupt.

111 An interrupt handler wakes up a thread by posting one of the notify return
112 codes, which causes a thread waiting in a corresponding
113 posix_intr_timedwait() to unblock. No other ISR-to-thread notification
114 mechanism is specified.

115 Notification is described in clause C.3.2. Possible return codes (defined in
116 <intr.h>) include:

117 POSIX_INTR_HANDLED_NOTIFY
118 The ISR handled this interrupt, and the thread that registered the
119 ISR should be notified that the interrupt occurred.

120 POSIX_INTR_HANDLED_DO_NOT_NOTIFY
121 The ISR handled this interrupt, but the thread that registered the
122 ISR should not be notified that the interrupt occurred.

123 POSIX_INTR_NOT_HANDLED
124 The ISR did not handle this interrupt; if there are other ISRs con-
125 nected to this interrupt, then the next ISR should be called.

126 The posix_intr_disassociate() function shall cancel any existing association
127 between the interrupt intr and the ISR interrupt_handler.

128 If a thread calls posix_intr_disassociate() and the thread does not have the
129 specified ISR registered for the specified interrupt, the

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

112 J Interrupt Control Considerations

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D11

130 posix_intr_disassociate() function shall fail.

131 If a thread has connected one or more user-written ISRs to a given inter-
132 rupt intr, then that thread calling the posix_intr_lock() function shall
133 prevent the system from calling those ISRs or notifying the connected
134 thread until delivery is re-enabled by means of the posix_intr_unlock() func-
135 tion, thus allowing the thread to perform operations in an atomic way with
136 respect to the ISR; if an ISR is executing when the thread that connected
137 that ISR to an interrupt calls posix_intr_lock(), then the posix_intr_lock()
138 function shall not return until that ISR has completed; the methods used by
139 an implementation to obtain these results are implementation-defined. To
140 allow implementation using a hardware disable-interrupts instruction,
141 posix_intr_lock() need not be a cancellation point. It is
142 implementation-defined whether locking an ISR causes other ISRs to be
143 locked. It is implementation-defined whether interrupts that arrive while
144 an interrupt is locked are queued or discarded. It is
145 implementation-defined whether registration under lock is supported.

146 It is implementation-defined whether these functions require an appropri-
147 ate privilege from the calling thread.

148 It is implementation-defined whether ISRs remain registered after the
149 registering thread terminates. It is implementation-defined which POSIX
150 operations, if any, may be executed from an interrupt handler.

O151 therwise:

152 Either the implementation shall support the posix_intr_associate(),
153 posix_intr_disassociate(), posix_intr_lock(), and posix_intr_unlock() func-
154 tions as described above, or these functions shall not be provided. B

155 J.4.1.3 Returns

156 Upon successful completion, posix_intr_associate(), posix_intr_disassociate(),
157 posix_intr_lock(), and posix_intr_unlock() shall return zero. Otherwise an error

code158 shall be returned.

159 J.4.1.4 Errors

160 If any of the following conditions occur, the posix_intr_associate(),
161 posix_intr_disassociate(), posix_intr_lock(), and posix_intr_unlock() function shall

return162 the corresponding non-zero error code:

163 [EINVAL] The intr argument does not identify a supported interrupt that
164 can be connected to a user-specified ISR. B

165 B

166 [EPERM] The calling thread does not have an appropriate privilege to call
167 this function and the implementation requires such a privilege.

If168 the following condition occurs, it is implementation-defined whether the
169 posix_intr_associate() function shall return the corresponding non-zero error code:

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

J.4 Interrupt Control Functions 113

P1003.1d/D11 INFORMATION TECHNOLOGY—POSIX

170 [EAGAIN] The interrupt identified by the intr argument currently has the
171 implementation-defined maximum number of ISRs connected.

If172 the following condition occurs, the posix_intr_disassociate(), posix_intr_lock(),
and173 posix_intr_unlock() functions shall shall return the corresponding non-zero
error174 code:

175 [ENOISR] The thread has not registered an ISR for the given interrupt.

If176 the following condition is detected, the posix_intr_associate() function shall
return177 the corresponding non-zero error code:

178 [EINVAL] The arguments area and/or areasize and/or intr_priority are
179 invalid for the implementation.

180 J.4.1.5 Cross-References

J.4.2 Await181 Interrupt Notification

182 Function: posix_intr_timedwait().

183 J.4.2.1 Synopsis

184 #include <intr.h>

int185 posix_intr_timedwait (int flags, const struct timespec ∗timeout);

186 J.4.2.2 Description

187 If the Interrupt Control option is supported: B

188 The posix_intr_timedwait() function causes the calling thread to block until
189 notified that an interrupt has occurred. If an interrupt notification was
190 delivered to the calling thread prior to the call to the
191 posix_intr_timedwait() function, and this notification has not previously
192 caused a call to the posix_intr_timedwait() function to be unblocked, then
193 the calling thread is not blocked and instead the posix_intr_timedwait()
194 function returns immediately.

195 The input argument flags contains only implementation-defined input
196 values.

197 If the value of the timeout input argument is non-null, the wait for an inter-
198 rupt to occur shall be terminated when the specified timeout period expires.

199 If the timeout input argument is null, the wait is terminated only by the
200 interrupt.

201 The timeout expires after the interval specified by timeout has elapsed since
202 the wait began. If the Timers option is supported, the timeout is based on B

203 the CLOCK_REALTIME clock; if the Timers option is not supported, the B

204 timeout is based on the system clock as returned by the POSIX.1 function
205 time(). The resolution of the timeout is determined by the resolution of the

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

114 J Interrupt Control Considerations

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D11

206 clock that it uses.

207 Under no circumstance will the function fail with a timeout if the interrupt
208 notification occurred prior to the posix_intr_timedwait() call. The validity
209 of the timeout argument need not be checked if the interrupt notification
210 occurred prior to the posix_intr_timedwait() call. Invocation of
211 posix_intr_timedwait() shall implicitly release an posix_intr_lock().

212 This function shall fail if no ISR is currently registered by the calling
213 thread.

O214 therwise:

215 Either the implementation shall support the posix_intr_timedwait() func-
216 tion as described above or this function shall not be provided. B

217 J.4.2.3 Returns

218 Upon successful completion, posix_intr_timedwait() shall return zero. Otherwise
an219 error code shall be returned.

220 J.4.2.4 Errors

221 If any of the following conditions occur, the posix_intr_timedwait() function shall
return222 the corresponding non-zero error code.

223 [EINVAL] The thread would have blocked, but the timeout argument
224 specified a nanoseconds value less than zero or greater than or
225 equal to 1000 million.

226 [EINTR] A signal interrupted this function.

227 [ENOISR] The thread has not registered an ISR for the given interrupt.
228 B

229 [ETIMEDOUT] The interrupt notification was not received before the specified
230 timeout expired.

231 J.4.2.5 Cross-References

232 J.5 Rationale for Interrupt Control

233 J.5.1 The Interrupt Model

J234 .5.1.1 Background

235 The purpose of this interface is to allow connection of non-standard
interrupt236 -generating hardware in a standard way.

Such237 hardware, when enabled, may generate a continuous stream of interrupts,
not238 following the request-response model typical of common I/O devices such as

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

J.5 Rationale for Interrupt Control 115

P1003.1d/D11 INFORMATION TECHNOLOGY—POSIX

239 disks and tapes. A typical example would be a radar antenna generating a stream
of240 azimuth-change and north-crossing interrupts as the antenna rotates. Another
example241 would be the stream of angle resolver pulses from the joints of a robot.

Many242 hardware architectures have fewer interrupts than peripheral devices,
requiring243 interrupts to be shared. In such cases, more than one ISR is invoked by
a244 given interrupt, and the identity of the device or devices generating an interrupt
must245 be established by polling the devices connected to that interrupt.

Some246 kinds of non-standard hardware generates multiple and related streams of
interrupts247 which should all be handled by a single thread. Again, a radar
antenna,248 with its two interrupt streams, provides a classic example.

249 J.5.1.2 The Model

250 To each suitable interrupt one may attach zero or more interrupt service routines
(251 ISRs). When the interrupt is activated, these ISRs are executed in reverse order
of252 registration; that is, last registered, first executed.

Each253 ISR must first poll its device to determine if that device is asserting the
interrupt.254 If not, the ISR returns immediately with a return value signifying that
the255 interrupt was not handled. If the ISR’s device is asserting the interrupt, the

256 ISR does whatever is needed (a matter of local design), and returns with a return
value257 signifying that the interrupt has been handled, and further that the regis-
tering258 thread should or should not be notified (awakened). The decision to notify
or259 not is made by the user-written ISR code, but notification is performed by the
vendor260 supplied code which invokes these ISRs.

Note261 that there are no direct error returns from these ISRs to the invoking kernel;
device262 error handling is performed within the ISRs and reported as needed in the
c263 ommunications area.

The264 first ISR to handle an interrupt consumes it, preventing execution of ISRs in
the265 remainder of the list. If there are two devices simultaneously asserting the
interrupt,266 the second device will continue to assert the interrupt, forcing re-
traversal267 of the ISR chain, from the top.

If268 no ISR in an interrupt chain claims an interrupt, the behavior is unspecified.
T269 ypically, unclaimed interrupts are simply ignored.

M270 ultiprocessors are implicitly handled, depending on the underlying hardware.
In271 many systems, one associates each device with a processor that will handle its
interrupts.272 In other systems, such as recent ones from Sun Microsystems, the ISR

273 (a kernel thread) runs on any available processor.

Interrupt274 handling has no effect on scheduling queues, except that an interrupt
can275 result in the unblocking of a process whose priority exceeds that of any that
were276 executing when that interrupt arrived.

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

116 J Interrupt Control Considerations

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D11

277 J.5.1.3 Registration

278 ISRs become connected to interrupts by registration, and disconnected by
de279 -registration. A thread registering an ISR provides four pieces of information:
the280 address of the ISR code, the address and size of the communication region of
memory281 (used for data shared by ISR and the registering thread), the interrupt ID,
and282 (implicitly) the thread ID of the registering thread.

A283 thread may have multiple ISRs registered, and each ISR may generate
noti284 fication requests. The thread waits for any and all such notifications in one
place,285 using the posix_intr_timedwait() function. In such cases, the ISRs must
place286 whatever information is needed for the application to tell one device from
another287 in their respective communication regions. It is necessary to have pre-
cisely288 one wait-point to prevent deadlocks due to interrupts arriving in an unex-
pected289 order.

T290 o implement smooth and leakproof transfer of interrupt traffic from one ISR to
another,291 it is sufficient to register the new ISR before deregistering the old ISR.

292 For the short period of time that there are two ISRs for one device, the most
recently293 registered ISR will consume all the traffic, allowing the old ISR to be dere-
gistered294 at leisure.

The295 communication region is an area of memory that is visible both to the ISR
296 during an interrupt and to the registering thread at all (other) times. It is the

u297 ser’s responsibility to allocate a suitable region, perhaps by the use of the Typed
Memory298 facilities provided by the implementation. Shared access to the commun-
ications299 region by both thread and ISR is mediated using posix_intr_lock() and

300 posix_intr_unlock().

301 J.5.2 Portability

302 Although interrupt handling isn’t entirely portable, there is still profit in standar-
dizing303 the interrupt control interface. First is the implicit standardization of core
f304 unctionality. Second is programmer portability. Third is that interrupt handling
code305 can follow the hardware device for which it was written. All of this is sup-
ported306 by a great deal of embedded and/or realtime (often non-UNIX) system prac-
tice.307 The resulting modularization and isolation of non-portable code also aids
p308 ortability.

The309 model which repeatedly emerges from existing practice involves two facilities.
First,310 the application should be able to arrange for an interrupt to notify a process
or311 thread when the interrupt occurs. Second, the application should also be able
to312 provide an interrupt handler or interrupt service routine (ISR) to immediately
service313 each interrupt occurrence without a time-consuming process context
switch.314 Users of this model may require one or the other or both of these facili-
ties.315 Clause C.4.9 shows an example using the interfaces in this section to imple-
ment316 an application which conforms to this model.

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

J.5 Rationale for Interrupt Control 117

P1003.1d/D11 INFORMATION TECHNOLOGY—POSIX

317 J.5.3 Existing Practice

318 Most operating systems designed specifically to support realtime applications pro-
vide319 similar services for application interrupt handling and control. Ada language
runtime320 environments which support interrupt handling also provide similar ser-
vices.321 The fact that UNIX systems have not typically provided such services is
indicative322 of the non-realtime heritage of UNIX. See also Portability above.

323 J.5.3.1 Interrupt Specification

324 There is no portable way to specify an interrupt. Therefore, these interfaces must
rely325 on an opaque type, intr_t, to identify a specific interrupt. Each implementa-
tion326 which supports the Interrupt Control option must provide a mechanism for B

327 obtaining objects of this type which identify all user accessible interrupts sup-
ported328 by the implementation. Such mechanisms may include constant objects of
type329 intr_t, and functions, macros, typecasts which involve implementation specific
interrupt330 identification procedures, returning objects of type intr_t. Once such an
object331 has been associated with an interrupt of interest, this interrupt may be
accessed332 via the portable interfaces in this section. The implementation-specific
mechanisms333 cannot and will not be standardized herein.

334 J.5.4 Interrupt Latency

335 Connecting an interrupt to a POSIX realtime signal, while performing the neces-
sary336 function of initiating application processing, often cannot alone guarantee
adequate337 and timely response to rapid and/or time critical interrupts. There are
two338 reasons for this. First, the sequence of execution of POSIX processes and/or
threads339 is a function of the CPU scheduling policy, not the relative urgency of vari-
ous340 interrupts; it is possible to work within the constraints of the scheduling pol-
icy,341 but interrupt response and handling time is still likely to be
non342 -deterministic. Second, even if the notified process becomes the running pro-
cess343 immediately upon interrupt occurrence, the overhead necessary for process
context344 switching is unlikely to support interrupt latency requirements in the ten
to345 hundred microseconds range, or for interrupts occurring at a rapid rate. Also,
many346 interrupting devices require execution of special code to respond to and
deassert347 each and every interrupt.

The348 purpose of posix_intr_associate(), therefore, is to provide a path to first level
interrupt349 servicing code whose latency is a function only of other interrupts occur-
ring350 at or near the same time. Such code is intended to deal with the high speed
portion351 of the interrupt handling. It should perform only functions which cannot
be352 postponed until they are handled by a normally scheduled process; it typically
executes353 with at least the interrupt of interest locked out, and therefore need not
be354 reentrant. To achieve this low latency, it is expected that an implementation
will355 bind ISR code as closely as possible to the hardware interrupt mechanism.
The356 issues of response time (timeliness) and mutual exclusion (ISR,
non357 -reentrant) are independent.

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

118 J Interrupt Control Considerations

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D11

358 J.5.5 Relationship To Realtime Profiles

359 Handling of interrupts by user written code is typical in applications conforming
to360 the two smaller realtime profiles from IEEE 1003.13, the Minimal and Control

361 profiles. Systems which require these profiles typically utilize neither virtual
memory362 nor an architecture supporting separate user and kernel modes. In such
systems,363 interrupt servicing via the ISR model is easily implemented as simple
procedure364 call in the context of the single executing process.

F365 or the two more complex realtime profiles in IEEE 1003.13, the Dedicated and
366 Multi-Purpose profiles, process and kernel separation is of concern to most imple-

mentations,367 and the ISR model becomes somewhat more difficult to implement.
Although,368 systems requiring these profiles are far more likely to utilize full scale
device369 drivers integrated or loaded into the kernel in an implementation specified
manner,370 some may require the interfaces of this section, especially

371 posix_intr_associate().

372 J.5.6 Limitations Imposed on ISR Code

373 An ISR needs to be able to execute without incurring unpredictable delays; it must
complete374 in a timely manner. For this reason an ISR is normally restricted to ker-
nel375 level calls since the boundary of kernel level calls’ behavior is strongest. Invo- B

376 cation of an ISR has the implicit effect of a call to posix_intr_lock() to block further
invocations377 of that same ISR. Consequently, ISRs need not be reentrant. There is,
therefore,378 no free choice on the interfaces that can be used and caution needs to be
exercised379 in selecting interfaces. Invocation of POSIX interfaces within an ISR

380 cannot be considered consistent with the timeliness requirement of an ISR.

381 The notion of the ‘‘current process’’ is erroneous within an ISR since it may exe-
cute382 in the context of the kernel or of an arbitrary process. Since most POSIX

383 interfaces may query or alter the state of the "current process", their use within
384 ISR code is not only untimely, but erroneous.

It385 is expected that anyone wanting to write a user-written ISR is familiar with how
to386 write I/O drivers for their particular system. Mistakes in an ISR can and will
crash387 the system. Caution is advised.

388 J.5.7 Handler Specification

389 The working group is undecided on how an interrupt handler (not executing in
process390 context) may be specified to the posix_intr_associate() function. Since the
handler391 code may need to ultimately run in a kernel address mapping different
from392 that of the process doing the registration, specifying the virtual address of
non393 -relocatable code would appear problematic. The extent of the handler (i.e.
what394 functions it can call or data it can access) is also unclear in the virtual
memory395 case. Finally, at least one example of existing practice requires that a
handler396 be dynamically loaded into the kernel from a file; in this case, a pathname
would397 be required as the handler specification.

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

J.5 Rationale for Interrupt Control 119

P1003.1d/D11 INFORMATION TECHNOLOGY—POSIX

398 The working group opposes converting the handler specification argument of
399 posix_intr_associate() to an opaque type. It has been suggested that a pathname

be400 used for this argument, and this pathname could identify a memory resident
code401 segment on systems such as those conforming to the minimal realtime profile
(like402 the pathname interpretation for exec () or posix_spawn() on such systems).
Unless403 the working group can agree on a workable method of handler
speci404 fication, the original method; specifying a pointer to a function, will be
r405 etained.

406 J.5.8 posix_intr_timedwait() versus Sigwait()

407 Why doesn’t posix_intr_timedwait() precisely follow the existing sigwait() model?
This408 was discussed in the working group, which for simplicity decided not to
attempt409 to map hardware interrupts onto signals, as the underlying models are
only410 in general similar, differing greatly in the details. The great mass of existing
code411 renders the signals model and sigwait() API essentially immutable, so it was
decided412 to make posix_intr_timedwait() independent of sigwait(), and as simple as
possible,413 to reduce the burden on implementors, and for performance and predic- B

414 tability. B

415 J.5.9 Interrupt Specification

416 Several examples may serve to clarify the use of intr_t:

417 Figure J-1 −− intr_t Examples

418 ___

419 An implementation supplied constant:

420 posix_intr_associate (IVEC_240, & handler, & data, sizeof(data));

421 Asking a device how it will interrupt:

422 posix_devctl (fd, GET_INTERRUPT_ID, & interrupt, sizeof(intr_t), NULL);
p423 osix_intr_associate (interrupt, & handler, & data, sizeof(data));

424 Simple cast of known interrupt vector:

425 posix_intr_associate ((intr_t)240, & handler, & data, sizeof(data));

426 __

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

120 J Interrupt Control Considerations

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D11

427 J.5.10 Application Example

428 The following C-Language program fragment demonstrates usage of the interfaces
in429 this section:

430 Figure J-2 −− An Interrupt Control Application Fragment

431 / ∗ Collect digitized data to a file - The A to D converter runs ∗/
/432 ∗ at 30khz sampling rate, has a 256-sample circular buffer, ∗/
/433 ∗ and interrupts after each 128 samples. ∗/

queue434 my_queue; / ∗ statically allocated ∗/

main()435
436 {
437 int my_handler(queue ∗my_queue);
438 posix_intr_associate(INTR_240, & my_handler, & my_queue, sizeof(my_queue));

439 start_ A_to_D();
440 while (TRUE)
441 {
442 int localbuffer[128];
443 if (posix_intr_timedwait(0, A_to_ D_timeout()) == 0)
444 {
445 posix_intr_lock(INTR_240);
446 while (dequeue(& my_queue, localbuffer))
447 {
448 posix_intr_unlock(INTR_240);
449 fwrite(localbuffer, 1, sizeof(localbuffer),
450 stdout);
451 posix_intr_lock(INTR_240);
452 }
453 posix_intr_unlock(INTR_240);
454 }
455 else
456 / ∗handle errors, including timeout ∗/
457 }
458 }

int459 my_handler(queue ∗my_queue)
460 {
461 int localbuffer[128];
462 read_ A_to_D(localbuffer);
463 enqueue(my_queue, localbuffer);
464 return POSIX_INTR_HANDLED_NOTIFY;
465 }
466 __

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

J.5 Rationale for Interrupt Control 121

P1003.1d/D11 INFORMATION TECHNOLOGY—POSIX

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

122 J Interrupt Control Considerations

