Document WG 14/N1667
Date: 2012-12-05

Secure C coding rules, introductory words

These rules may have three uses, as:
¢ guidance to programmers developing new code
* abenchmark for reviewers of existing code
* aspecification for static tool developers

The rules are designed to provide a check against a set of programming flaws that are known from
practical experience to have led to security issues. Whilst rule checking can be performed manually,
with increasing program complexity, this rapidly becomes infeasible, hence the use of static analysis
tools are recommended.

However, it should be recognised that, in general, these SecureC rules are computationally
undecideable, as indeed, are most coding rules. This is a consequence of the ‘halting’ theorem of
Computer Science [ref]. This theorem states that it is not, in general, possible to statically determine
the exact control flow of a program. This means that any property dependant on control flow
cannot always be determined. A consequence of this undecideable is that any tool may be unable to
determine whether or not a given rule is satisfied in specific circumstances. In addition, the
widespread presence of infeasible code in most projects may also lead to unexpected results from
an analysis tool.

However checking is performed the analysis may generate:

* false negatives: failure to report a real flaw in the code. This is usually regarded as the most
serious analysis error, as it may leave the user with a false sense of security. As such most
tools err on the side of caution, which tends to generate false positives. However, there
may be cases where it is deemed better to report some ‘high risk’ flaws and miss others,
rather than overwhelm the user with false positives.

* false positive: the tool reports a flaw when actually there isn’t one. This may occur because
the code becomes sufficiently complex that the tool cannot perform a complete analysis.
The use of features such as function pointers and libraries may make false positives more
likely

* inappropriate true positive: the tool correctly reports a flaw in the program (as defined by
the coding rules). However, there is either:

o agood reason why in these specific circumstances the rule should be ignored. For
example, rule [boolasgn] largely prevents the use of assignment in conditional
contexts: if (x = y)... beingreportedasanerroras if (x == y)... may
have been intended. The rule allows three exceptions, where the programmer can
be expected to know and require that the behaviour is assignment rather than
comparison, e.g.if ((x = y) != 0)... However, there may be other
circumstances where the programmer knows the program will have the correct
behaviour, but which are not covered by the exceptions.

o the useris aware of information that the analysis tool is not, that makes the
concern of the rule inappropriate. For example, many of the rules involve the use of



Document WG 14/N1667
Date: 2012-12-05

tainted values, i.e. those outside the control of the program. It may be that the user
knows that a ‘tainted’ value is being read from a file inside a firewall, which cannot
be manipulated by an attacker, so the value can be regarded as trusted rather than
tainted.

As it is unrealistic to expect any static analysis to be 100% accurate or appropriate, it is
recommended that users of these rules put into place a ‘deviation’ mechanism, to handle false
positives and inappropriate true positives. However, it is not the role of this standard to define such
a management mechanism.

One approach to a ‘deviation’ mechanism would be to ensure that when a positive error report is
received that is believed to be false or inappropriate, then a justification is recorded to document
why, in these specific circumstances, the report should be ignored. The justification should be
expressed as though there were an expectation that it may be reviewed by an independent (and
possibly critical) third party, who will need to find the argument presented compelling.

Blanket deviations, such as ‘we’re ignoring all reports against rule XYZ’, are inappropriate.

There is also the possible scenario whereby a tool reports a flaw but, due to the complexity and
undecidability of the analysis, it is not possible for the users to determine either the accuracy of the
diagnosis or what steps are needed to remove the alleged flaw. In such circumstances, the use of a
deviation mechanism may be the only alternative to a substantial code rewrite. This problem is one
argument for the production of simple code.



