
Proposal for C2y

WG14 N3260

Title: Generic selection expression with a type operand

Author, affiliation: Aaron Ballman, Intel

Date: 2024-05-12

Proposal category: New Features

Target Audience: Developers working in type-generic programming domains

Abstract: Extends the _Generic operator to accept a type operand which allows selecting an

association with a qualified type instead of a type after lvalue conversion is applied to the operand.

Prior Art: Clang

Generic selection expression with a type

operand
Reply-to: Aaron Ballman (aaron@aaronballman.com)

Document No: N3260

Revises Document No: N3214

Date: 2024-05-12

Summary of Changes
N3260

• Fixed wording to allow non-object and incomplete types in generic associations

• Fixed wording confusion between “type name” and “type”

• Fixed wording to ensure the controlling operand is not evaluated even if it is a type name

N3214

• Original proposal

Introduction and Rationale
Currently, generic selection expressions require the first operand to be an expression. This expression is

not evaluated, but the type of the expression is compared to the types supplied by the association operands

to determine which association matches (if any). However, the type used is the type after lvalue

conversion which means it is not possible to match qualified types directly. Because lvalue conversion

only drops top-level qualifiers, you might instead try to take the address of the expression and use pointer

types as the associations. In other words, your code would start out looking something like this:

#define EXPR_HAS_TYPE(Expr, Type) _Generic(&(Expr), Type * : 1, default : 0)

const int i = 12;

_Static_assert(EXPR_HAS_TYPE(i, const int));

However, this won't work if the expression isn't an lvalue, so EXPR_HAS_TYPE(12, int) does not

expand to valid code. It turns out to be surprisingly difficult to write a macro that will work in a type-

generic way to provide "type traits" in C, and so users are left with partial or overly complex solutions.

Clang (and GCC, etc) have a builtin that comes close to solving this need,

__builtin_types_compatible_p, however this also strips qualification from the given types. So it is

close, but it has the same struggles as _Generic. Further, the builtin __is_same is only exposed in

C++, and so it also doesn't solve the issue.

Proposed Solution
C has a few operators that take either a type or an expression, such as sizeof. It is natural to extend that

idea to _Generic so that it can also accept a type for the first operand. This type does not undergo any

conversions, which allows it to match qualified types, incomplete types, and function types. C23 has the

typeof operator to get the type of an expression before lvalue conversion takes place, and so it keeps the

qualification. This makes typeof a straightforward approach to determining a type operand for

_Generic that considers qualifiers. Now our macro becomes:

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html#index-_005f_005fbuiltin_005ftypes_005fcompatible_005fp

#define EXPR_HAS_TYPE(Expr, Type) _Generic(typeof(Expr), \

 Type : 1, default : 0)

which can be called with an expression of any value category (no need to be an lvalue) and will test

against (almost) any type. Many thanks to Thiago Adams for suggesting this approach!

This does mean the same operator has slightly different semantics when called with a type argument as

opposed to an expression argument, which is not a behavior that sizeof has. An alternate keyword was

considered by the author and the Clang community, but ultimately was not pursued because the semantics

of the two forms are sufficiently distinguishable and a new keyword would be heavy-handed. Values can

have conversion operations applied to them which modify the type, but a type by itself has no such

chance for an implicit conversion, so it seems defensible that the semantics of a type inspection feature be

tied to the operand form.

The proposed solution was implemented as an extension in Clang 17. Interested committee members can

try out the feature for themselves on Compiler Explorer.

Other Differences Worth Noting
_Generic with a type operand will relax the requirements of what can be a valid association.

Specifically, it allows incomplete types and non-object types (but still prevents use of variably-modified

types). This relaxation only happens for the type operand form; the expression operand form continues to

behave as it always has.

This extension allows incomplete and non-object types because the goal is to better enable type-generic

programming in C, and so it should allow any typed construct where the type can be determined

statically. There is no reason to prevent matching against void or function types, but this does explain

why we continue to prohibit variably-modified types.

Further, allowing incomplete types enables "tag dispatch" functionality without requiring a complete type,

which can be quite useful for generic programming. e.g.,

#define TAG_TO_INDEX(tag) _Generic(tag, \

 struct red_channel : 0, \

 struct green_channel : 1, \

 struct blue_channel : 2)

#define GET_TAGGED_VALUE(array, tag) array[TAG_TO_INDEX(tag)]

...

int colors[3];

int blue = GET_TAGGED_VALUE(colors, struct blue_channel);

Proposed Straw Poll
Does WG14 want to adopt the proposed wording from N3214?

Proposed Wording
All proposed wording in this document is a diff from WG14 N3149. Green text is new text, while red text

is deleted text.

Modify 6.5.6.1p1:

https://social.vivaldi.net/@thradams/110194697181121220
https://godbolt.org/z/x9va49x9a

generic-selection:

 _Generic (assignment-expressiongeneric-controlling-operand , generic-assoc-list)

generic-controlling-operand:

 assignment-expression

 type-name

Modify 6.5.6.1p2:

A generic selection shall have no more than one default generic association. The type name in a generic

association shall specify a complete object type other than a variably modified type. No two generic

associations in the same generic selection shall specify compatible types. If the generic controlling

operand is an assignment expression, tThe controlling type of the controllinggeneric selection expression

is the type of the assignment expression as if it had undergone an lvalue conversion, array to pointer

conversion, or function to pointer conversion. Otherwise, the controlling type of the generic selection

expression is the type designated by the type name. That The controlling type shall be compatible with at

most one of the types named in the generic association list. If a generic selection has no default

generic association, its controlling expressiontype shall have type compatible with exactly one of the

types named in its generic association list.

Modify 6.5.6.1p3:

The generic controlling expressionoperand of a generic selection is not evaluated. If a generic selection

has a generic association with a type name that is compatible with the type of the controlling

expressiontype, then the result expression of the generic selection is the expression in that generic

association. Otherwise, the result expression of the generic selection is the expression in the default

generic association. None of the expressions from any other generic association of the generic selection is

evaluated.

Add a new Example after 6.5.6.1p5:

EXAMPLE The following two generic selection expressions select different associations because the

assignment expression operand undergoes lvalue conversion while the type name operand is unchanged:

void func(const int i) {

 _Generic(i,

 int : 0, // 'int' is selected

 const int : 1,

 default : 2);

 _Generic(typeof(i),

 int : 0,

 const int : 1, // 'const int' is selected

 default : 2);

}

Acknowledgement
I would like to recognize the following people for their help in this work: Thiago Adams and Joseph

Myers.

