10

15

© ISO/IEC 2013 — All rights reserved Working Group Draft — March 26, 2013

ISO/IEC JTC 1/SC 22/WG 14 N1691

Date: yyyy-mm-dd

Reference number of document: ISO/IEC TS 18661
Committee identification: ISO/IEC JTC 1/SC 22/WG 14

Secretariat: ANSI

Information Technology — Programming languages, their environments,
and system software interfaces — Floating-point extensions for C —
Part 3: Interchange and extended types

Technologies de l'information — Langages de programmation, leurs environnements et interfaces du logiciel
systeme — Extensions a virgule flottante pour C — Partie 3: Types d'échange et prolongée

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to
change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

Document type: Technical Specification
Document subtype:

Document stage: (20) Preparation
Document language: E

10

15

ISO/IEC TS 18661 Working Group Draft — March 26, 2013

WG 14 N1691

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO
standards development process is permitted without prior permission from ISO, neither this document
nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose

without prior written permission from 1SO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed

as shown below or to ISO’s member body in the country of the requester:

ISO copyright office

Case postale 56 CH-1211 Geneva 20
Tel. +41 22749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

© ISO/IEC 2012 — All rights reserved

10

15

20

25

WG 14 N1691 Working Group Draft — March 26, 2013 ISO/IEC TS 18661

Contents Page
)40 Yo L1 e 4 oY o T \"
= 7 T oo T T ' N v
IEC 60559 floating-point standardooeiiiimrrrrr e v

C sSupPOrt FOr [EC 60559ccccieeiiiiirs s s e vi

o T oY o Y= P vii
Additional background on formats..........cccceeiiiiiiciii e —————————————————— vii

LR = 1o o L 1
2 CONTOIMANCE .. ceuiieeiiieiieeiiii e rre i resrsasrrassrassrasssanssrasssasssansssnssransssnsssassssssssssssnsssenssensssanssansssnsssnsssenssenssrnnss 1
3 NOIMALIVE FEFEIEINCES ...ccuiiieiiieiiiiiiii i it reeree st reasrrasrassranssasssrasssasssensssassransssasssasssansssnsssansrensssnssrnnnsnnns 1
S =Y 4 L= 1 Lo e (= 1 1 S 2
LI O3 = 10 Lo F= 1o I o0 Y 0¥ {0 0.1 =1 2 o= 3 2
5.1 Freestanding implementationscccciiimmiiii e ————- 2
LI 2 =Y (= 1 1= o I3 = 1o o Y- 2
LT TR - =1 8 Lo = 1o [N == e (=] 5= 2
LN Y 1= 2
A 03 ¢ =1 = 1o (=1 o = 1 o= 6
L T 00T 0 = = oY o 9
L T 0o 0 13 1= 1 31 = 10
0T 4 o1 =X =T =] o T T 1
11 MathematiCs <Math . B> i rearra e s rea s s rasrassrasssanssrasssaasssasssanstansssnssranssansssnnsrnnnrennns 12
12 Numeric conversion fUNCHIONS <KStALlib . R >...iiciiciiiiiiireiri e e rras s rassrensssnssranssanssrnsssnnsransns 22
13 Complex arithmetic <complex . h> ... s annes 23
14 Type-generic Macros <tgmath .R> .. s 25
T o] o=] 1 2% 29

© ISO/IEC 2012 — All rights reserved iii

10

15

30

ISO/IEC TS 18661 Working Group Draft — March 26, 2013 WG 14 N1691

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an

International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TS 18661 was prepared by Technical Committee 1ISO JTC 1, Information Technology, Subcommittee
SC 22, Programming languages, their environments, and system software interfaces.

ISO/IEC TS 18661 consists of the following parts, under the general title Floating-point extensions for C:
— Part 1: Binary floating-point arithmetic

— Part 2: Decimal floating-point arithmetic

— Part 3: Interchange and extended types

— Part 4: Supplemental functions

— Part 5: Supplemental attributes

Part 1 updates ISO/IEC 9899:2011 (Information technology — Programming languages, their environments
and system software interfaces — Programming Language C), Annex F in particular, to support all required
features of ISO/IEC/IEEE 60559:2011 (Information technology — Microprocessor Systems — Floating-point
arithmetic).

Part 2 supersedes ISO/IEC TR 24732:2009 (Information technology — Programming languages, their
environments and system software interfaces — Extension for the programming language C to support decimal
floating-point arithmetic).

Parts 3-5 specify extensions to ISO/IEC 9899:2011 for features recommended in ISO/IEC/IEEE 60559:2011.

iv © ISO/IEC 2012 — Al rights reserved

10

15

20

25

30

35

WG 14 N1691 Working Group Draft — March 26, 2013 ISO/IEC TS 18661

Introduction

Background

IEC 60559 floating-point standard

The IEEE 754-1985 standard for binary floating-point arithmetic was motivated by an expanding diversity in
floating-point data representation and arithmetic, which made writing robust programs, debugging, and moving
programs between systems exceedingly difficult. Now the great majority of systems provide data formats and
arithmetic operations according to this standard. The IEC 60559:1989 international standard was equivalent to
the IEEE 754-1985 standard. Its stated goals were:

1

6

Facilitate movement of existing programs from diverse computers to those that adhere to this
standard.

Enhance the capabilities and safety available to programmers who, though not expert in
numerical methods, may well be attempting to produce numerically sophisticated programs.
However, we recognize that utility and safety are sometimes antagonists.
Encourage experts to develop and distribute robust and efficient numerical programs that are
portable, by way of minor editing and recompilation, onto any computer that conforms to this
standard and possesses adequate capacity. When restricted to a declared subset of the
standard, these programs should produce identical results on all conforming systems.
Provide direct support for

a. Execution-time diagnosis of anomalies

b. Smoother handling of exceptions

c. Interval arithmetic at a reasonable cost
Provide for development of

a. Standard elementary functions such as exp and cos

b. Very high precision (multiword) arithmetic

c. Coupling of numerical and symbolic algebraic computation

Enable rather than preclude further refinements and extensions.

To these ends, the standard specified a floating-point model comprising:

formats - for binary floating-point data, including representations for Not-a-Number

(NaN) and signed infinities and zeros

operations - basic arithmetic operations (addition, multiplication, etc.) on the format
data to compose a well-defined, closed arithmetic system (It also specified conversions
between floating-point formats and decimal character sequences, and a few auxiliary
operations.)

context - status flags for detecting exceptional conditions (invalid operation, division by
zero, overflow, underflow, and inexact) and controls for choosing different rounding
methods

© ISO/IEC 2012 — All rights reserved \"

30

35

10

15

ISO/IEC TS 18661 Working Group Draft — March 26, 2013 WG 14 N1691

The IEC 60559:2011 international standard is equivalent to the IEEE 754-2008 standard for floating-point
arithmetic, which is a major revision to IEEE 754-1985.

The revised standard specifies more formats, including decimal as well as binary. It adds a 128-bit binary
format to its basic formats. It defines extended formats for all of its basic formats. It specifies data interchange
formats (which may or may not be arithmetic), including a 16-bit binary format and an unbounded tower of
wider formats. To conform to the floating-point standard, an implementation must provide at least one of the
basic formats, along with the required operations.

The revised standard specifies more operations. New requirements include -- among others -- arithmetic
operations that round their result to a narrower format than the operands (with just one rounding), more
conversions with integer types, more inquiries and comparisons, and more operations for managing flags and
modes. New recommendations include an extensive set of mathematical functions and seven reduction
functions for sums and scaled products.

The revised standard places more emphasis on reproducible results, which is reflected in its standardization
of more operations. For the most part, behaviors are completely specified. The standard requires conversions
between floating-point formats and decimal character sequences to be correctly rounded for at least three
more decimal digits than is required to distinguish all numbers in the widest supported binary format; it fully
specifies conversions involving any number of decimal digits. It recommends that transcendental functions be
correctly rounded.

The revised standard requires a way to specify a constant rounding direction for a static portion of code, with
details left to programming language standards. This feature potentially allows rounding control without
incurring the overhead of runtime access to a global (or thread) rounding mode.

Other features recommended by the revised standard include alternate methods for exception handling,
controls for expression evaluation (allowing or disallowing various optimizations), support for fully reproducible
results, and support for program debugging.

The revised standard, like its predecessor, defines it model of floating-point arithmetic in the abstract. It
neither defines the way in which operations are expressed (which might vary depending on the computer
language or other interface being used), nor does it define the concrete representation (specific layout in
storage, or in a processor's register, for example) of data or context, except that it does define specific
encodings that are to be used for data that may be exchanged between different implementations that
conform to the specification.

IEC 60559 does not include bindings of its floating-point model for particular programming languages.
However, the revised standard does include guidance for programming language standards, in recognition of
the fact that features of the floating-point standard, even if well supported in the hardware, are not available to
users unless the programming language provides a commensurate level of support. The implementation’s
combination of both hardware and software determines conformance to the floating-point standard.

C support for IEC 60559

The C standard specifies floating-point arithmetic using an abstract model. The representation of a floating-
point number is specified in an abstract form where the constituent components (sign, exponent, significand)
of the representation are defined but not the internals of these components. In particular, the exponent range,
significand size, and the base (or radix) are implementation defined. This allows flexibility for an
implementation to take advantage of its underlying hardware architecture. Furthermore, certain behaviors of
operations are also implementation defined, for example in the area of handling of special humbers and in
exceptions.

The reason for this approach is historical. At the time when C was first standardized, before the floating-point
standard was established, there were various hardware implementations of floating-point arithmetic in
common use. Specifying the exact details of a representation would have made most of the existing
implementations at the time not conforming.

vi © ISO/IEC 2012 — Al rights reserved

10

15

20

25

30

35

40

45

WG 14 N1691 Working Group Draft — March 26, 2013 ISO/IEC TS 18661

Beginning with ISO/IEC 9899:1999 (C99), C has included an optional second level of specification for
implementations supporting the floating-point standard. C99, in conditionally normative Annex F, introduced
nearly complete support for the IEC 60559:1989 standard for binary floating-point arithmetic. Also, C99’s
informative Annex G offered a specification of complex arithmetic that is compatible with IEC 60559:1989.

ISO/IEC 9899:2011 (C11) includes refinements to the C99 floating-point specification, though is still based on
IEC 60559:1989. C11 upgrades Annex G from “informative” to “conditionally normative”.

ISO/IEC Technical Report 24732:2009 introduced partial C support for the decimal floating-point arithmetic in
IEC 60559:2011. TR 24732, for which technical content was completed while IEEE 754-2008 was still in the
later stages of development, specifies decimal types based on IEC 60559:2011 decimal formats, though it
does not include all of the operations required by IEC 60559:2011.

Purpose

The purpose of this Technical Specification is to provide a C language binding for IEC 60559:2011, based on
the C11 standard, that delivers the goals of IEC 60559 to users and is feasible to implement. It is organized
into five Parts.

Part 1 provides suggested changes to C11 that cover all the requirements, plus some basic
recommendations, of IEC 60559:2011 for binary floating-point arithmetic. C implementations intending to
support IEC 60559:2011 are expected to conform to conditionally normative Annex F as enhanced by the
suggested changes in Part 1.

Part 2 enhances TR 24732 to cover all the requirements, plus some basic recommendations, of IEC
60559:2011 for decimal floating-point arithmetic. C implementations intending to provide an extension for
decimal floating-point arithmetic supporting IEC 60559-2011 are expected to conform to Part 2.

Part 3 (this document), Part 4 (Supplementary functions), and Part 5 (Supplementary attributes) cover
recommended features of IEC 60559-2011. C implementations intending to provide extensions for these
features are expected to conform to the corresponding Parts.

Additional background on formats

The 2011 revision of the ISO/IEC 60559 standard for floating-point arithmetic introduces a variety of new
formats, both fixed and extendable. The new fixed formats include

* a 128-bit basic binary format (the 32 and 64 bit basic binary formats are carried over from ISO/IEC
60559:1989)
* 64 and 128 bit basic decimal formats
* interchange formats, whose precision and range are determined by the width k, where
o forbinary, k = 16, 32, 64, and k = 128 and a multiple of 32, and
o for decimal, k =2 32 and a multiple of 32
* extended formats, for each basic format, with minimum range and precision specified

Thus IEC 60559 defines five basic formats - binary32, binary64, binary128, decimal64, and decimal128 - and
five corresponding extended formats, each with somewhat more precision and range than the basic format it
extends. IEC 60559 defines an unlimited number of interchange formats, which include the basic formats.

Interchange formats may or may not be supported as arithmetic formats. If not, they may be used for the
interchange of floating-point data but not for arithmetic computation. IEC 60559 provides conversions between
non-arithmetic interchange formats and arithmetic formats which can be used for computation.

Extended formats are intended for intermediate computation, not input or output data. The extra precision
often allows the computation of extended results which when converted to a narrower output format differ from
the ideal results by little more than a unit in the last place. Also, the extra range often avoids any intermediate
overflow or underflow that might occur if the computation were done in the format of the data. The essential
property of extended formats is their sufficient extra widths, not their specific widths. Extended formats for any
given basic format may vary among implementations.

© ISO/IEC 2012 — All rights reserved Vii

ISO/IEC TS 18661 Working Group Draft — March 26, 2013 WG 14 N1691

Extendable formats, which provide user control over range and precision, are not covered in this Technical
Specification.

The 32 and 64 bit binary formats are supported in C by types float and double. If a C implementation
defines the macro ___STDC_IEC_60559 BFP__ (see Part 1 of Technical Specification 18661) signifying that it
supports Annex F of the C Standard, then its £loat and double formats must be IEC 60559 binary32 and
binary64.

Part 2 of Technical Specification 18661 defines types _Decimal32, Decimal64, and Decimall28 with
IEC 60559 formats decimal32, decimal64, and decimal128. Although IEC 60559 regards decimal32 as an
interchange format, not a basic format, and does not require decimal32 arithmetic (other than conversions),
Part 2 of Technical Specification 18661 has full arithmetic and library support for _Decimal32, just like for
_Decimal64 and _Decimall28.

The C language provides just three "generic" floating types (float, double, and long double), which
Annex F of the C Standard requires to be binary. The long double type must be at least as wide as
double, but C does not further specify details of its format, even in Annex F.
Part 3 of Technical Specification 18661, this document, provides nomenclatures for types with IEC 60559
interchange and extended formats that allow portable use of the formats as envisioned in IEC 60559. It covers
these aspects of types with IEC 60559 interchange and extended formats:

* names

- characteristics

- conversions

* constants

- function suffixes

- character sequence conversion interfaces
This specification includes interchange and extended nomenclatures for types that, in some cases, already
have C nomenclatures. For example, a type with the IEC 60559 double format may be referred to as double,
_Float64 (the type for the binary64 interchange format), and maybe _Float32x (the type for the binary32-

extended format). This redundancy is intended to support the different programming models appropriate for
the types with interchange and extended formats and C generic floating types.

viii © ISO/IEC 2012 — Al rights reserved

10

15

20

25

30

35

WORKING DRAFT ISO/IEC/WD 18661

Information Technology — Programming languages, their
environments, and system software interfaces — Floating-point
extensions for C — Part 3: Interchange and extended types

1 Scope
This document, Part 3 of Technical Specification 18661, extends programming language C to include
nomenclature for types with the interchange and extended floating-point formats specified in ISO/IEC/IEEE
60559:2011.
This document proposes nomenclature for all applicable types in Parts 1 and 2 of Technical Specification

18661 and for any other types with IEC 60559 interchange or extended formats supported by the
implementation.

2 Conformance
An implementation conforms to Part 3 of Technical Specification 18661 if
a) It conforms for Part 1 or Part 2 (or both) of Technical Specification 18661;

b) It meets the requirements for a conforming implementation of C11 with all the suggested changes to
C11 as specified in Part 3 of Technical Specification 18661; and

c) ltdefines ___STDC_IEC_60559 TYPES_ _ t0o 201ymmL.

3 Normative references

The following referenced documents are indispensable for the application of this document. Only the editions
cited apply.

ISO/IEC 9899:2011, Information technology — Programming languages, their environments and system
software interfaces — Programming Language C

ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-point arithmetic
(with identical content to IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic. The Institute of
Electrical and Electronic Engineers, Inc., New York, 2008)

ISO/IEC 18661-1:yyyy, Information Technology — Programming languages, their environments, and system
software interfaces — Floating-point extensions for C — Part 1: Binary floating-point arithmetic

ISO/IEC 18661-2:yyyy, Information Technology — Programming languages, their environments, and system
software interfaces — Floating-point extensions for C — Part 2: Decimal floating-point arithmetic

Suggested changes proposed by Part 3 of Technical Specification 18661 are relative to ISO/IEC 9899:2011
(C11). The actual specification is given by a synthesis with the suggested changes from Parts 1 or 2 or both,
depending on which Parts the implementation supports.

ISSUE 1: Will the approach of the previous paragraph lead to a specification that is intelligible? Is
there a better approach?

© ISO/IEC 2012 — All rights reserved 1

10

15

30

35

ISO/IEC TS 18661 Working Group Draft — March 26, 2013 WG 14 N1691

4 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 9899:2011 and ISO/IEC/IEEE
60559:2011 and the following apply.

41
C11

standard ISO/IEC 9899:2011, Information technology — Programming languages, their environments and
system software interfaces — Programming Language C

5 C standard conformance

5.1 Freestanding implementations

The following suggested change to C11 expands the conformance requirements for freestanding implements
so that they might conform to this Part of Technical Specification18661

Suggested change to C11:

Replace the third sentence of 4#6:
A conforming freestanding implementation shall accept any strictly conforming program that does not
use complex types and in which the use of the features specified in the library clause (clause 7) is
confined to the contents of the standard headers <float.h>, <iso0646.h>, <limits.h>,

<stdalign.h>, <stdarg.h>, <stdbool.h>, <stddef.h>, <stdint.h>, and
<stdnoreturn.h>.

with:
A conforming freestanding implementation shall accept any strictly conforming program that does not
use complex types and in which the use of the features specified in the library clause (clause 7) is
confined to the contents of the standard headers <fenv.h>, <float.h> <iso0646.h>,
<limits.h>, <math.h>, <stdalign.h>, <stdarg.h>, <stdbool.h>, <stddef.h>,

<stdint.h>, and <stdnoreturn.h> and the numeric conversion functions (7.22.1) of the
standard header <stdlib.h>.

5.2 Predefined macros
Suggested change to C11:
In 6.10.8.3#1, add:

__STDC_IEC_60559_TYPES _ The integer constant 201ymmL, intended to indicate support of
interchange and extended types according to IEC 60559.

5.3 Standard headers
The library functions, macros, and types defined in this Part of Technical Specification 18661 are defined by

their respective headers if the macro __STDC_WANT IEC 18661 EXT3 _ is defined at the point in the
source file where the appropriate header is first included.

6 Types

This clause recommends changes to C11 to include the interchange and extended types specified in IEC
60559.

Suggested change to C11:

2 © ISO/IEC 2013 — All rights reserved

WG 14 N1691 Working Group Draft — March 26, 2013 ISO/IEC TS 18661

Change the first sentence of 6.2.5#10 from:
[10] There are three real floating types, designated as float, double, and long double
to:
[10] There are three generic floating types, designated as £loat, double, and long double.
After 6.2.5#10, insert:
[10a] IEC 60559 specifies interchange formats, identified by their width, which can be used for the
exchange of floating—point data between implementations. Tables 1 and 2 give parameters for the

IEC 60559 interchange formats.

Table 1 — Binary interchange format parameters

Parameter binary16 | binary32 | binary64 | binary128 binaryN (N = 128)
N, storage 16 32 64 128 multiple of 32
width in bits
p, precision in 11 24 53 113 N - round(4xlogz(N)) + 13
bits
emax, 15 127 1023 16383 2P 4
maximum
exponent e

Encoding parameters
bias, E-e 15 127 1023 16383 emax
sign bit 1 1 1 1 1
w, exponent 5 8 11 15 round(4xlogz(N)) - 13
field width in
bits
t, trailing 10 23 52 112 N-w-1
significand field
width in bits
N, storage 16 32 64 128 1T+w+t
width in bits

The function round() in Table 1 rounds to the nearest integer. For example, binary256 would have p =
237 and emax = 262143.

Table 2 — Decimal interchange format parameters

Parameter decimal32 | decimal64 | decimal128 | decimalN
(N = 32)

N, storage width in bits 32 64 128 multiple of 32

p, precision in digits 7 16 34 9 x N/32 -2

emax, maximum exponent 96 384 6144 3 x QN6 ¥3)

e

Encoding parameters

bias, E-e 101 398 6176 emax+p -2

sign bit 1 1 1 1

w, exponent field width in 11 13 17 N/16 +9

bits

t, trailing significand field 20 50 110 15xN/16 - 10

width in bits

N, storage width in bits 32 64 128 1+5+w+t

© ISO/IEC 2013 — All rights reserved

10

15

ISO/IEC TS 18661

Working Group Draft — March 26, 2013 WG 14 N1691

For example, decimal256 would have p = 70 and emax = 1572864.
[10b] Types designated

_FloatN, where Nis 16, 32, 64, or 2 128 and a multiple of 32
_DecimalN, where N 2 32 and a multiple of 32

support the corresponding IEC 60559 interchange formats and are collectively called the data-
interchange types. Each data-interchange type has the IEC 60559 interchange format corresponding
to its width and radix. Data-interchange types that are supported by all applicable floating-point
operations are collectively called the interchange floating types. Data-interchange types (including
interchange floating types) are not compatible with any other types.

[10c] An implementation that defines __STDC_IEC_60559 BFP___ shall provide

_Float32 and _Floaté64 as interchange floating types with the same representation and
alignment requirements as float and double, respectively, and

_Floatl6 as a data-interchange type.

If the implementation’s long double type has an IEC 60559 interchange format of width N, then the
implementation shall also provide the type _FloatN as an interchange floating type with the same
representation and alignment requirements as long double.

[10d] An implementation may provide any of the data-interchange types and may provide any of its
data-interchange types as interchange floating types. For example, an implementation that defines
__STDC_IEC_60559 BFP__ may provide _Floatlé6 as an interchange floating type.

[10e] For each of its basic formats, IEC 60559 specifies as extended format whose maximum
exponent and precision exceed those of the basic format it is associated with. Table 3 below gives

the minimum values of these parameters:

Table 3 — Extended format parameters for floating-point numbers

Extended formats associated with:

Parameter

binary32

binary64

binary128

decimal64

decimal128

p digits =

32

64

128

22

40

emax 2

1023

16383

65535

6144

24576

[10f] Types designated _Float32x, _Float64x, _Floatl28x, _Decimalé4x, and
_Decimall28x support the corresponding IEC 60559 extended formats and are collectively called
the extended floating types. Extended floating types are not compatible with any other types. An
implementation that defines __STDC_IEC_ 60559 BFP__ shall provide _Float32x, which may have

30 the same set of values as double, and may provide any of the other two binary extended floating
types. An implementation that defines __STDC_IEC_60559 DFP___ shall provide: _Decimal64x,
which may have the same set of values as _Decimall28, and may provide Decimall28x.

[10g] The generic floating types, interchange floating types, and extended floating types are
collectively called the real floating types.

35 Replace 6.2.5#11:

4 © ISO/IEC 2013 — All rights reserved

10

15

20

25

30

35

40

WG 14 N1691 Working Group Draft — March 26, 2013 ISO/IEC TS 18661

[11] There are three complex types, designated as float _Complex, double _Complex, and
long double _Complex.43) (Complex types are a conditional feature that implementations need
not support; see 6.10.8.3.) The real floating and complex types are collectively called the floating
types.

with:

[11] For the generic real types float, double, and long double, the interchange floating types
_FloatN, and the extended floating types _FloatNx, there are complex types designated
respectively as float _Complex, double _Complex, long double _Complex, _FloatN
_Complex, and _FloatNx _Complex. 43) (Complex types are a conditional feature that
implementations need not support; see 6.10.8.3.) The real floating and complex types are collectively
called the floating types.

In 6.2.5#14, change the first sentence from:

[14] The type char, the signed and unsigned integer types, and the floating types are collectively
called the basic types. ...

to:

[14] The type char, the signed and unsigned integer types, the floating types, and the data-
interchange types are collectively called the basic types. ...

In 6.2.5#21, change the first sentence from:

[21] Arithmetic types and pointer types are collectively called scalar types. ...
to:

[21] Arithmetic types, data-interchange types, and pointer types are collectively called scalar types. ...
Add the following to 6.4.1 Keywords:

keyword:
_FloatN, where Nis 16, 32, 64, or 2 128 and a multiple of 32
_Float32x
_Floaté64x
_Float128x
_DecimalN, where N 2 32 and a multiple of 32
_Decima164x
_Decima1128x

Add the following to 6.7.2 Type specifiers:

type-specifier:
_FloatN, where Nis 16, 32, 64, or 2 128 and a multiple of 32
_Float32x
_Floaté64x
_Float128x
_DecimalN, where N 2 32 and a multiple of 32
_Decima164x
_Decima1128x

Add the following bullets in 6.7.2#2 Constraints:

— _FloatN, where Nis 16, 32, 64, or 2 128 and a multiple of 32

© ISO/IEC 2013 — All rights reserved

10

15

30

35

ISO/IEC TS 18661 Working Group Draft — March 26, 2013 WG 14 N1691

— _Float32x
— _Float64x
— _Floatl28x
— _DecimalN, where N 2 32 and a multiple of 32
— _Decimalé64x
— _Decimall28x
— _FloatN _Complex, where Nis 16, 32, 64, or 2 128 and a multiple of 32
— _Float32x _Complex
— _Float64x _Complex
— _Floatl28x _Complex
Add the following after 6.7.2#3:
[3a] The type specifiers _FloatN (where N is 16, 32, 64, or 2 128 and a multiple of 32), _Float32x,

_Float64x, Floatl28x, DecimallN (where N 2= 32 and a multiple of 32), Decimalé4x, and
Decimall28x shall not be used if the implementation does not support interchange and extended types

(see 6.10.8.3).

Add the following after 6.5#8:
[8a] Expressions involving operands of interchange or extended type are evaluated according to the
semantics of IEC 60559, including production of decimal floating-point results with the preferred
quantum exponent as specified in Part 2 of Technical Specification 18661.

Replace G.2#2:

[2] There are three imaginary types, designated as float _Imaginary, double _Imaginary,
and long double _Imaginary. The imaginary types (along with the real floating and complex
types) are floating types.

with:
[2] For the generic real types float, double, and long double, the interchange floating types
_FloatN, and the extended floating types _FloatNx, there are imaginary types designated
respectively as float _Imaginary, double _Imaginary, long double _Imaginary,

_FloatN _Imaginary, and _FloatNx _Imaginary. The imaginary types (along with the real
floating and complex types) are floating types.

7 Characteristics

This clause suggests new <float.h> macros, analogous to the macros for generic floating types, that
characterize the data-interchange types and the extended floating types. It also suggests macros to indicate
which data-interchange types are provided as interchange floating types.

Suggested changes to C11:

In 5.2.4.2.2#7, change the sentence:

6 © ISO/IEC 2013 — Al rights reserved

10

15

20

25

30

35

40

WG 14 N1691 Working Group Draft — March 26, 2013 ISO/IEC TS 18661

to:

All except DECIMAL DIG, FLT EVAL METHOD, FLT_ RADIX, and FLT_ ROUNDS have separate
names for all three floatlng point types

All except DECIMAL DIG, FLT EVAL METHOD, FLT RADIX, FLT_ ROUNDS. FLTN_IS ARITH, and
DECN_ISs ARITH have separate names for all floating-point types.

After 5.2.4.2.2#7, add the paragraph

[7a] Some of the macros in <float.h> provide characteristics of data-interchange types and extended
floating types, as specified in IEC 60559. The prefixes FLTN_ and DECN_ are used for binary and decimal
data-interchange types of width N. The prefixes FLTNX _ and DECNX_ are used for binary and decimal
extended floating types that extend a basic format of width N. For each data- -interchange or extended
floating type that the implementation provides, <float.h> shall define the associated macros. Conversely,
for each such type that the implementation does not provide, <float.h> shall not define the associated
macros.

In 5.2.4.2.2#11, add the following in the bullet defining FLT DECIMAL DIG, etc..

FLTN_DECIMAL DIG
FLTNx_DECIMAL DIG

In 5.2.4.2.2#11, change the bullet defining DECIMAL DIG from:

to:

— number of decimal digits, n, such that any floating-point number in the widest supported floating
type with ...

— number of decimal digits, n, such that any floating-point number in the widest of the supported
floating and data-interchange types with ...

Add the following after 5.2.4.2.2#13:

© ISO/IEC 2013 — All rights reserved

[13a] Whether supported data-interchange types (_FloatN and _DecimalN) are further supported
as interchange floating types is characterized by the implementation-defined values of
FLTN_IS ARITH and DECN_IS_ARITH:

0 not supported as a floating type
1 supported as a floating type

[13b] In the following lists, the type parameters p, enax, and en, for extended floating types are for the
extended floating type itself, not for the basic format that it extends.

[13c] The integer values given in the following lists shall be expressed by constant expressions
suitable for use in #if preprocessing directives:

— number of digits in the floating-point significand, p

FLTN_MANT_DIG
FLTNX_MANT DIG

— number of digits in the coefficient, p

DECN_MANT DIG
DECNX_MANT DIG

ISO/IEC TS 18661 Working Group Draft — March 26, 2013 WG 14 N1691

— number of decimal digits, n, such that any floating-point nhumber with p binary digits can be
rounded to a floating-point number with n decimal digits and back again without change to the
value, ceiling(1 + p logqg 2)

FLTN_DECIMAL DIG
FLTNX_DECIMAL DIG

— number of decimal digits, g, such that any floating-point number with q decimal digits can be
rounded into a floating-point number with p binary digits and back again without change to the q
decimal digits, floor((p — 1) log4o 2)

FLTN_DIG
FLTNX_DIG

— minimum negative integer such that the radix raised to one less than that power is a normalized
floating-point number, ey,

FLTN_MIN_EXP
FLTNX_MIN_EXP
DECN_MIN_EXP
DECNX_MIN_EXP

— minimum negative integer such that 10 raised to that power is in the range of normalized floating-
point numbers, ceiling(logo 2°™™ ")

FLTN_MIN_10_EXP
FLTNX_MIN_10_EXP

— maximum integer such that the radix raised to one less than that power is a representable finite
floating-point number, e«

FLTN_MAX_ EXP
FLTNX_MAX_EXP
DECN_MAX_EXP
DECNX_MAX_ EXP

— maximum integer such that 10 raised to that power is in the range of representable finite floating-
point numbers, floor(logso((1 = 27°)2°™))

FLTN_MAX 10_EXP
FLTNX_MAX_ 10_EXP

[13d] The values given in the following list shall be replaced by constant expressions:

emax

— maximum representable finite floating-point number, (1 - b ")b

FLTN_MAX
FLTNX_MAX
DECN_MAX
DECNX_MAX

— the difference between 1 and the least value greater than 1 that is representable in the given
floating-point type, b’ ”

FLTN_EPS ILON
FLTNX_EPS ILON
DECN_EPSILON
DECNX_EPSILON

8 © ISO/IEC 2013 — Al rights reserved

10

15

20

25

30

35

40

WG 14 N1691 Working Group Draft — March 26, 2013 ISO/IEC TS 18661

— minimum normalized positive floating-point number, b

— minimum positive subnormal floating-point number, b

emin—1

FLTN_MIN
FLTNX_MIN
DECN_MIN
DECNX_MIN

emin—-p

FLTN_TRUE_MIN
FLTNX_TRUE_MIN
DECN_TRUE_MIN
DECNX_TRUE_MIN

8 Conversions

The following suggested change to C11 supports the IEC 60559 restrictions against operands whose types do

not have the same radix or such that neither type is a subset of (or equivalent to) the other.

Suggested change to C11:

In 6.3.1.8#1, replace the first 3 items after “This pattern is called the usual arithmetic conversions:”:

with:

First, if the corresponding real type of either operand is 1long double, the other operand is
converted, without change of type domain, to a type whose corresponding real type is long
double.

Otherwise, if the corresponding real type of either operand is double, the other operand is
converted, without change of type domain, to a type whose corresponding real type is double.

Otherwise, if the corresponding real type of either operand is float, the other operand is
converted, without change of type domain, to a type whose corresponding real type is
float.62)

If one operand has decimal floating type, then the other operand shall not have generic or binary
floating type, complex type, or imaginary type.

If both operands have floating types and neither of the sets of values of their corresponding real
types is a subset of (or equivalent to) the other, the behavior is undefined.

Otherwise, if both operands are floating types and the sets of values of their corresponding real
types are equivalent, then the following rules are applied:

If both operands have the same corresponding real type, no further conversion is needed.

Otherwise, if the corresponding real type of either operand is an interchange floating type,
the otheroperand is converted, without change of type domain, to a type
whose corresponding real type is that same interchange floating type.

Otherwise, if the corresponding real type of either operand is a generic floating type, the
other operand is converted, without change of type domain, to a type whose corresponding
real type is that same generic floating type.

© ISO/IEC 2013 — All rights reserved

10

15

30

35

ISO/IEC TS 18661 Working Group Draft — March 26, 2013 WG 14 N1691

Otherwise, if both operands have floating types, the operand, whose set of values of its
corresponding real type is a (proper) subset of the set of values of the corresponding real type of
the other operand, is converted, without change of type domain, to a type with the corresponding
real type of that other operand.

Otherwise, if one operand has a floating type, the other operand is converted to the
corresponding real type of the operand of floating type.

The following suggested change to C11 provides conversions between data-interchange types and other
data-interchange types and real floating types.

After 6.3.2.3, add the subclause:
6.3.2.3a Data-interchange types
[11 Any supported data-interchange type can be converted to and from any supported data-

interchange type and any real floating type, with rounding to IEC 60559 formats as specified in IEC
60559.

9 Constants

The following suggested changes to C11 provide suffixes that designate constants of data-interchange types
and extended floating types.

Suggested changes to C11:
Change floating-suffix in 6.4.4.2 from:

floating-suffix: one of
f1FL

to:

floating-suffix: one of
£f1FL E£N FN £Nx FNx dN DN dNx DNx

Add the following paragraph after 6.4.4.2#2:
Constraints
[2a] A floating-suffix AN, DN, dNx, or DNx shall not be used in a hexadecimal-floating-constant.
[2b] A floating-suffix shall not designate a type that the implementation does not provide.
Add the following paragraph after 6.4.4.2#4:
[4a] If a floating constant is suffixed by £N or FN, it has type _FloatN. If suffixed by £Nx or FNx, it
has type _FloatNx. If suffixed by dN or DN, it has type _DecimalN. If suffixed by dNx or DNx, it
has type _DecimalNx.
Add the following paragraph after 6.4.4.2#5:
[5a] Decimal floating-point constants that have the same numerical value but different quantum

exponents have distinguishable internal representations. The quantum exponent is specified to be the
same as for the corresponding strtodN or strtodNx function for the same numeric string.

10 © ISO/IEC 2013 — All rights reserved

10

15

20

25

30

WG 14 N1691 Working Group Draft — March 26, 2013 ISO/IEC TS 18661

10 Expressions

The following suggested change to C11 is intended to ensure that data-interchange types can be converted to
and from real floating types and data-interchange types, by assignment, cast, argument passing, and function
return.

Suggested changes to C11:

At the end of 6.5.16.1#1, append the bullet:

— the left operand has atomic, qualified, or unqualified real floating type or data-interchange type,
and the right has real floating type or data-interchange type;

The following suggested changes to C11 specify that certain arithmetic operators need not handle operands
of data-interchange type.

Suggested changes to C11:
Change 6.5.3.3#1 from:

[1] The operand of the unary + or - operator shall have arithmetic type; of the ~ operator, integer
type; of the ! operator, scalar type.

to:

[1] The operand of the unary + or - operator shall have arithmetic type; of the ~ operator, integer
type; of the ! operator, floating or pointer type.

Change 6.5.13#2 from:

[2] Each of the operands shall have scalar type.
to:

[2] Each of the operands shall have floating or pointer type.
Change 6.5.14#2 from:

[2] Each of the operands shall have scalar type.
to:

[2] Each of the operands shall have floating or pointer type.
Change 6.5.15#2 from:

[2] The first operand shall have scalar type.
to:

[2] The first operand shall have floating or pointer type.
In 7.2.1.1#1, change:

void assert(scalar expression) ;

to:

© ISO/IEC 2013 — All rights reserved 11

10

15

30

35

10

ISO/IEC TS 18661 Working Group Draft — March 26, 2013 WG 14 N1691

void assert (floating or pointer expression) ;
In 7.2.1.1#2, change the second sentence from:
When it is executed, if expression (which shall have a scalar type) is false ...
to:

When it is executed, if expression (which shall have a floating or pointer type) is false ...

11 Mathematics <math.h>

This clause suggests changes to C11 to include functions and macros for interchange and extended floating
types. Binary interchange floating types and binary extended floating types are supported by functions and
macros corresponding to all those specified for generic floating types (£1loat, double, and long double) in
C11 and Part 1 of Technical Specification 18661. Decimal interchange floating types and decimal extended
floating types are supported by functions and macros corresponding to all those for the decimal types in Part 2
of Technical Specification 18661. Data-interchange types (including ones that are not interchange floating
types) are supported by the classification macros in C11 and Parts 1 and 2 of Technical Specification 18661,
and by the totalorder and totalordermag functions in Parts 1 and 2.

The list of elementary functions specified in the mathematics library is extended to handle interchange floating
types and extended floating types. These include functions specified in C11 (7.12.4, 7.12.5, 7.12.6, 7.12.7,
7128, 7.12.9, 7.12.10, 71211, 7.12.12, and 7.12.13) and in Part 1 of Technical Specification 18661 (14.1,
14.2,14.3, 14.4, 14.5, 14.8, 14.9, and 14.10). Macros analogous to the HUGE_VAL, INFINITY, NAN, and the
SNAN macros are defined for data-interchange types and extended floating types. Macros DEC_INFINITY
and DEC_NAN are defined in Part 2 of Technical Specification 18661. With the exception of the floating-point
functions listed in 11.2, which have accuracy as specified in IEC 60559, the accuracy of floating-point results
is implementation-defined. The implementation may state that the accuracy is unknown. All comparison
macros specified in C11 (7.12.14) and in Part 1 of Technical Specification 18661 (14.6) are extended to
handle interchange floating types and extended floating types. All classification macros specified in C11
(7.12.3) and in Part 1 of Technical Specification 18661 (14.7) are extended to handle data-interchange types
and extended floating types.

Suggested changes to C11:
In 7.12#1, change the second sentence from:
Most synopses specify a family of functions consisting of a principal function with one or more double
parameters, a double return value, or both; and other functions with the same name but with f and |
suffixes, which are corresponding functions with float and long double parameters, return values, or
both.
to:
Most synopses specify a family of functions consisting of:
a principal function with one or more double parameters, a double return value, or both; and,
other functions with the same name but with £, I, fN, fNx, dN, and dNx suffixes, which are
corresponding functions whose parameters, return values, or both are of type float, long
double, _FloatN, _FloatNx, DecimalN, and _DecimalNXx, respectively.

Add after 7.12#1:

[1a] For each interchange or extended floating type that the implementation provides, <math.h> shall
define the associated macros and declare the associated functions. Conversely, for each such type that

12 © ISO/IEC 2013 — All rights reserved

10

15

20

25

30

35

40

WG 14 N1691 Working Group Draft — March 26, 2013 ISO/IEC TS 18661

the implementation does not provide, <math.h> shall not define the associated macros or declare the

associated functions unless explicitly specified otherwise.
Add after 7.12#2:
[2a] For each decimal data-interchange type that the implementation provides, the types

decencodingdN_t
binencodingdN_t

are declared and represents values of the type in the two alternative encodings allowed for decimal
formats by the IEC 60559 standard: the encoding (indicated by the prefix dec) based on decimal

encoding of the significand, or the encoding (indicated by the prefix bin) based on binary encoding of
the significand. These types are used by the decimal re-encoding functions (7.12.11).

Add at the end of 7.12#3 the following macros:

[3] ... For each data-interchange type (_FloatN and _DecimalN) that the implementation provides,
the corresponding one of the macros

HUGE_VAL_FN
HUGE_VAL_DN

Is defined and expands to a constant expression of the type representing positive infinity. The macros

HUGE_VAL_FNX
HUGE_VAL_DNX

expand to a constant expressions of types _FloatNx and _DecimalNx, respectively, representing
positive infinity.

After 7.12#5, add the following:

[5b] For each data-interchange type (_FloatN and _DecimalN) that the implementation provides,
the corresponding one of the signaling NaN macros

SNANFN
SNANDN

is defined and expands into a constant expression of the type representing a signaling NaN. The
signaling NaN macros

SNANFNX
SNANDNX

expand into constant expressions of types _FloatNx and _DecimalNx, respectively, representing a
signaling NaN. If a signaling NaN macro is used for initializing an object of the same type that has
static or thread-local storage duration, the object is initialized with a signaling NaN value.

Add at the end of 7.12 paragraph 7 the following macros.

[7] ... The macros

FP_FAST_FMAFN
FP_FAST_ FMADN

are, respectively, FloatN and _DecimalN analogs of FP_FAST FMA. The macros

© ISO/IEC 2013 — All rights reserved

13

5

10

15

30

35

10

45

ISO/IEC TS 18661 Working Group Draft — March 26, 2013

FP_FAST_ FMAFNX
FP_FAST_ FMADNX

are, respectively, _FloatNx and _DecimalNx analogs of FP_FAST FMA.

WG 14 N1691

Add the following list of function prototypes to the synopsis of the respective subclauses:

14

7.12.4 Trigonometric functions

_FloatN acosfN (_FloatN x);
_FloatNx acosfNx(_FloatNx x);
_DecimalN acosdN (_DecimalN x);
_DecimalNx acosdNx(_DecimalNx x);

_FloatN asinfN (_FloatN x);
_FloatNx asinfNx(_FloatNx x);
_DecimalN asindN (_DecimalN x);
_DecimalNx asindNx(_DecimalNx x);

_FloatN atanfN (_FloatN x);
_FloatNx atanfNx(_FloatNx x);
_DecimalN atandN (_DecimalN x);
_DecimalNx atandNx(_DecimalNx x);

_FloatN atan2fN (_FloatN y, FloatN x);
_FloatNx atan2fNx(_FloatNx y, FloatNx x);
_DecimalN atan2dN (_DecimalN y, DecimallN x);
_DecimalNx atan2dNx(_DecimalNx y, DecimallNx x);

_FloatN cosfN (_FloatN x);
_FloatNx cosfNx(_FloatNx x);
_DecimalN cosdN (_DecimalN x);
_DecimalNx cosdNx(_DecimalNx x);

_FloatN sinfN (_FloatN x);
_FloatNx sinfNx(_FloatNx x);
_DecimalN sindN (_DecimalN x);
_DecimalNx sindNx(_DecimalNx x);

_FloatN tanfN (_FloatN x);
_FloatNx tanfNx(_FloatNx x);
_DecimalN tandN (_DecimalN x);
_DecimalNx tandNx(_DecimalNx x);

7.12.5 Hyperbolic functions

_FloatN acoshfN (_FloatN x);
_FloatNx acoshfNx(_FloatNx x);
_DecimalN acoshdN (_DecimalN x);
_DecimalNx acoshdNx(_DecimalNx x);

_FloatN asinhfN (_FloatN x);
_FloatNx asinhfNx(_FloatNx x);
_DecimalN asinhdN (_DecimalN x);
_DecimalNx asinhdNx(_DecimalNx x);

© ISO/IEC 2013 — All rights reserved

10

15

20

25

30

35

40

45

50

WG 14 N1691 Working Group Draft — March 26, 2013

_FloatN atanhfN (_FloatN x);
_FloatNx atanhfNx(_FloatNx x);
_DecimalN atanhdN (_DecimalN x);
_DecimalNx atanhdNx(_DecimalNx x);

_FloatN coshfN (_FloatN x);
_FloatNx coshfNx(_FloatNx x);
_DecimalN coshdN (_DecimalN x);
_DecimalNx scoshdNx(_DecimalNx x);

_FloatN sinhfN (_FloatN x);
_FloatNx sinhfNx(_FloatNx x);
_DecimalN sinhdN (_DecimalN x);
_DecimalNNx sinhdNx(_DecimalNx x);

_FloatN tanhfN (_FloatN x);
_FloatNx tanhfNx(_FloatNx x);
_DecimalN tanhdN (_DecimalN x);
_DecimalNx tanhdNx(_DecimalNx x);

7.12.6 Exponential and logarithmic functions

_FloatN expfN (_FloatN x);
_FloatNx expfNx(_FloatNx x);
_DecimalN expdN (_DecimalN x);
_DecimalNx expdNx(_DecimalNx x);

_FloatN exp2fN (_FloatN x);
_FloatNx exp2fNx(_FloatNx x);
_DecimalN exp2dN (_DecimalN x);
_DecimalNx exp2dNx(_DecimalNx x);

_FloatN expmlfN (_FloatN x);
_FloatNx expmlfNx(_FloatNx x);
_DecimalN expmldN (_DecimalN x);
_DecimalNx expmldNx(_DecimalNx x);

_FloatN frexpfN (_FloatN value, int *exp);
_FloatNx frexpfN (_FloatNx value, int *exp);
_DecimalN frexpdN (_DecimalN value, int *exp);
_DecimalNx frexpdNx (_DecimalNx value, int *exp);

int ilogbfN (_FloatN x);
int ilogbfNx(_FloatNx x);
int ilogbdN (_DecimalN x);
int ilogbdNx(_DecimalNx x);

long int llogbfN (_FloatN x);
long int llogbfNx(_FloatNx x);
long int llogbdN (_DecimalN x);
long int llogbdNx(_DecimalNx x);

_FloatN ldexpfN (_FloatN value, int exp);

_FloatNx ldexpfN (_FloatNx value, int exp);
_DecimalN ldexpdN (_DecimalN value, int exp);

© ISO/IEC 2013 — All rights reserved

ISO/IEC TS 18661

15

10

15

30

35

10

45

ISO/IEC TS 18661 Working Group Draft — March 26, 2013

16

_DecimalNx ldexpdNx (_DecimalNx value, int exp);

_FloatN logfN (_FloatN x);
_FloatNx logfNx(_FloatNx x);
_DecimalN logdN (_DecimalN x);
_DecimalNx logdNx(_DecimalNx x);

_FloatN 1loglOfN (_FloatN x);
_FloatNx loglOfNx(_FloatNx x);
_DecimalN logl0dN (_DecimalN x);
_DecimalNx loglO0dNx(_DecimalNx x);

_FloatN loglpfN (_FloatN x);
_FloatNx loglpfNx(_FloatNx x);
_DecimalN loglpdN (_DecimalN x);
_DecimalNx loglpdNx(_DecimalNx x);

_FloatN log2fN (_FloatN x);
_FloatNx log2fNx(_FloatNx x);
_DecimalN log2dN (_DecimalN x);
_DecimalNx log2dNx(_DecimalNx x);

_FloatN logbfN (_FloatN x);
_FloatNx logbfNx(_FloatNx x);
_DecimalN logbdN (_DecimalN x);
_DecimalNx logbdNx(_DecimalNx x);

_FloatN modffN (_FloatN x, FloatN *iptr);
_FloatNx modffNx(_FloatNx x, FloatNx *iptr);
_DecimalN modfdN (_DecimalN x, DecimallN *iptr);
_DecimalNx modfdNx(_DecimalNx x, DecimalNx *iptr);

_FloatN scalbnfN (_FloatN value, int exp);
_FloatNx scalbnfN (_FloatNx value, int exp);
_DecimalN scalbndN (_DecimalN value, int exp);
_DecimalNx scalbndNx (_DecimalNx value, int exp);

_FloatN scalblnfN (_FloatN value, long int exp);
_FloatNx scalblnfN (_FloatNx value, long int exp);
_DecimalN scalblndN (_DecimalN value, long int exp);

WG 14 N1691

_DecimalNx scalblndNx (_DecimalNx value, long int exp);

7.12.7 Power and absolute-value functions

_FloatN cbrtfN (_FloatN x);
_FloatNx cbrtfNx(_FloatNx x);
_DecimalN cbrtdN (_DecimalN x);
_DecimalNx cbrtdNx(_DecimalNx x);

_FloatN fabsfN (_FloatN x);
_FloatNx fabsfNx(_FloatNx x);
_DecimalN fabsdN (_DecimalN x);
_DecimalNx fabsdNx(_DecimalNx x);

_FloatN hypotfN (_FloatN x, FloatN y);
_FloatNx hypotfNx(_FloatNx x, FloatNx y);

© ISO/IEC 2013 — All rights reserved

10

15

20

25

30

35

40

45

50

WG 14 N1691 Working Group Draft — March 26, 2013

_DecimalN hypotdN (_DecimalN x, DecimallN y);
_DecimalNx hypotdNx(_DecimalNx x, DecimallNx y);

_FloatN powfN (_FloatN x, FloatN y);
_FloatNx powfNx(_FloatNx x, FloatNx y);
_DecimalN powdN (_DecimalN x, DecimallN y);
_DecimalNx powdNx(_DecimalNx x, DecimallNx y);

_FloatN sqrtfN (_FloatN x);
_FloatNx sqrtfNx(_FloatNx x);
_DecimalN sqrtdN (_DecimalN x);
_DecimalNx sqrtdNx(_DecimalNx x);

7.12.8 Error and gamma functions

_FloatN erffN (_FloatN x);
_FloatNx erffNx(_FloatNx x);
_DecimalN erfdN (_DecimalN x);
_DecimalNx erfdNx(_DecimalNx x);

_FloatN erfcfN (_FloatN x);
_FloatNx erfcfNx(_FloatNx x);
_DecimalN erfcdN (_DecimalN x);
_DecimalNx erfcdNx(_DecimalNx x);

_FloatN lgammafN (_FloatN x);
_FloatNx lgammafNx(_FloatNx x);
_DecimalN lgammadN (_DecimalN x);
_DecimalNx lgammadNx(_DecimalNx x) ;

_FloatN tgammafN (_FloatN x);
_FloatNx tgammafNx(_FloatNx x);
_DecimalN tgammadN (_DecimalN x);
_DecimalNx tgammadNx(_DecimalNx x) ;

7.12.9 Nearest integer functions

_FloatN ceilfN (_FloatN x);
_FloatNx ceilfNx(_FloatNx x);
_DecimalN ceildN (_DecimalN x);
_DecimalNx ceildNx(_DecimalNx x);

_FloatN floorfN (_FloatN x);
_FloatNx floorfNx(_FloatNx x);
_DecimalN floordN (_DecimalN x);
_DecimalNx floordNx(_DecimalNx x);

_FloatN nearbyintfN (_FloatN x);
_FloatNx nearbyintfNx(_FloatNx x);
_DecimalN nearbyintdN (_DecimalN x);
_DecimalNx nearbyintdNx(_DecimalNx x) ;

_FloatN rintfN (_FloatN x);
_FloatNx rintfNx(_FloatNx x);
_DecimalN rintdN (_DecimalN x);
_DecimalNx rintdNx(_DecimalNx x);

© ISO/IEC 2013 — All rights reserved

ISO/IEC TS 18661

17

10

15

30

35

10

45

ISO/IEC TS 18661 Working Group Draft — March 26, 2013

18

long int lrintfN (_FloatN x);
long int lrintfNx (_FloatN x);
long int lrintdN (_DecimalN x);
long int lrintdNx (_DecimalN x);

long long int llrintfN (_FloatN x);
long long int llrintfNx (_FloatN x);
long long int llrintdN (_DecimalN x);
long long int llrintdNx (_DecimalN x);

_FloatN roundfN (_FloatN x);
_FloatNx roundfNx(_FloatNx x);
_DecimalN rounddN (_DecimalN x);
_DecimalNx rounddNx(_DecimalNx x);

long int lroundfN (_FloatN x);
long int lroundfNx (_FloatN x);
long int lrounddN (_DecimalN x);
long int lrounddNx (_DecimalN x);

long long int llroundfN (_FloatN x);
long long int llroundfNx (_FloatN x);
long long int llrounddN (_DecimalN x);
long long int llrounddNx (_DecimalN x);

_FloatN truncfN (_FloatN x);
_FloatNx truncfNx(_FloatNx x);
_DecimalN truncdN (_DecimalN x);
_DecimalNx truncdNx(_DecimalNx x);

_FloatN roundevenfN (_FloatN x);
_FloatNx roundevenfNx(_FloatNx x);
_DecimalN roundevendN (_DecimalN x);
_DecimalNx roundevendNx(_DecimalNx x);

WG 14 N1691

intmax_t fromfpfN (_FloatN x, int round, unsigned int width);
intmax_t fromfpfNx (_FloatNx x, int round, unsigned int width);
intmax_t fromfpdN (_DecimalN x, int round, unsigned int width);
intmax t fromfpdNx (_Decimale X, int round, unsigned int width) ;
uintmax_t ufromfpfN (_FloatN x, int round, unsigned int width);
uintmax t ufromfpfNx (_FloatNx X, int round, unsigned int width) ;
uintmax t ufromfpdN (_DecimalN X, int round, unsigned int width) ;
uintmax t ufromfpdNx (_Decimale X, int round, unsigned int width);

intmax_t fromfpxfN (_FloatN x, int round, unsigned int width);
intmax t fromfpxfNx (_FloatNx X, int round, unsigned int width) ;
intmax t fromfpxdN (_DecimalN X, int round, unsigned int width) ;
intmax t fromfpxdNx (_Decimale X, int round, unsigned int width) ;
uintmax t ufromfpxfN (_FloatN X, int round, unsigned int width);
uintmax t ufromfpxfNx (_FloatNx X, int round, unsigned int width) ;
uintmax t ufromfpxdN (_DecimalN X, int round, unsigned int width) ;
uintmax t ufromfpxdNx (_Decimale X, int round, unsigned int width);

7.12.10 Remainder functions

© ISO/IEC 2013 — All rights reserved

10

15

20

25

30

35

40

45

50

55

WG 14 N1691 Working Group Draft — March 26, 2013

_FloatN fmodfN (_FloatN x, FloatN y);
_FloatNx fmodfNx(_FloatNx x, FloatNx y);
_DecimalN fmoddN (_DecimalN x, DecimallN y);
_DecimalNx fmoddNx(_DecimalNx x, DecimallNx y);

_FloatN remainderfN (_FloatN x, FloatN y);
_FloatNx remainderfNx(_FloatNx x, FloatNx y);
_DecimalN remainderdN (_DecimalN x, DecimallN y);
_DecimalNx remainderdNx(_DecimalNx x, DecimallNx y);

_FloatN remquofN (_FloatN x, FloatN y, int *quo);
_FloatNx remquofNx(_FloatNx x, FloatNx y, int *quo);

7.12.11 Manipulation functions

_FloatN copysignfN (_FloatN x, FloatN y);
_FloatNx copysignfNx(_FloatNx x, FloatNx y);
_DecimalN copysigndN (_DecimalN x, DecimallN y);
_DecimalNx copysigndNx(_DecimalNx x, DecimallNx y);

_FloatN nanfN (const char *tagp);
_FloatNx nanfNx (const char *tagp);
_DecimalN nandN (const char *tagp);
_DecimalNx nandNx (const char *tagp);

_FloatN nextafterfN (_FloatN x, FloatN y);
_FloatNx nextafterfNx(_FloatNx x, FloatNx y);
_DecimalN nextafterdN (_DecimalN x, DecimallN y);
_DecimalNx nextafterdNx(_DecimalNx x, DecimallNx y);

_FloatN nextupfN (_FloatN x);
_FloatNx nextupfNx(_FloatNx x);
_DecimalN nextupdN (_DecimalN x);
_Decimal/Nx nextupdNx(_DecimalNx x);

_FloatN nextdownfN (_FloatN x);
_FloatNx nextdownfNx(_FloatNx x);
_DecimalN nextdowndN (_DecimalN x);
_Decimal/Nx nextdowndNx(_DecimalNx x);

_FloatN canonicalizefN (_FloatN x);
_FloatNx canonicalizefNx(_FloatNx x);
_DecimalN canonicalizedN (_DecimalN x);
_DecimalNx canonicalizedNx(_DecimalNx x);

_DecimalN quantizedN (_DecimalN x, DecimalN y);
_DecimalNx quantizedNx(_DecimalNx x, DecimallNx y);

_Bool samequantumdN (_DecimalN x, DecimalN y);
_Bool samequantumdNx(_DecimalNx x, DecimallNx y);

int quantexpdN (_DecimalN x);
int quantexpdNx(_DecimalNx x);

decencodingdN_t encodedecdN (_DecimalN x);

_DecimalN decodedecdN (decencodingdN_t x);
binencodingdN_t encodebindN (_DecimalN x);

© ISO/IEC 2013 — All rights reserved

ISO/IEC TS 18661

19

10

15

30

35

10

45

ISO/IEC TS 18661 Working Group Draft — March 26, 2013 WG 14 N1691

20

_DecimalN decodebindN (binencodingdN_t x);
7.12.12 Maximum, minimum, and positive difference functions

_FloatN fdimfN (_FloatN x, FloatN y);
_FloatNx fdimfNx(_FloatNx x, FloatNx y);
_DecimalN fdimdN (_DecimalN x, DecimallN y);
_DecimalNx fdimdNx(_DecimalNx x, DecimallNx y);

_FloatN fmaxfN (_FloatN x, FloatN y);
_FloatNx fmaxfNx(_FloatNx x, FloatNx y);
_DecimalN fmaxdN (_DecimalN x, DecimalN y);
_DecimalNx fmaxdNx(_DecimalNx x, DecimallNx y);

_FloatN fminfN (_FloatN x, FloatN y);
_FloatNx fminfNx(_FloatNx x, FloatNx y);
_DecimalN fmindN (_DecimalN x, DecimallN y);
_DecimalNx fmindNx(_DecimalNx x, DecimallNx y);

_FloatN fmaxmagfN (_FloatN x, FloatN y);
_FloatNx fmaxmagfNx(_FloatNx x, FloatNx y);
_DecimalN fmaxmagdN (_DecimalN x, DecimallN y);
_DecimalNx fmaxmagdNx(_DecimalNx x, DecimallNx y);

_FloatN fminmagfN (_FloatN x, FloatN y);
_FloatNx fminmagfNx(_FloatNx x, FloatNx y);
_DecimalN fminmagdN (_DecimalN x, DecimallN y);
_DecimalNx fminmagdNx(_DecimalNx x, DecimallNx y);

7.12.13 Floating multiply-add

_FloatN fmafN (_FloatN x, FloatN y, FloatN z);

_FloatN fmafNx (_FloatNx x, FloatNx y, FloatNx z);
_DecimalN fmadN (_DecimalN x, DecimalN y, DecimallN z);
_DecimalNx fmadNx (_DecimalNx x, DecimalNx y, DecimallNx z);

7.12.14 Functions that round result to narrower format

_FloatM fMaddfN (_FloatN x, _FloatN y); // M <N

_FloatM fMaddfNx (_FloatNx x, _FloatNx y); // M <= N
_FloatMx fMxaddfN (_FloatN x, FloatNy); // M< N

_FloatMx fMxaddfNx (_FloatNx x, FloatNx y); // M < N
_DecimalM dMadddN (_DecimalN x, DecimalN y);// M < N
_DecimalM dMadddNx (_DecimalNx x, DecimalNx y); // M <= N
_DecimalMx dMxadddN (_DecimalN x, DecimalN y); // M <N
_DecimalMx dMxadddNx (_DecimalNx x, DecimalNx y); // M <N

_FloatM fMsubfN (_FloatN x, _FloatN y); // M <N

_FloatM fMsubfNx (_FloatNx x, _FloatNx y); // M <= N
_FloatMx fMxsubfN (_FloatN x, FloatNy); // M< N

_FloatMx fMxsubfNx (_FloatNx x, FloatNx y); // M < N
_DecimalM dMsubdN (_DecimalN x, DecimalN y);// M < N
_DecimalM dMsubdNx (_DecimalNx x, DecimalNx y); // M <= N
_DecimalMx dMxsubdN (_DecimalN x, DecimalN y); // M <N
_DecimalMx dMxsubdNx (_DecimalNx x, DecimalNx y); // M <N

© ISO/IEC 2013 — All rights reserved

10

15

20

25

30

35

40

45

50

WG 14 N1691 Working Group Draft — March 26, 2013 ISO/IEC TS 18661

_FloatM fMmulfN (_FloatN x, _FloatN y); // M <N

_FloatM fMmulfNx (_FloatNx x, _FloatNx y); // M <= N
_FloatMx fMxmulfN (_FloatN x, FloatNy); // M< N

_FloatMx fMxmulfNx (_FloatNx x, FloatNx y); // M < N
_DecimalM dMmuldN (_DecimalN x, DecimalN y);// M < N
_DecimalM dMmuldNx (_DecimalNx x, DecimalNx y); // M <= N
_DecimalMx dMxmuldN (_DecimalN x, DecimalN y); // M <N
_DecimalMx dMxmuldNx (_DecimalNx x, DecimalNx y); // M <N

_FloatM fMdivEN (_FloatN x, _FloatN y); // M <N

_FloatM fMdivENx (_FloatNx x, _FloatNx y); // M <= N
_FloatMx fMxdivEN (_FloatN x, FloatNy); // M< N

_FloatMx fMxdivENx (_FloatNx x, FloatNx y); // M < N
_DecimalM dMdivdN (_DecimalN x, DecimalN y);// M < N
_DecimalM dMdivdNx (_DecimalNx x, DecimalNx y); // M <= N
_DecimalMx dMxdivdN (_DecimalN x, DecimalN y); // M <N
_DecimalMx dMxdivdNx (_DecimalNx x, DecimalNx y); // M <N

_FloatM fMsqrtfN (_FloatN x); // M <N
_FloatM fMsqrtfNx (_FloatNx x); // M <= N
_FloatMx fMxsqrtfN (_FloatN x); // M < N
_FloatMx fMxsqrtfNx (_FloatNx x); // M <N
_DecimalM dMsqrtdN (_DecimalN x); // M <N
_DecimalM dMsqrtdNx (_DecimalNx x); // M <= N
_DecimalMx dMxdivdN (_DecimalN x); // M < N
_DecimalMx dMxdivdNx (_DecimalNx x); // M <N

_FloatM fMfmafN (_FloatN x, FloatN y, FloatN z); // M <N
_FloatM fMfmafNx (_FloatNx x, FloatNx y, _FloatNx z); // M <= N
_FloatMx fMxfmafN (_FloatN x, FloatN y, _FloatN z); // M <N
_FloatMx fMxdivENx (_FloatNx x, FloatNx y, _FloatNx z); // M <N
_DecimalM dMfmadN (_DecimalN x, DecimalN y, DecimalN z); // M < N
_DecimalM dMdfmadNx (_DecimalNx x, DecimalNx y, _DecimalNx z);

// M <= N

_DecimalMx dMxfmadN (_DecimalN x, DecimalN y, DecimalN z);
// M <N

_DecimalMx dMxfmadNx (_DecimalNx x, DecimalNx y, _DecimalNx z);
// M <N

F.10.12 Total order functions

int totalorderfN (_FloatN x, FloatN y);

int totalorderfNx (_FloatNx x, FloatNx y);

int totalorderdN (_DecimalN x, DecimallN y);
int totalorderdNx (_DecimalNx x, DecimallNx y);

int totalordermagfN (_FloatN x, FloatN y);

int totalordermagfNx (_FloatNx x, FloatNx y);
int totalordermagdN (_DecimalN x, DecimallN y);
int totalordermagdNx (_DecimalNx x, DecimallNx y);

F.10.13 Payload functions
_FloatN getpayloadfN (const _FloatN *x);

_FloatNx getpayloadfNx (const _FloatNx *x);
_DecimalN getpayloaddN (const _DecimalN *x);

© ISO/IEC 2013 — All rights reserved

21

10

15

30

35

10

ISO/IEC TS

18661 Working Group Draft — March 26, 2013 WG 14 N1691

_DecimalNx getpayloaddNx (const _DecimalNx *x);

int
int
int
int

int
int
int
int

setpayloadfN (_FloatN *res, _FloatN pl);
setpayloadfNx (_FloatNx *res, _FloatNx pl);
setpayloaddN (_DecimalN *res, _DecimalN pl);
setpayloaddNx (_DecimalNx *res, _DecimalNx pl);

setpayloadsigfN (_FloatN *res, _FloatN pl);
setpayloadsigfNx (_FloatNx *res, _FloatNx pl);
setpayloadsigdN (_DecimalN *res, _DecimalN pl);
setpayloadsigdNx (_DecimalNx *res, _DecimalNx pl);

In F.10.12.2 (see Part 1 of Technical Specification 18661), append to paragraph 2:

The totalorderfN and totalordermagfN functions are declared for each corresponding data-
interchange type that the implementation provides.

12 Numeric conversion functions <stdlib.h>

This clause specifies functions to convert between character sequences and the data-interchange types and
extended floating types. Conversions from character sequences are provided by functions analogous to the
strtod function in <stdlib.h>. Conversions to character sequences are provided by new functions that
perform conversions like snprintf_ s in <stdio.h>.

Suggested changes to C11:

After 7.22.1.4, add:

7.22.1.5 The strtofN, strtofNx, strtodN, and strtodNx functions

Synopsis

[1] #define __ STDC_WANT_ IEC_18661_EXT3
#include <stdlib.h>
_FloatN strtofN (const char * restrict nptr, char ** restrict

endptr) ;

_FloatNx strtofNx (const char * restrict nptr, char ** restrict

endptr) ;

_DecimalN strtodN (const char * restrict nptr, char ** restrict

endptr) ;

_DecimalNx strtodNx (const char * restrict nptr, char ** restrict

endptr) ;

Description

The strtofN and strtofNx functions are similar to the strtod function, except they convert to
the types _FloatN and _FloatNx respectively. The strtodN and strtodNx functions are similar
to the strtodé64 function, specified in Part 2 of Technical Specification 18661, except they convert to
the types _Decimal/N and _DecimalNx respectively.

Returns

The strtofN and strtofNx functions return values similar to the strtod function, except in the
types FloatN and _FloatNx respectively. The strtodN and strtodNx functions return values

similar to

22

the strtod64 function, except in the types _DecimallN and _DecimalNx respectively

© ISO/IEC 2013 — All rights reserved

10

15

20

25

30

35

WG 14 N1691 Working Group Draft — March 26, 2013

ISO/IEC TS 18661

7.22.1.6 The strfromfN, strfromfNx, strfromdN, and strfromdNx functions

Synopsis

[1] #define STDC WANT IEC 18661 EXT3

#include <stdlib.h> - - T

int strfromfN (char * restrict s, rsize_t n, const
format, _FloatN f£fp);

int strfromfNx (char * restrict s, rsize_t n, const
format, _FloatNx £fp);

int strfromdN (char * restrict s, rsize_t n, const
format, _DecimalN f£p);

int strfromdNx (char * restrict s, rsize_t n, const
format, _DecimallNx £fp);

Description

char

char

char

char

restrict

restrict

restrict

restrict

These functions are equivalent to snprintf s(s, n, format, fp) (K.3.5.3.5), except the type is implied

by the function suffix and the format string contains no length modifier.

Returns

These functions return the value that would be returned by snprintf_s(s, n, format, fp).

13 Complex arithmetic <complex.h>

This clause specifies complex functions for corresponding real types that are interchange and extended

floating types.
Suggested changes to C11:

Change 7.3.1#3 from:

[3] Each synopsis specifies a family of functions consisting of a principal function with one or more
double complex parameters and a double complex or double return value; and other functions
with the same name but with £ and 1 suffixes which are corresponding functions with £loat and

long double parameters and return values.
to:

[3] Each synopsis specifies a family of functions consisting of:

a principal function with one or more double complex parameters and a double complex Or

double return value; and,

other functions with the same name but with £, 1, £N, and £Nx suffixes which are
corresponding functions whose parameters and return values have corresponding real types

float, long double, FloatlN, and _FloatNx.

Add after 7.3.1#3:

[3a] For each interchange or extended floating type that the implementation provides, <complex.h>
shall declare the associated functions. Conversely, for each such type that the implementation does

not provide, <complex.h> shall not declare the associated functions.

© ISO/IEC 2013 — All rights reserved

23

10

15

30

35

10

45

ISO/IEC TS 18661 Working Group Draft — March 26, 2013

WG 14 N1691

Add the following list of function prototypes to the synopsis of the respective subclauses:

24

7.3.5 Trigonometric functions

_FloatN complex cacosfN (_FloatN complex z);
_FloatNx complex cacosfNx(_FloatNx complex z);

_FloatN complex casinfN (_FloatN complex z);
_FloatNx complex casinfNx(_FloatNx complex z);

_FloatN complex catanfN (_FloatN complex z);
_FloatNx complex catanfNx(_FloatNx complex z);

_FloatN complex ccosfN (_FloatN complex z);
_FloatNx complex ccosfNx(_FloatNx complex z);

_FloatN complex csinfN (_FloatN complex z);
_FloatNx complex csinfNx(_FloatNx complex z);

_FloatN complex ctanfN (_FloatN complex z);
_FloatNx complex ctanfNx(_FloatNx complex z);
7.3.6 Hyperbolic functions

_FloatN complex cacoshfN (_FloatN complex z);
_FloatNx complex cacoshfNx(_FloatNx complex z);

_FloatN complex casinhfN (_FloatN complex z);
_FloatNx complex casinhfNx(_FloatNx complex z);

_FloatN complex catanhfN (_FloatN complex z);
_FloatNx complex catanhfNx(_FloatNx complex z);

_FloatN complex ccoshfN (_FloatN complex z);
_FloatNx complex acoshfNx(_FloatNx complex z);

_FloatN complex csinhfN (_FloatN complex z);
_FloatNx complex csinhfNx(_FloatNx complex z);

_FloatN complex ctanhfN (_FloatN complex z);
_FloatNx complex ctanhfNx(_FloatNx complex z);

7.3.7 Exponential and logarithmic functions

_FloatN complex cexpfN (_FloatN complex z);
_FloatNx complex cexpfNx(_FloatNx complex z);

_FloatN complex clogfN (_FloatN complex z);
_FloatNx complex clogfNx(_FloatNx complex z);
7.3.8 Power and absolute value functions

_FloatN complex cabsfN (_FloatN complex z);
_FloatNx complex cabsfNx(_FloatNx complex z);

© ISO/IEC 2013 — All rights reserved

WG 14 N1691 Working Group Draft — March 26, 2013 ISO/IEC TS 18661

_FloatN complex cpowfN (_FloatN complex z, _FloatN complex y);
_FloatNx complex cpowfNx(_FloatNx complex z, _FloatNx complex y);

_FloatN complex csqrtfN (_FloatN complex z);
_FloatNx complex csqrtfNx(_FloatNx complex z);

7.3.9 Manipulation functions

_FloatN complex cargfN (_FloatN complex z);
_FloatNx complex cargfNx(_FloatNx complex z);

_FloatN cimagfN (_FloatN complex z);
_FloatNx cimagfNx(_FloatNx complex z);

_FloatN complex CMPLXfN (_FloatN x, _FloatN y);
_FloatNx complex CMPLXfNx(_FloatNx x, _FloatNx y);

_FloatN complex conjfN (_FloatN complex z);
_FloatNx complex conjfNx(_FloatNx complex z);

_FloatN complex cprojfN (_FloatN complex z);
_FloatNx complex cprojfNx(_FloatNx complex z);

_FloatN crealfN (_FloatN complex z);
_FloatNx crealfNx(_FloatNx complex z);

14 Type-generic macros <tgmath.h>

The following suggested changes to C11 enhance the specification of type-generic macros in <tgmath.h> to
apply to interchange and extended, as well as generic floating types.

Suggested changes to C11:
In 7.25, replace paragraphs 2 and 3:

[2] Of the <math.h> and <complex.h> functions without an £ (£loat) or | (long double) suffix,
several have one or more parameters whose corresponding real type is double. For each such
function, except mod£, there is a corresponding type-generic macro.313) The parameters whose
corresponding real type is double in the function synopsis are generic parameters. Use of the macro
invokes a function whose corresponding real type and type domain are determined by the arguments
for the generic parameters.314)

[3] Use of the macro invokes a function whose generic parameters have the corresponding real type
determined as follows:

— First, if any argument for generic parameters has type long double, the type determined is
long double.

— Otherwise, if any argument for generic parameters has type double or is of integer type, the type
determined is double.

— Otherwise, the type determined is £loat.
with:

[2] This clause specifies a many-to-one correspondence of functions in <math.h> and
<complex.h> with a type-generic macro.313) Use of the type-generic macro invokes a

© ISO/IEC 2013 — All rights reserved 25

10

15

30

35

10

ISO/IEC TS 18661 Working Group Draft — March 26, 2013 WG 14 N1691

26

corresponding function whose type is determined by the types of the arguments for particular
parameters called the generic parameters.314)

[3] Of the <math.h> and <complex.h> functions without a type suffix, several have one or more
parameters whose corresponding real type is double. For each such function, except modf, there is
a corresponding type-generic macro.313) The parameters whose corresponding real type is double
in the function synopsis are generic parameters.

[3a] Some of the <math.h> functions for decimal floating types have no unsuffixed counterpart. Of
these functions with a dé64 suffix, some have one or more parameters whose type is Decimalé4.
For each such function, except encodedecd64 and encodebindé4, there is a corresponding type-
generic macro. The parameters whose real type is _Decimalé4 in the function synopsis are generic
parameters.

[3b] If arguments for generic parameters of a type-generic macro are such that some argument has a
corresponding real type that is a generic floating type or a binary floating type and another argument
is of decimal floating type, the behavior is undefined.

[3c] Use of a type-generic macro invokes a function whose generic parameters have the
corresponding real type determined by the corresponding real types of the arguments as follows:

— If two arguments have floating types and neither of the sets of values of their corresponding real
types is a subset of (or equivalent to) the other, the behavior is undefined.

— If any arguments for generic parameters have type _DecimalM where M = 64 or _DecimalNx
where N 2 32, the type determined is the widest of the types of these arguments. If _DecimalM
and _DecimalNx are both widest types (with equivalent sets of values) of these arguments, the
type determined is _DecimalM.

— Otherwise, if any argument for generic parameters is of integer type and another argument for
generic parameters has type Decimal32, the type determined is _Decimalé64.

— Otherwise, if any argument for generic parameters has type _Decimal32, the type determined is
_Decimal32.

— Otherwise, if the corresponding real type of any argument for generic parameters has type long
double, _FloatM where M 2 128, or _FloatNx where N 2 64, the type determined is the
widest of the corresponding real types of these arguments. If _FloatM and either long double
or _FloatNx are both widest corresponding real types (with equivalent sets of values) of these
arguments, the type determined is _FloatM. Otherwise, if long double and _FloatNx are
both widest corresponding real types (with equivalent sets of values) of these arguments, the type
determined is long double.

— Otherwise, if the corresponding real type of any argument for generic parameters has type
double, Float64, or _Float32x, the type determined is the widest of the corresponding real
types of these arguments. If _Float64 and either double or _Float32x are both widest
corresponding real types (with equivalent sets of values) of these arguments, the type determined
is _Float64. Otherwise, if double and _Float32x are both widest corresponding real types
(with equivalent sets of values) of these arguments, the type determined is double.

— Otherwise, if any argument for generic parameters is of integer type, the type determined is
double.

— Otherwise, if the corresponding real type of any argument for generic parameters has type
_Float32, the type determined is _Float32.

— Otherwise, the type determined is £loat.

© ISO/IEC 2013 — All rights reserved

10

15

20

25

30

35

40

WG 14 N1691 Working Group Draft — March 26, 2013 ISO/IEC TS 18661

If neither <math.h> nor <complex.h> define a function whose generic parameters have the
determined corresponding real type, the behavior is undefined.

In the second bullet 7.25#3c, attach a footnote to the wording:
the type determined is the widest
where the footnote is:

*) The term widest here refers to a type whose set of values is a superset of (or equivalent to) the
sets of values of the other types.

In 7.25#5, replace the last sentence:

If all arguments for generic parameters are real, then use of the macro invokes a real function;
otherwise, use of the macro results in undefined behavior.

with:
If all arguments for generic parameters are real, then use of the macro invokes a real function
(provided <math.h> defines a function of the determined type); otherwise, use of the macro results
in undefined behavior.

In 7.25#6, replace the last sentence:
Use of the macro with any real or complex argument invokes a complex function.

with:
Use of the macro with any argument of generic floating type, binary floating type, or complex type,
invokes a complex function. Use of the macro with an argument of a decimal floating type results in
undefined behavior.

After 7.25#6, add:

[6a] For each d64-suffixed function in <math.h> (except encodedecdé64 and encodebindé64) that
does not have an unsuffixed counterpart, the corresponding type-generic macro has the name of the
function, but without the suffix. These type-generic macros are:

<math.h> type-generic
function macro
quantizedé64 quantize
samequantumd64 samequantum
quantexpd64 quantexp

Use of the macro with a generic floating or complex argument or with only integer type arguments
results in undefined behavior.

[6b] For an implementation that supports Parts 1 and 3 (but not Part 2) of Technical Specification
18661 and that provides the following types:

type IEC 60559 format
float binary32

double binary64

long double binary128
_Float32 binary32
_Floaté64 binary64

© ISO/IEC 2013 — All rights reserved

27

10

15

30

35

10

15

ISO/IEC TS 18661 Working Group Draft — March 26, 2013 WG 14 N1691

_Floatl2s binary128
_Float32x binary64
_Float64x binary128

a type-generic macro cbrt that conforms to the specification in this clause and that is affected by
constant rounding modes as specified in Part 1 of Technical Specification 18661 could be
implemented as follows:

#if defined(__ STDC_WANT_IEC_18661 EXT3)
#define cbrt(X) _Generic((X), \

_Floatl128: cbrtfl28(X), \
_Float64: cbrtf64(X),
_Float32: cbrtf32(X),
_Float64x: cbrtfé64x(X),
_Float32x: cbrtf32x(X),
long double: cbrtl (X),
default: _Roundwise_cbrt(X),
float: cbrtf (X)

)

P

#else
#define cbrt(X) _Generic((X),
long double: cbrtl (X),
default: _Roundwise_cbrt(X),
float: cbrtf (X)

)

P

#endif

where _Roundwise cbrt() is equivalent tocbrt() invoked without macro-replacement
suppression.

In 7.25#7, insert at the beginning of the example:
#define __ STDC_WANT_IEC_18661_EXT3__
In 7.25#7, append to the declarations:
#if _ STDC_IEC_60559 _TYPES__ >= 20lymmL
_Float32x £32x;
_Floaté64 f64;
_Floatl28 £128;

_Float64 complex fé4c;
#endif

In 7.25#7, append to the table:

cos (£64xc) ccosf64x (£64xc)

pow(dc, £128) cpowfl28 (dc, £128)

fmax (£64, d) fmaxf64 (£64, d)

fmax (d, £32x) fmax (d, £32x), the function, if the set of values of _Float32x is a subset

of (or equivalent to) the set of values of double, or

fmaxf32x(d, £32x), if the set of values of double is a proper subset of
the set of values of _Float32x, or

undefined, if neither of the sets of values of double and _Float32x is a

subset of the other (the sets are not equivalent)
pow (£32x, n) powf32x (£32x, n)

28 © ISO/IEC 2013 — All rights reserved

10

WG 14 N1691 Working Group Draft — March 26, 2013 ISO/IEC TS 18661

(1]

(2]

(3]

[4]

[5]

(6]
[7]

Bibliography

ISO/IEC 9899:2011, Information technology — Programming languages, their environments and
system software interfaces — Programming Language C

ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-point
arithmetic

ISO/IEC TR 24732:2009, Information technology — Programming languages, their environments and
system software interfaces — Extension for the programming language C to support decimal floating-
point arithmetic

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems, second edition

IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic

IEEE 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

IEEE 854-1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic

© ISO/IEC 2013 — Al rights reserved 29

